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Abstract: A regional grid cluster proposal is required to tackle power grid complexities and evaluate
the impact of decentralized renewable energy generation. However, implementing regional grid
clusters poses challenges in power flow forecasting owing to the inherent variability of renewable
power generation and diverse power load behavior. Accurate forecasting is vital for monitoring
the imported power during peak regional load periods and surplus power generation exported
from the studied region. This study addressed the challenge of multistep bidirectional power flow
forecasting by proposing an LSTM autoencoder model. During the training stage, the proposed
model and baseline models were developed using autotune hyperparameters to fine-tune the models
and maximize their performance. The model utilized the last 6 h leading up to the current time
(24 steps of 15 min intervals) to predict the power flow 1 h ahead (4 steps of 15 min intervals) from
the current time. In the model evaluation stage, the proposed model achieved the lowest RMSE and
MAE scores with values of 32.243 MW and 24.154 MW, respectively. In addition, it achieved a good
R2 score of 0.93. The evaluation metrics demonstrated that the LSTM autoencoder outperformed the
other models for multistep forecasting task in a regional grid cluster proposal.

Keywords: multistep power flow forecast; LSTM autoencoder; regional grid cluster proposal

1. Introduction
1.1. Background

The reduction of greenhouse gas emissions is imperative, and a viable means to
achieve this is by promoting the integration of renewable energy (RE) into power grids [1].
The proliferation of decentralized energy systems in electricity grid networks, mainly
through the deployment of wind generators and photovoltaic (PV) systems, has funda-
mentally transformed the power supply system, transitioning it from a centralized and
unidirectional structure to a decentralized and bidirectional structure. However, because a
considerable proportion of such systems are connected to the power grid at low voltage
levels, novel challenges arise, including issues related to energy management and bidirec-
tional power flow [2]. This is because the variability in electrical power generation, such
as the intermittency of wind intensity and solar radiation energy, results in a mismatch
between the electricity demand and supply. Furthermore, the arrangement of installed
renewable energy systems is heavily influenced by geographical and meteorological factors,
as highlighted in the literature [3]. Hence, it is crucial to develop effective solutions to
address these challenges [4].

According to the literature [2], which is our primary reference, regional analysis plays
a vital role in addressing the aforementioned challenges, particularly in the context of
weather-dependent renewable energies. This is because it accounts for the regional varia-
tions in power generation and consumption. A regional power grid model can facilitate
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the analysis of how, where, and when to convert and store excess electrical energy in
comparison to local demand. The efficacy of integrating grids into large-scale energy
system models depends on the accuracy and precision of the models and their calculations.
However, the current methods for assessing region-specific renewable potentials and grid
reductions are primarily limited to political administration boundaries or national scales.
In addition, there is a lack of local clustering methods for high-voltage substations. There-
fore, reference [2] aims to contribute to the development of a postcode and high-voltage
distribution network-based cluster model and analyze the regional power generation and
power flow parameters.

The development of a regional grid network cluster approach is imperative for re-
ducing the complexity of the overall power grid system and for analyzing the impact of
decentralized power generation from renewable energy sources (RESs). It is incumbent
upon the grid operator to monitor the power flow in the grid network cluster, given the
volatility of power generation from RESs and the diverse behavior of power loads, which
result in fluctuating line power flow characteristics. Additionally, the dynamic grid topolo-
gies and newly installed power generation assets, such as PV and wind systems, can lead
to a significant amount of bidirectional power flow via transformers to/from the overlaid
grid system. Moreover, the addition of new commercial and industrial loads to the distri-
bution grid system contributes to a high-power transport through feedlines. Consequently,
forecasting can be a proposed solution for monitoring the power flow through the network
cluster. Through forecasting, we can capture critical generation–load information [5] about
the network cluster, such as how much power is imported when the regional load is high
and how much surplus power generation is exported from the investigated region. The
detailed explanation of grid network clusters can be found in Section 3 below.

1.2. Related Work and Contribution

Accurate forecasting can be achieved through several methodologies. Notably, with
the advancements in the field of computer science, the development of machine learning
(ML) and deep learning (DL) has gained momentum [6–8]. Consequently, it is unsurprising
that ML and DL techniques are currently being employed for all prediction and forecasting
tasks in modern power systems, as evidenced by existing literature [9–12] that utilizes
deep learning models for load forecasting. Furthermore, references [13–15] employ deep
learning models to solve solar power forecasting, while references [4,16–18] utilize deep
learning models for wind power forecasting.

Forecasting bidirectional power flow is still a topic with limited scientific papers.
However, there are some research papers on power flow forecasting that are pertinent to
this study. For instance, in reference [19], an extreme learning machine was used by the
authors to predict vertical power flow, and a postprocessing technique was introduced
to improve the forecast based on recent changes in the power flow. Accurate results
were achieved by their approach, and the forecast quality was further improved by the
postprocessing step. In reference [20], a long short-term memory (LSTM) network was
employed by the authors to forecast vertical power flow in the interconnection between
medium- and high-voltage networks. A model updating process was integrated to enhance
the precision of the predictions, which was demonstrated to have superior performance
compared to the non-updating approach. In another study [21], the challenge of short-term
power flow forecasting on transmission interties was effectively resolved by employing
Box–Jenkins SARIMA methodology with acceptable data requirements. The authors noted
that the forecasting accuracy declines over medium- to long-term periods due to low-
quality input data. They discovered that SARIMA models were more precise for power
flow forecasting issues with a historical pattern. The study emphasizes the significance of
SARIMA methodology in power flow forecasting applications.

The analysis of power flow in an integrated power system with other power resources
can offer valuable information regarding bidirectional power flow. The knowledge of
bidirectional power flow is critical for power system operators in planning, maintaining,
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and modifying circuits to accommodate facilities or loads that may require power during
peak load or feed surplus power to the main power supply.

In this study, there is a research gap due to the existing literature focusing on forecast-
ing power flow in power systems but lacking specific research on multistep forecasting
bidirectional power flow in regional grid cluster study cases. Meanwhile, there are already
some studies addressing power flow forecasting. For instance, reference [22] introduces a
novel deep learning model, called multichannel long short-term memory (TL-MCLSTM)
with time location, for multistep short-term power consumption forecasting in the smart
grid. Similarly, reference [23] proposes a method for multistep time series forecasting
utilizing LSTM–recurrent neural network (RNN). The proposed method provides several
advantages such as better data pattern fitting, less manual effort, and higher predictive
accuracy. A further investigation on multistep forecasting has been conducted and reported
in reference [24], where the authors have employed a residual convolutional neural net-
work (R-CNN) with multilayered long short-term memory (ML-LSTM) architecture. The
proposed methodology has exhibited a substantial reduction in error rates when compared
with baseline models.

Another study, presented in reference [25], provides a 2D convolutional neural net-
work (CNN) for multistep short-term electric load forecasting. The authors found that
using this model can significantly reduce the number of trainable parameters, including
training time, model size, and computation requirements. Additionally, a similar study
mentioned in reference [14] also utilized a CNN and combined it with a chaotic optimiza-
tion algorithm for multistep short-term solar radiation forecasting. The authors claim that
this model can achieve accuracy and robustness, thereby improving the guidance for power
grid dispatching. In [26], the multistep forecasting task on electricity load was solved
by using a hybrid gated recurrent unit (GRU) with a feedforward neural network. The
authors mentioned that the proposed approach can achieve better results compared to
other methods in predicting the demand for charging stations in the short-term horizon.

Previous literature reviews have mentioned that deep learning is a powerful method
that can be used to overcome multistep forecasting task, however, there is still a need for
more research in this domain. Additionally, there is a gap in comparative analysis between
different deep learning model variants for multistep forecasting of power flow in regional
grid clusters. To address the research gap mentioned above, this study has the research
objective of developing a multistep forecasting approach for power flow within a regional
grid cluster, specifically dedicated to bidirectional power flow. The multistep forecasting
approach in this study is designed for four steps with a 15 min interval, which corresponds
to forecasting 1 h ahead. The reason for choosing this interval is that we are working with
a power measurement dataset that has a 15 min interval. Forecasting 1 h ahead is intended
to capture critical generation–load information [5] about the network cluster, such as the
amount of power imported during high regional load and the surplus power generation
exported from the investigated region.

The objective of this research is to conduct a multistep forecasting of power flow within
a regional grid cluster through the utilization of LSTM autoencoder, which is a variation
of the LSTM family of models. Several studies have employed the deep learning model
for multistep forecasting. Table 1 provides a comprehensive overview of the literature on
power flow forecasting and the utilization of deep learning models for multistep forecasting.
The existing literature suggests that the LSTM model is highly effective in short-term
forecasting. Nevertheless, there are numerous LSTM model architectures that can be
implemented for the same purpose. In the current study, we introduce LSTM autoencoder
as an appropriate model for multistep forecasting of power flow. This paper provides some
technical contributions as follows:

• This study performs a comparative analysis between LSTM autoencoder and four
distinct LSTM family architectures for multistep forecasting, which, as far as the
authors are aware, have not been subject to a comparative analysis in prior literature.
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• This study presents a 1-h-ahead (four steps of 15 min intervals) forecasting approach
for power flow specifically tailored for a regional grid cluster application.

Table 1. Summary of related work.

Topic Reference Methodology/Output

Power flow
forecasting

Jost et al. [19] Using an extreme learning machine postprocessing technique to
forecast the vertical power flow.

Brauns et al. [20] Using LSTM model with updating process for vertical power
flow forecasting.

Paretkar et al. [21] Implementing Box and Jenkins ARIMA for predicting power flow in
the short term on significant transmission interconnections.

Multistep forecasting-based LSTM

Shao et al. [22] Using TL-MCLSTM for multistep short-term power
consumption forecasting.

Liu et al. [23] Utilizing LSTM RNN for multistep time series forecasting.

Alsharekh et al. [24] Employing R-CNN with ML-LSTM for multistep forecasting.

Sing et al. [25] Using 2D CNN for multistep short-term electric load forecasting.

Duan et al. [14] Proposing CNN with chaotic aquila optimization algorithm for
multistep short-term solar radiation forecasting.

Cheng et al. [26] Combining GRU model and feedforward neural network for
multistep electricity load forecasting.

Our approach (multistep forecasting of power flow) Proposing LSTM autoencoder for multistep forecasting of
power flow.

The subsequent sections of this paper are organized as follows: Section 2 presents a
succinct summary of the deep learning model architectures employed. Section 3 elaborates
on the case studies pertaining to grid network cluster and the dataset utilized, while
Section 4 delineates the proposed methodology. Section 5 showcases the outcomes and
corresponding discussions, and the Section 6 concludes the paper with closing remarks.

2. Deep Learning Model
2.1. Long Short-Term Memory (LSTM) Structure

A recurrent neural network (RNN) is a type of deep learning model that is particularly
well suited for processing sequential or time series data [27]. Due to its capacity for
learning from training data, the RNN is frequently employed in solving ordinal or temporal
problems. The RNN distinguishes itself from other deep learning models by incorporating a
memory mechanism that allows it to leverage information from past inputs to influence the
present input and output, in contrast to other models that assume independence between
inputs and outputs. The recurrent neural network is notorious for its susceptibility to the
issues of exploding and vanishing gradients [28], which arise due to the backpropagation
through time (BPTT) algorithm employed by the RNN to compute gradients during the
training process. These problems can cause suboptimal performance and slow training
times for RNNs. To mitigate these issues, alternative models such as the long short-term
memory (LSTM) and gated recurrent unit (GRU) models have been developed.

Hochreiter and Schmid Huber [29] initially introduced the long short-term memory
model to address the issue of long-term dependence and alleviate the vanishing gradient
problem, which is not feasible with the standard RNN model. The LSTM (see Figure 1)
model is designed with memory cells and gates to effectively manage information flow
and retain information over extended periods. As a result, the LSTM has become a popular
deep learning model that is applied in a wide range of prediction and forecasting tasks.
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Figure 1. The architecture of LSTM Network.

Broadly speaking, an LSTM network comprises memory blocks called cells, each
having two states: the cell state and the hidden state. The LSTM network utilizes these
cells to make critical decisions by selectively retaining or discarding information about
significant components [7]. These components, called gates, are structured into forget gates,
input gates, and output gates. As depicted in Figure 1, the LSTM model operates in three
stages: during the first stage, the network employs the forget gate to determine which
information is to be retained or discarded for the cell state. This process involves the input
at the current time step (xt) and the previous hidden state value (hs(t−1)), both of which are
subjected to the sigmoid function (Sg). The calculation for the forget gate ( f g t) is expressed
as follows.

f gt = Sg
(

w f ·
[

hs(t−1), xt

]
+ b f

)
(1)

During the second phase, the network’s calculation persists by transforming the
previous cell state, (Cs(t−1)), to a new cell state, (Cst). This operation involves the selection
of updated information that needs to be incorporated in the long-term memory (cell state).
The updated cell state is obtained by considering the input gate (igt), forget gate, and cell
update gate values (Cs′t). The mathematical equations for determining the output values
of these gates are illustrated below.

igt = Sg
(

wi·
[

hs(t−1), xt

]
+ bi

)
(2)

Cs′t = T
(

wc·
[

hs(t−1), xt

]
+ bc

)
(3)

Cst =
(

Cs(t−1)· f gt

)
+
(
igt·Cs′t

)
(4)

Upon the completion of cell state updating, the final step entails ascertaining the value
of the hidden state, (hs(t)), which acts as the network’s memory by retaining the previous
data and facilitating predictions. To achieve this, the calculation process must incorporate
the reference value of the updated cell state and the output gate (ogt). The formula that
characterizes this process is presented below.

ogt = Sg
(

wo·
[

hs(t−1), xt

]
+ bo

)
(5)

hst = ogt·T(Cst) (6)
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The foregoing equations pertain solely to a discrete time interval. Consequently, these
formulas necessitate recalculation for the ensuing time increment. Accordingly, in the event
of a 24-step series, the aforementioned equations must be recomputed 24 times for each
temporal phase, respectively.

The weight matrices (w f , wi, wc, wo) and biases (b f , bi, bc, bo) are stationary parameters,
lacking temporal dependence. Hence, these matrices remain unaltered across successive
time increments, that is, they persist as constants throughout the computation of output
sequences for varying timesteps.

2.2. LSTM Autoencoder

The LSTM autoencoder is a specific type of autoencoder that is designed to handle
sequential data by incorporating LSTM layers [13]. This architecture, as depicted in Figure 2,
is widely used in sequence-to-sequence tasks, such as time series forecasting. The input
sequence is encoded by the first LSTM layer, which learns a compressed representation of
the data. A dense layer can be added after the LSTM layer to extract essential features from
the encoded representation before passing it to the repeat vector layer. The repeat vector
layer repeats the encoded representation multiple times, enabling it to be decoded back
into the original sequence format.
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Figure 2. The LSTM Autoencoder Layers.

The second LSTM layer decodes the repeated vector and reconstructs the original
sequence. Refining the reconstructed sequence and improving its fidelity to the input can
be achieved by adding another dense layer after the LSTM layer. It is worth noting that
the number of units and layers used in each LSTM and dense layer can vary depending on
the specific task and data under consideration. Moreover, it is critical to train the model
with an appropriate loss function because the loss function is a part of the optimization
algorithms. It is used to estimate the loss of the model, allowing the weights to be updated
and reducing the loss in subsequent evaluations. Additionally, different loss functions can
have varying impacts on deep learning models as they capture different aspects of the
optimization problem. Therefore, the choice of loss functions depends on the specific task
and behavior of the model [30].

3. Grid Network Cluster and Power Flow Dataset
3.1. Grid Network Cluster

The organization of power grids into distinct voltage levels enables the efficient trans-
mission and distribution of electrical energy across various equipment, such as transformers
and transmission lines. However, the recent proliferation of dynamic grid topologies and
the installation of renewable power generation systems, such as photovoltaic (PV) and wind
systems, within distribution systems have introduced bidirectional power flow through
transformers and posed significant challenges to the overlaid grid system. This has been
further exacerbated by the increasing usage of feedlines by new commercial and industrial
loads in distribution grids, contributing to high power transport. The inherent variability
of power generation from renewable energy resources and the diverse behavior of power
loads have made power flow forecasting a formidable task.
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To address these challenges, a regional grid network cluster has been developed to
simplify the power grid system and facilitate the analysis of decentralized power generation
from renewable energy sources, referring to our preliminary result in the literature [2]. This
cluster is designed to be located at the connection point between the transmission system
operator (TSO) and the distribution system operator (DSO) through a grid reduction
procedure, enabling a comprehensive analysis of power generation and consumption
patterns and the loads on the power lines. This analytical tool offers valuable insights into
the behavior of power systems under different scenarios and conditions and provides a basis
for designing, optimizing, and predicting local power systems while integrating different
generation and consumption sources. Similarly reference [31] proposed a clustering of
power networks to decompose a large interconnected power network into smaller loosely
coupled groups to facilitate easy and flexible management of the power transmission
systems by allowing secondary voltage control at regional levels and controlled islanding
that aims to prevent the spreading of large-area blackouts. Another study [32] proposed
power grid network partitioning and clusters for a splitting a power grid system into
separate parts with self-sufficient power generation. Internal connectivity is maximized
within the individual clusters and they minimize the power deficiency or surplus.

The importance of grid network clusters extends beyond the analysis of existing
power systems, as they can also aid in the design and optimization of power systems and
the prediction of power exchange between external grid systems [2]. Figure 3 illustrates
an example of a regional electrical grid topology that encompasses low-voltage (LV),
overlaid medium-voltage (MV), and high-voltage (HV) levels, under the distribution grid
system. The region receives power supply from two connected substations, and the circle
area delineates one network cluster. Within this network cluster, a multitude of power
generations and loads are aggregated from different voltage levels. Our study focuses on
the feedlines from both sides of the network cluster, which consists of six feedlines supplied
by two connected substations, as detailed in the literature [2]. By measuring the power flow
in the feedlines, researchers and grid system operators can gain a better understanding
of the system’s behavior and identify the potential power balance between local power
generation and consumption.
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3.2. Bidirectional Power Flow Dataset

This study focuses on a regional high-voltage subnet situated in the north-east region
of Germany, which has already been documented in the literature [2]. For our investigation,
we utilized a simplified grid, depicted in Figure 4, which is a visual representation of a
network cluster comprising six feedlines that supply power to and receive power from two
interconnected substations, namely Sub_A and Sub_B. Four feedlines (Line 3, Line 4, Line 5,
Line 6) are connected to Sub_A, while two feed lines (Line 1, Line 2) are connected to Sub_B.
Based on the simplified grid, the actual implementation involves the interconnection of
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lines in the grid in a parallel manner. Specifically, Line 1 and Line 2 are parallel, Line 3 and
Line 4 are parallel, and Line 5 and Line 6 are parallel. Consequently, based on observations
from data measurements, it has been inferred that the parallel lines in the cluster exhibit
similar power flow patterns, which are distinct from the remaining lines, as illustrated
in Figure 5.
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The power measurement of the feeder lines enables us to acquire vital information
about the generation and load of the grid cluster, such as the amount of power imported
during periods of high regional load and the quantity of surplus generation exported
from the cluster under investigation [2,7]. In this study real power measurement data
are utilized to analyze and predict the regional power balance. To this end, we acquire
directional feedline power measurement data with a 15 min temporal resolution from
the local distribution system operators. These directional power flow data span from
1 January 2019 to 31 December 2019, and an instance of power flow in the network cluster
studied in January 2019 is presented in Figure 5. The sign of the active power indicates the
direction of power flow between the busbar and the cluster since the power measurement
is bidirectional. A positive value signifies that power flows from the busbar to the cluster,
while a negative value indicates power flow from the cluster to the busbar. Conversely,
negative active power values indicate the exported power from the cluster to the busbar,
while positive values indicate the import of power from the busbar to the cluster.

In this study, the primary objective is to predict the power net 1 h in advance, which
refers to the total power flow of all feedlines in the investigated network cluster. The
power net denotes the power flowing either from the busbar to the cluster or from the
cluster to the busbar. As illustrated in Table 2 which shows an example of the dataset used,
the dataset contains the power values from all feedlines and the power net in this study.
Mathematically, the power net is calculated at a specific point in time (i) by summing up
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the power flowing at a specific time (i) through Line 1, Line 2, Line 3, Line 4, Line 5, and
Line 6. The corresponding equation is presented below.

P_neti = ∑(Line1i + Line2i + Line3i + Line4i + Line5i + Line6i) (7)

Table 2. Example of bidirectional dataset used.

Timestamp Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 P_Net

2019-01-01 00:00:00 −58.285 −56.291 −16.162 −21.027 −7.297 −7.743 −166.805

2019-01-01 00:15:00 −60.758 −59.467 −19.703 −27.23 −7.297 −9.297 −183.752

2019-01-01 00:30:00 −65.043 −62.977 −20.811 −31.649 −6.851 −9.96 −197.291

2019-01-01 00:45:00 −68.495 −65.522 −20.365 −28.77 −9.068 −11.068 −203.288

2019-01-01 01:00:00 −68.531 −67.661 −27.446 −36.527 −10.405 −12.608 −223.178

4. Proposed Methodology

In this study, relevant primary data on bidirectional power flow were gathered from
an examined power grid, and data cleansing and filtration were conducted prior to their
application. The resulting high-quality data facilitated the training and testing of the
proposed deep learning model for power flow forecasting in a simplified network cluster.
The proposed methodology comprises three main categories after the data collection
stage: data preprocessing, model construction, and model evaluation. An overview of the
proposed methodology is illustrated in Figure 6.
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4.1. Data Collection and Data Preprocessing

Data collection is a crucial step because all further steps depend on the availability of
the data. It involves gathering all the necessary data from available sources. In this study,
we solely utilized univariate time series data of the total bidirectional power flow of all
feedlines in the investigated network cluster (power flow net). The reason for this is the
lack of data availability for other external inputs, such as weather variables. Moreover, our
study indicates that weather data have no strong correlation with the power flow net. This
is due to the regional grid network including a combination of inherent variability in power
generation from renewable energy resources and the diverse behavior of power loads.

After the data collection step, data preprocessing plays a pivotal role in transforming
raw data into a compatible format for deep learning models by incorporating various
techniques. In the present study, diverse methodologies were employed, including handling
missing values, data normalization, sliding window, and dataset partitioning.
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4.1.1. Step 1: Dealing with Missing Values

As the measurement data collected may contain missing values, which may result
from device measurement malfunctions or errors in data collection, it is essential to address
them to prevent potential sampling bias. Moreover, forecasting models typically require
continuous and complete time series data [33], making it necessary to handle missing
values appropriately. In this study, we employed the interpolation method to fill in missing
values in the time series dataset by estimating them based on neighboring data points.

4.1.2. Step 2: Data Normalization

The dataset used in this study comprises bidirectional power flow data with varying
scales. This difference in scale can have an impact on the performance of deep learning
models during the learning process [34]. Therefore, it is necessary to normalize the dataset
to mitigate this issue. In this study, we employed the numerical scaling method of min–max
normalization. The formula for converting the original values to normalized values is
shown in the following Equation (8).

x′ =
x−min(x)

max(x)−min(x)
(8)

The equation for normalizing a value, denoted as x′, is based on the original value, x,
as well as the maximum value of x (max(x)) and the minimum value of x (min(x)).

4.1.3. Step 3: Sliding Window

Following the normalization of the dataset, a sliding window technique was employed
to convert the structured time series data into a supervised learning format comprising
multiple subsequences [35]. This approach was necessary as the forecasting model aimed
to address a supervised learning problem, where the dataset must include input patterns
(x) and output patterns (y). The sliding window approach leveraged the previous time step
as the input variable and the value of the following time step as the output variable. This
process involved sliding a window of a fixed size along the time series dataset to generate
multiple subsequences.

The primary objective of this study was to forecast power flow 1 h ahead. As a result,
the time series data were transformed into the necessary format for multistep forecasting,
which involves predicting multiple future time steps in a sequence. The optimal length
of the input and output variables when utilizing a sliding window approach for the
forecasting task depends on several factors, such as the specific time series data, patterns,
and dependencies in the data. Therefore, there is no specific answer to the significant
optimal length of input and output variables. However, there are considerations that can
be implemented to select the lengths of the input and output variables.

One such consideration is the data granularity factor. The granularity factor can
impact the window size. If the data have fine-grained observations (such as hourly or
daily), a smaller window size may be needed to capture relevant patterns. On the other
hand, if the data are aggregated at a higher level (e.g., monthly or yearly), a larger window
size may be necessary. In this study, the length of the input and output variables was
determined based on the granularity factor and considering computational time. It was
recognized that a larger or smaller window size can introduce different computational
time requirements during the model training stage. Based on our observation, the last 6 h
(24 steps of 15 min intervals) of the time series data following the current time were used
as input data. The value 1 h ahead (four steps of 15 min) of the current time was used as
the output. The sliding window approach adopted is illustrated in Figure 7, where the
yellow bar represents the length of the input variable and the red one represents the output
variable. While blue bar represents current time.
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4.1.4. Step 4: Dataset Splitting

Data splitting is a crucial stage that involves dividing a dataset into training, valida-
tion, and testing sets. The training dataset is used to train a deep learning model, while
the validation dataset is used to evaluate the performance of the model during the training
process. Moreover, the testing dataset is used to assess the final performance and gen-
eralization capabilities of the trained model. In this study, we performed data splitting
after reorganizing the structure of the time series dataset into a supervised learning format.
There is no optimal percentage ratio for splitting the dataset. However, existing references
indicate several ways to divide the dataset. For example, in references [15,36], the studies
provide information on splitting the dataset with a ratio of 90% for training and 10% for
testing. In [7,37–41], a scenario of 70% for the training dataset, 15% for the validation
dataset, and 15% for the test dataset is used. Based on these references, our research study
specifically allocated 80% of the total dataset for training, 10% for validation, and 10% of
the data for testing purposes.

In the splitting process, our study does not recommend dividing the dataset randomly
for training, validation, and testing when performing forecasting tasks. This is because
the time series data used in this study have a temporal order, and the goal is to make
predictions on future data based on past observations. Based on this reasoning, randomly
shuffling and splitting the dataset can lead to invalidating the forecasting task due to future
information leakage and performance estimation bias.

4.2. Model Construction with Autotune Hyperparameter

During the model construction stage, we developed several baseline models to assess
the proposed model’s performance. The common baseline models used for forecasting
tasks have included simple RNN [8,42], LSTM [43,44], GRU [45,46], and bidirectional
LSTM [13,47], whereas the proposed model was an LSTM autoencoder model. All models
used in this study were developed based on the TensorFlow [48] and Keras libraries [49].
The designs of all structures and layers of the models can be observed in Table 3. During
the development of training, all deep learning models were built with autotune hyperpa-
rameters. The main reason for this was to automatically search for the optimal values of
hyperparameters, providing benefits to deep learning models such as improved perfor-
mance, time efficiency, and resource efficiency.
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Table 3. Deep Learning Model structures.

DL Model Structure Layers of Model

Simple RNN Simple RNN layer + Dense layer

LSTM LSTM layer + Dropout layer + Dense layer

GRU GRU layer + Dropout layer + Dense layer

Bidirectional LSTM Bidirectional LSTM layer + Dropout layer + Dense layer

LSTM
Autoencoder

LSTM layer + Dense layer + Repeat vector layer + LSTM layer +
Dense layer

4.3. Model Evaluation

The process of model evaluation is a crucial step in assessing the precision and perfor-
mance of all compared models using metric scores. In this study, prior to implementing
model evaluation, the prediction results from the models and testing dataset were trans-
formed into their original values, since their prior form was in a normalized state.

In this study, the selection of evaluation metrics was based on recommendations
derived from previous research and reports in the domain of predictive modeling. These
metrics encompassed the root mean square error (RMSE) [7,13], which is used to calculate
the square root of the average of the squared differences between the predicted and actual
values, the mean absolute error (MAE) [3,50], which measures the average magnitude of the
errors without considering their direction, and the coefficient of determination (R2) [51,52],
which measures the proportion of the variance in the dependent variable that is explained
by the independent variables in the model.

When evaluating forecasting models, RMSE and MAE are metrics typically used to
assess the accuracy of model predictions, and a lower value of these metrics indicates better
performance of the trained model. In contrast, R2 is used to evaluate the overall quality
of the model and assess how well it explains the variation in the data. A higher score of
the R2 metric indicates a better fit of the model. The formulas for computing these metrics
used in this study are illustrated in the following equations.

RMSE =

√
∑N

t=1
(
Ot − Ôt

)2

N
(9)

MAE =
∑N

t=1
∣∣Ot − Ôt

∣∣
N

(10)

R2 =
∑t

(
Ôt −

−
O
)2

∑t

(
Ot −

−
O
)2 (11)

The actual value O at time t is denoted as Ot and the predicted value as Ôt, where
−
O is

the mean value of O, and N is the total number of observations. In this study, all metric
evaluations used were based on the scikit-learn library [53].

5. Results and Discussion
5.1. Comparison of Deep Learning Models in Training Stage

This section presents the results of our proposed LSTM autoencoder model compared
with the baseline models during the training stage. All models were designed to forecast
the net power flow value of a network cluster 1 h ahead. The structures of all the models
compared in this study are based on the information provided in Table 3.
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This study employed the autotune hyperparameter technique with the hyperband
algorithm from the Keras tuner to optimize the deep learning models. The application of
this technique encompasses both the baseline models and the proposed LSTM autoencoder
throughout the model training stage. During the model development and training stages in
this study, the autotuning hyperparameter technique was used to search for optimal values
of key hyperparameters, such as the number of neurons in the hidden layers, preferred
activation function, and appropriate learning rate value for the optimization method.
This allowed us to automatically determine the most suitable configurations for these
hyperparameters and optimize the performance of the deep learning models.

The utilization of the autotune hyperparameter technique yields significant advan-
tages, including improved efficiency in the model training process and enhanced model
quality [54]. Moreover, it mitigated the need for laborious manual exploration of numerous
hyperparameter combinations, which are often unavailable and require meticulous selec-
tion for deep learning models. The hyperband algorithm as a tuner was adopted in this
study to optimize the hyperparameters in our deep learning models. This algorithm utilizes
a successive halving method to iteratively eliminate poorly performing configurations [55].
By employing the hyperband algorithm with appropriate settings during the model train-
ing phase, the hyperparameter space was efficiently explored, resulting in identification of
the optimal configuration for our deep learning models. In this study, a hyperband tuner
was configured to minimize the validation loss. In addition, the maximum number of
epochs for training each model configuration was set to ten, and the algorithm employed a
factor of three to determine the number of configurations in each bracket.

After identifying the optimal hyperparameter configurations for all the models, the
models were trained using the training and validation datasets. The original structure of
these datasets consists of time series data representing the total power flow of all feedlines
(power net value) in the investigated network cluster. The training dataset comprised
80% of the total time series data, covering a period from 1 January 2019, with a 15 min
interval, to 20 October 2019, at midnight. The validation dataset comprised 10% of the
data, spanning 20 October 2019, at 12:15 a.m. with a 15 min interval, to 25 November
2019, at 11:15 a.m. These percentages indicate the ratio of the time series data used in this
study. Furthermore, the structure of the datasets was converted into a supervised learning
format by employing the sliding window technique, enabling them to be fed into the deep
learning model. In terms of dataset size after their size was reorganized, the training dataset
comprised 28,010 samples, each consisting of 24 time steps and 1 feature. Similarly, the
validation dataset contains 3501 samples, with each sample encompassing 24 time steps
and 1 feature.

During the model training stage, all models with configured hyperparameters were
trained on the computer listed in Table 4. The models were executed and fitted with a
configuration in which the number of epochs was set to 100, and the batch size was set to 32.
Furthermore, during model compilation, all models were set with the Adam optimizer and
mean squared error (MSE) as the loss function. After the training process, the loss value
was recorded to provide an indication of how well the model learned from the training
data. In this section, the MSE loss function was used to calculate the average squared
difference between the predicted and actual values. Figure 8 was constructed to monitor
the performance of the model on both the training and validation data, where the x-axis
represents the number of training epochs and the y-axis represents the loss value.

Table 4. Machine Specification.

Parameter Specification

CPU 12th Gen Intel® core ™ i7-12650h
GPU NVIDIA GeForce RTX 3060 6 GB

HDD/SDD 500 GB
RAM 16 GB

OS Windows 11 Home 64 bit
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The training loss curve displays the loss function evaluated for the training data
during each training epoch, whereas the validation loss curve displays the loss function
evaluated for the validation data during each epoch. As depicted in Figure 8, all models
generally exhibit a decrease in loss values over several epochs in the training dataset but a
fluctuation in the validation dataset. The LSTM model had the highest loss value during
training, whereas the other models were similar and tended to have small loss values. In the
validation dataset, it is challenging to determine which model performs well with a small
loss value, as all models tend to have fluctuating loss values throughout all epochs. This
learning curve can diagnose the presence of an insufficient representation of the validation
dataset, which implies that the data provided are inadequate for evaluating the model’s
generalization capability. This scenario can be identified by observing the learning curve,
where the training loss curve appears to be a suitable fit, while the validation loss curve
displays erratic fluctuations around the training loss [56].

Monitoring the duration of the training process is vital for assessing the efficiency
of models. It allows us to gain insights into the duration of model training and identify
potential issues that may arise, such as the need for adjustments in batch size to improve
training efficiency. Valuable insights can also be obtained regarding the performance
and behavior of the models during the training process. Figure 9 shows that the simple
RNN model had a prolonged training duration, which may be attributed to the inherent
vanishing gradient problem, as discussed in Section 2. Conversely, bidirectional LSTM
and LSTM autoencoder models have similarly extended training durations due to their
complex architecture, as compared to simple LSTM and GRU models.
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5.2. Performance Comparison of Deep Learing Models

In this section, we present an evaluation of the performance and generalization ability
of the trained model on a new dataset, referred to as the testing dataset, which was not used
during the training or validation phases. The main objective of this stage is to assess the
expected performance of the model in real-world scenarios. To achieve this, we employed
several metrics to evaluate the models, including the RMSE, MAE, and R2.
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In this study, we developed a function to evaluate the performance of a deep learning
model. This function considers the input features of the test dataset (x_test) and the
corresponding output features, labeled y_test, which serve as the ground truth. This
function allows the trained forecasting model to make predictions based on the input
features. The prediction results, along with the ground truth, were converted to their
original scales. Subsequently, the function iterates a certain number of times in a loop,
allowing for the individual evaluation of each element using relevant evaluation metrics.

In Table 5, we present the evaluation results of each trained deep learning model using
the testing dataset. It is evident that the proposed LSTM autoencoder model outperforms
the other models in terms of the RMSE and MAE metrics, achieving the lowest scores
of 32.243 MW and 24.154 MW, respectively. Additionally, the R2 score indicated that
this model demonstrated a higher value, further confirming its superior performance.
However, it is important to note that among all the compared models, the GRU model
exhibits similarities to the proposed model, as it obtains the second-lowest scores in terms
of RMSE and MAE, while also having the same score in the R2 metric as the proposed
model. Nevertheless, when comparing the training time, it can be observed that the LSTM
autoencoder model requires a slightly longer training process compared to the GRU model.

Table 5. Performance Evaluation of Forecasting Model.

Model Name RMSE MAE R2

Simple RNN 36.238 28.127 0.912

LSTM 38.646 29.398 0.9

GRU 32.377 24.352 0.93

Bidirectional LSTM 32.486 24.552 0.929

LSTM Autoencoder 32.243 24.154 0.93

In Figure 10, we display an example of the multistep power forecasting results of
the bidirectional power flow from all trained models, including the proposed model and
baseline models. The testing input dataset used in this section covers the last 6 h, consisting
of 24 steps with a 15 min interval, following the current time. The time span of the input
data ranges from ‘2019-11-29T10:45:00’ to ‘2019-11-29T16:30:00’. The input data provided
to all trained models are expected to predict the bidirectional power flow 1 h ahead (four
steps of 15 min) after the current time in the investigated network cluster. The expected
output data cover the time span from ‘2019-11-29T16:45:00’ to ‘2019-11-29T17:30:00’.
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Given the superior performance of our proposed model compared with other baseline
models, as demonstrated in the model evaluation results, we present an extended forecast
using our LSTM autoencoder. This extension involves expanding the test dataset to capture
an additional four steps of 15 min interval forecast results from a moving window of the
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input dataset. The primary objective of this process is to provide enhanced insights and
establish greater credibility in the forecasted results.

In Figure 11, we depict the continuation of the output forecast results for power flow
in the network cluster. Specifically, we examine the scenario in which the input values
transition every hour (consisting of four steps of 15 min intervals) following the starting
time of ‘2019-11-29T10:45:00’ as illustrated in Figure 10.
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Figure 11a showcases the utilization of the proposed model with input data ranging
from ‘2019-11-29T11:45:00’ to ‘2019-11-29T17:30:00’ to predict the four values encompassing
the period from ‘2019-11-29T17:45:00’ to ‘2019-11-29T18:30:00’.

In Figure 11b, the LSTM autoencoder generates predictions for power flow 1 h ahead,
spanning from ‘2019-11-29T18:45:00’ to ‘2019-11-29T19:30:00’. The input data used for this
prediction correspond to the interval from ‘2019-11-29T12:45:00’ to ‘2019-11-29T18:30:00’.

Furthermore, Figure 11c exhibits the forecasted results of the LSTM autoencoder for
predicting power flow 1 h ahead, covering the time range of ‘2019-11-29T19:45:00’ to ‘2019-
11-29T20:30:00’. To accomplish this prediction, the input data employed encompasse the
interval from ‘2019-11-29T13:45:00’ to ‘2019-11-29T19:30:00’.
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According to the model evaluation results, our proposed model showed good per-
formance, as indicated by lower scores on evaluation metrics, such as RMSE and MAE,
and a high score of R2. Although the LSTM autoencoder is not a novel model, it has been
employed in various studies and has consistently demonstrated a good performance. For
example, in [13], the LSTM autoencoder was used to forecast 1 h ahead for solar power for
participants in the intraday electricity market. The model achieved impressive performance
with average RMSE and MAE values of 12.87 kW and 6.91 kW, respectively. Another
study [57] also demonstrated the superiority of the LSTM autoencoder for power load
forecasting. This model integrated long-term and short-term features of the samples and
exhibited better performance with an MAE score of less than 52 MW when comparing the
prediction results to the actual load values in the results.

6. Conclusions

The proposed regional grid cluster simplifies the power grid and facilitates the analysis
of decentralized power generation. It is placed between the TSO and DSO via grid reduction,
providing insights into power systems under different scenarios and aiding in the design,
optimization, and prediction of local power systems. However, forecasting power flow is
difficult because of the variability in renewable energy and diverse power loads.

Within the confines of this research endeavor, our proposition entails the development
and application of an LSTM autoencoder with the explicit aim of forecasting power flow
patterns, encompassing the estimation of both exported and imported power, for a horizon
spanning 1 h. Notably, our approach involves predicting multiple future steps at 15 min
intervals. To compare the performance of the proposed model, we developed several base-
line models, such as a simple RNN, LSTM, GRU, and bidirectional LSTM. In the training
stage, all models were trained using an autotune hyperparameter approach to optimize
the selected hyperparameters for each model. The training learning curve indicates that
only the LSTM model has a higher score, whereas our proposed model and other baseline
models tend to have similar performance. However, in the validation learning curve, all
models exhibited fluctuations, indicating issues related to the insufficient representation of
the validation dataset. Therefore, future studies should aim to address this issue. Regarding
training duration, the simple RNN model has the longest duration owing to the exploding
and vanishing gradients issue, as mentioned in some studies. Similarly, our proposed
model and bidirectional LSTM tend to have longer durations compared to LSTM and GRU
because of complexity in the model structure.

During the model performance evaluation stage, we assessed all models using three
metrics: RMSE, MAE, and R2. Our findings indicate that the proposed deep learning
model, the LSTM autoencoder, outperforms the other models with lower RMSE and MAE
scores, as well as a good score in R2, demonstrating superior performance. In addition to
its performance, our proposed model has an acceptable training duration and performs
well on the learning curve. Therefore, our proposed model can be a viable solution as a
forecasting model for the challenging task of monitoring exported and imported power in
the regional grid cluster proposal.
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