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Abstract: The stability performance of smart grid power systems is critical and requires special
attention. Additionally, the combination of Battery Energy Storage (BES) systems, Solar Photovoltaic
(SPV), and wind systems in the intelligent grid model provides utilities with excellent efficiency and
dependability. However, a coordination grid with PV and other resources frequently results in severe
issues, such as outages or power disruptions. A power outage in the grid might result in a power loss
in the delivery system. As a result, the distributed grid model’s dependable performance is intended
for integrated wind energy, SPV arrays, and BE systems. This paper proposes a renewable intelligent
grid model to sustain solar power generation. The model incorporates a boost converter to optimize
the performance of solar panels by converting the DC power generated by the panels into AC
power for use in the grid. The boost converter is optimized using a novel Horse Herd Optimization
Algorithm (HOA) method. In this case, the HOA method is used to optimize the control parameters
of the boost converter, such as the duty cycle and the inductor and capacitor values. According to the
final results, the proposed method has reduced the Total Harmonic Deformation (THD) and power
loss. Additionally, the proposed method outperformed existing strategies related to the Expected
Energy Not Supplied (EENS), Loss of Load Probability (LOLP), and Loss of Load Expected (LOLE),
indicating the sustainability of power generation.

Keywords: smart grid system; renewable energy; solar energy; horse herd optimization; boost converter

1. Introduction

The economic and environmental anxieties related to the use of fossil energy, as well as
the realization that market forces alone are unlikely to move the necessary transitions in en-
ergy, have prompted some governments to implement Renewable Energy Policies (REP) [1].
Recently, Renewable Energy Sources (RESs) have been widely developed, leading to an
increase in process performance. Along with these improvements, power network users’
proclivity to employ renewable energy has grown, resulting in RES adoption in energy
systems globally for economic-environmental reasons [2]. Renewable energy has attracted
the interest of numerous scholars and practitioners [3]. According to the International
Energy Agency (IEA), renewable energy capacity grows on a yearly basis, escorted by
dropping costs and increased investment. For example, the electricity-generating ability of
RESs had its highest yearly increase in 2017, with over 178 GW added globally, increasing
the overall capacity by nearly 9% from 2016 [4]. One of the primary barriers to converting
fossil fuels to sustainability is their variable and incalculable character, which hinders
their linking to energy networks [5]. Wind and solar photovoltaic (PV) are predicted to
account for a substantial proportion of built renewable energy capacity [6]. Because of
their insecurity, renewable energy sources have become a recurring issue. Microgrids,
however, are seen as a workaround for efficiently maintaining renewable energy output.
They may even be able to minimize the delivery of pollutants and cut expenses with the
use of power storage and optimization techniques [7]. Business models for renewable
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power will be pushed as viable businesses, giving a boost to electricity businesses and
independent electricity producers, as well as turning the farming sector into rural energy
companies [8]. The Photovoltaic Supply Chain (PVSC) includes all operations linked to the
conversion of energy and material flows through raw resources to the recovery or waste
of energy stations via manufacturers, solar system assemblers, marketers, and final users
or clients [9].

Furthermore, Renewable Energy Technologies (RETs) are viewed as more technically
and economically dependent in the rural areas of developing nations. Furthermore, because
of the dispersed and distinct population, off-grid electricity is seen as an economical
choice for gaining ingress on power in developing nations [10]. To fulfill this demand
for multidimensional insights, SESAME (Sustainable Energy System Analysis Modelling
Environment), a flexible technology capable of combining system-level and pathway-
level Life Cycle Assessment (LCA), has been created [11]. In addition to solving the
technical hurdles of intermittent RET, such as wind or PV, the coupling of RETs with power
storage might be appealing from a techno-economic standpoint [12]. Some researchers
have focused on the structural capacities underlying the public adoption of renewable
energy because the primary factors include economic incentives, efficient legislation, and
support programs [13]. In comparison, several studies suggest that RE has little effect
on power output or carbon release absorption [14]. Effective global governance is critical
to accelerating the rising proportion of renewables, organizing knowledge exchange and
technological investments, and giving international help to underdeveloped nations [15].
From this vantage point, renewable power financing is also critical, since it is likely to be
sufficient in both developed and developing countries by improving market globalization
via the potential role of Foreign Direct Investment (FDI) and domestic investment inflows
while enhancing renewable power sources [16]. The deployment of renewable energy
sources in smart grids has produced various advantages and disadvantages that, if handled
appropriately, may benefit both generation and consumption [17]. When renewables are
used as hybrids, optimum sizing studies can be performed based on variable loads.

As a consequence, numerous approaches have been presented by researchers, such as
Adaptive Sparrow Search Optimization [18], fuzzy Boolean logic and Analytical Hierarchy
Process (AHP) [19], and IoT-based Artificial Intelligence [20], to improve the efficacy,
stability, and price of entry. Grid-based solutions have recently been significantly developed
to continuously boost the manufacture of renewable sources and contribute to the health
of energy grid systems. In any case, several difficulties of the grid system include power
imbalance, voltage and reserve management, system stability, start-up cost, and security.
These constraints must be overcome in order to create an efficient system. To resolve these
problems, no effective solutions have emerged. As a result, a new methodology is used in
this research.

The novelty of the HOA in renewable energy systems stems from its ability to optimize
complex systems with multiple parameters and constraints while adapting to changing
conditions. By simulating the behavior of horses in a herd, HOA can explore a wide
range of solutions and find optimal solutions that would be difficult to obtain with other
optimization algorithms. A renewable smart grid model to sustain solar power generation
is not new. The idea of generating electricity from renewable energy sources such as
solar power has existed for many years. The use of the HOA algorithm to optimize the
performance of such a system, on the other hand, is a relatively new approach. While
renewable energy and smart grid systems are not new concepts, using HOA to optimize
the performance of a renewable intelligent grid model for solar power generation is a novel
approach that can potentially improve the system’s efficiency and effectiveness.

We evaluated the performance of our algorithm using simulation models and com-
pared it to that of other commonly used algorithms. The results demonstrate that our
proposed algorithm outperforms the existing algorithms in terms of energy efficiency and
grid stability.
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The innovation of this study lies in the development of a novel smart grid model
that is specifically designed to sustain solar power generation, and ultimately support the
integration of more renewable energy sources into the power grid. This paper presents
case studies in the results section of the proposed smart grid model in real-world settings,
which can provide valuable insights into its feasibility and potential benefits.

2. Related Works

Imran et al. [21] proposed a Hybrid Genetic Particle Swarm Optimization with a
Heuristic-Based Programmable Energy Management Controller (HGPO-HPEMC (HH-
PEMC)). Consumers use solar panels to generate energy from microgrids—the energy used
in residential buildings to cut power costs and carbon emissions. Users use solar panels
to generate electricity from microgrids. The advantage is fewer variables to tune, and the
disadvantages are high-dimensional space, falling into a local optimum is simple, and the
iterative process has a low convergence rate.

One of the significant issues in power systems is the scheduling of energy resources.
Hai et al. [22] proposed a day-ahead scheduling paradigm; the “Hybrid Whale Optimisation
Algorithm and Pattern Search (HWOA-PS)” optimization algorithm can solve the previous
day-ahead scheduling problem, while both renewable and nonrenewable generating units
can be used. The advantages are low environmental impact and low operating costs, and
the disadvantage is that they tend to complicate even simple projects.

Renewable energy sources have received a lot of attention in recent years. Azad et al. [23]
developed a Grey Wolf Optimization (GWO) algorithm and the Sine–Cosine Algorithm
(SCA), validating its efficiency in simultaneously supplying electrical and thermal demands
in a stand-alone hybrid system that uses entirely renewable resources. The advantages are
a solid global optimization capability and simple implementation, and the disadvantages
are low solving accuracy and a slow convergence rate.

Energy storage systems, such as battery energy storage, have helped power grids
accept intermittent renewable energy generation. Worighi et al. [24] proposed a Micro-
Grid Key Elements Model (MKEM). The virtualization of the proposed grid architecture
addresses issues such as photovoltaic penetration, back-feeding, and supply irregularity.
The advantages are micro-grids can reduce energy costs by utilizing locally generated
energy, and they can be tailored to specific community needs. The disadvantage is that
micro-grids are more complicated than centralized power systems.

Behera et al. [25] proposed a Multi-Objective Improved Slime Mould Algorithm
(MOISMA). This technique is expected to improve the performance of the micro-grid.
However, using multiple renewable sources, such a quick-acting methodology reduces
operating generation costs and emissions. These techniques can lower power generation
costs and increase the energy resources used. The advantages are exploitation and explo-
ration that are unbalanced, and the disadvantage is the simulation of foraging to solve the
optimization problem.

The smart grid operation depends on the accurate predictions of electricity demand
and Renewable Energy (RE) generation. Xia et al. [26] introduced a novel method for
predicting RE generation and electricity load using an improved stacked Gated Recurrent
Unit Recurrent Neural Network (GRU-RNN); The modified GRU-RNN structure and
improved training method enhance training efficiency and robustness. The advantage is
that the recurrent neural network’s ability to remember is improved, and the disadvantages
are its low learning efficiency and slow convergence.

The Peak-To-Average Ratio (PAR), bill cost, carbon emissions, and energy management
issues can all be resolved by effectively integrating RES and Battery Storage Systems (BSS).
Rehman et al. [27] proposed a Load Scheduling and Energy Storage System Management
Controller (LSEMC) based on heuristic algorithms; by incorporating low-cost RESs and the
proposed power usage scheduling method, users’ electricity bills have been reduced. The
advantages are the integration of demand response and renewable energy, and the disad-
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vantage of the technique is increased maintenance needs. Table 1 displays the statistical
analysis of the data and challenges of the existing work.

Table 1. Challenges of the existing work.

Sl. No Author Name Method Description Advantage Disadvantage

1. Imran et al. [21]
HGPO-
HPEMC
(HHPEMC)

Consumers use
HGPO-HPEMC (HHPEMC)
technique solar panels
to generate energy
from microgrids.

Fewer variables
to tune.

High-dimensional
space falling into a local
optimum is simple, and
the iterative process has
a low convergence rate.

2. Hai et al. [22]
Day-ahead
scheduling
paradigm

The HWOA-PS
optimization algorithm can
solve the day-ahead
scheduling problem when
both renewable and
nonrenewable generating
units, and an energy storage
system, are present.

Low environmental
impact and low
operating costs.

They tend to complicate
even simple projects.

3. Azad et al. [23] GWO and
SCA

This GWO technique
confirms its efficiency for
supplying simultaneously
electrical and thermal
demands in a stand-alone
hybrid system using entirely
renewable resources.

A solid global
optimization
capability, which is
simple to implement.

Low solving accuracy
and slow convergence
rate.

4. Worighi et al. [24] MKEM

MKEM grid architecture’s
virtualization addresses
issues such as photovoltaic
penetration, back-feeding,
and supply irregularity.

Micro-grids can
reduce energy costs
by utilizing locally
generated energy
and can be tailored
to specific
community needs.

Microgrids are
more complicated
than centralized
power systems.

5. Behera et al. [25] MOISMA

MOISMA uses multiple
renewable sources, and a
quick-acting methodology
reduces operating
generation costs
and emissions.

Exploitation and
exploration that
are unbalanced.

Simulate foraging
to solve the
optimization problem.

6. Xia et al. [26] GRU-RNN

GRU-RNN structure and
improved training method
enhance training efficiency
and robustness.

A recurrent neural
network’s ability
to remember
is improved.

Low learning efficiency
and slow convergence.

7. Rehman et al. [27] LSEMC

LSEMC has reduced users’
electricity bills by
incorporating low-cost RESs
and the proposed power
usage scheduling method.

Integration of
demand response and
renewable energy.

Increased maintenance
needs.

The key contribution of the present research is outlined below:

• At first, the modelling of the SPV system, BE system, wind systems, as well as loads
are integrated into the power grid designed by MATLAB.

• Hereafter, an AC and DC bus is connected to the inverter.
• A novel Horse Herd Optimized Algorithm (HOA) is proposed.
• The function of a convertor is improved using the novel HOA method, and the fitness

is the horse’s herd behavior.
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• Furthermore, the suggested method improved the grid model’s resiliency in relation
to the LOLE, LOLP, and EENS.

• At last, a comparative analysis is carried out to validate the efficiency of our
proposed methodology.

3. System Method along with Problem Description

The intelligent grid system includes measuring elements and a wireless-based tech-
nique for regulating the operation of electricity and improving the system stability through
request control. The system described in this paper integrates wind power, a BES, an SPV,
power converters, and non-linear loads. The grid-coupled combination of the RES system
model is illustrated in Figure 1.
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The incorporation of RES into the grid system allows elasticity in operation and
two-way energy run to the grid method. However, failure and dependability issues in
the grid inclusion method are possible. The integration of wind and SPV inputs varies
according to solar irradiation and wind speed. Therefore it is crucial to implement an
appropriately enhanced power-equalizing control mechanism to effectively regulate the
output of the inverter.

4. Proposed Methodology

The planned grid system incorporates an array of SPV, a wind power system, loads,
a BES, energy converters, and grid power. The energy generated by the wind turbines
and SPV is deposited in the BE storage system. The generated energy is greater than the
required load energy. In smart grid functioning, the BES offers a quick response and lowers
power use costs. Figure 2 shows the proposed method of research.

To regulate the boost converter of the DC-to-DC converter, the proposed methodology
uses the innovative HAO technique. It is used to solve problems involving continuous
optimization.
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4.1. Presented Boost Converter Control

The proposed HAO control method has been used to regulate the operation of the
boost converter. This technique is based on the behavior of horses in their living place.
The HOA control technology is integrated with a grid and an RES system to improve
power network dependability. The control procedure is based on the error rate between
the calculated and processed values. Variations in the solar radiation of the SPV and wind
speed might have caused the mistake.

4.2. SPV System

Variations in illumination can directly impact the energy produced by the array of
SPV. The energy from the SPV is increased by tilting the PV modules, and the illumination
increases. Equation (1) [28] calculates the energy produced by the SPV.

Ispv(r) = sr(r) ∗ Ao ∗ωspv(r) (1)

where, Sr(r) represents ideally slanted sunlight rays, Ao is the SPV array total surface area,
and ωspv(r) represents the SPV array hourly proficiency.

4.3. Battery Energy System

The cell loses little power during charging or discharging, which is regarded as the
self-discharge value. The level of the battery’s charge is calculated as the self-discharge
value, which is represented using Equation (2) [29].

EB(r + 1) = EB(r)(1− α) (2)

where EB is denoted as the battery energy.

4.4. Wind Energy System

Wind power is calculated depending on the wind speed. Equation (3) [28] expresses
the relationship between wind power and speed.

Iq(r) =


0 Gn & κ ≥ GH

Ii ∗ κl−Gn
Gl

b−Gl
n

Gn ≤ κ ≤ Gb

Ii Gb ≤ κ ≤ GH

 (3)
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where, Gb is the speed rating, Gn represents the cut-in speed of a wind generator, and GH
denotes the reduction in the pace.

As a result, the predicted rate of the target performance is determined by the updated
error value. The number of particles should be initialized initially for the objective function,
which is assumed to be n, and arbitrarily put in a group. Equation (4) [30] represents
the initialization.

Bx,y = Blow + t×
(

Bhigh − Blow

)
(4)

where, x = 1, 2, . . . ; p and y = 1, 2, . . . ; q, x, and y are groups of the number and a unique
collection of scores inside a set; t is the random vector belonging to 0 and 1; Blow and Bhigh
represent minimum and maximum duty cycle, respectively. The overall scores in the group
are calculated using Equation (5) [30].

dB = p× q (5)

As a result, the starting values of the error in the p sets are determined by the aim
achievement and randomly given in the first column of the duty cycle matrix, and it is
considered the first function of all groups. Subsequently, the following column’s matrix
of the duty cycle is arranged identically to the previous stage. This placement function is
continued in q instants. The duty cycle matrices are expressed using Equation (6) [30].

B =



B1,1 B1,2 · · · B1,y · · · B1,q
B2,1 B2,2 · · · B2,y · · · B2,q

...
...

...
...

...
...

Bx,1 Bx,2 · · · Bx,y · · · Bx,q
...

...
...

...
...

...
Bx,1 Bx,2 · · · Bp,y · · · Bp,q


(6)

Each row of B represents each group of errors; consequently, the mistake of the first
column of the duty cycle is the best of all. The duty cycle at the last point is regarded as the
most difficult in the group. In an identical step size technique, the two vectors were used to
evaluate the variations in each duty cycle in the set. The equal step size is calculated based
on Equation (7) [30].

Sx,y = Sbad
x,y + Sexcellent

x,y (7)

where, Sbad
x,y denotes the ability to call a new duty cycle in the investigation region and

Sexcellent
x,y refers to the capability of calling a close old duty cycle in a possible investigation re-

gion. The identical step size of Sbad
x,y and Sexcellent

x,y is calculated using Equations (8) and (9) [30].

Sbad
x,y = λ× t1 ×

(
Bx,b − Bx,y

)
(8)

Sexcellent
x,y = ψ× t2 ×

(
Bx,e − Bx,y

)
(9)

where, t1 and t2 denote the arbitrary vector that corresponds to 0 and 1, Bx,b and Bx,e are the
group’s bad and excellent duty cycles in terms of goal results when compared to the total
duty cycle value Bx,y. The duty cycle’s exploitative and exploring control is determined
using Equations (10) and (11) [30].

λ = λ0 +
(

λhigh − λ0

)
r (10)

ψ = (ψ0 − λ0)r (11)

where, r = value o f iteration
highest value o f iteration .



Energies 2023, 16, 4784 8 of 17

The ψ rate reduces, and λ improves while improving the rate of iteration r. Conse-
quently, the utilized value of the duty cycle is enhanced, while any undesired exploitation of
the duty cycle is eliminated. Based on the calculated stage, the fresh duty cycle is assessed
if the previous duty cycle range is not excellent. Using Equation (12) [30], a new value
is calculated.

B f resh(x,y)
= Bx,y + Sx,y (12)

After obtaining an excellent duty cycle, the excellent pulse is delivered to the boost
converter, and the operation is halted until the next iteration begins.

4.5. Objectives

The system’s dependability is validated using the LOLE, LOLP, and EENS. According
to the LOLE, the whole time taken for the integrated RES is insufficient to provide electricity
to the critical load over a year, and the hours in one year are taken as 8760 h. The LOLE
consistency index is computed using Equation (13) [29]

LOLE∗ =
8760

∑
l=1

Iout(l) (13)

where, Iout denotes the output current during the hours in which the integrated RES delivers
electricity to the load. Furthermore, if loads are not executed, the result is measured as one;
otherwise, the result is measured as zero. As a result, the LOLP is calculated by dividing the
range of LOLE by the total number of hours worked in one year. Thus, Equation (14) [30]
expresses the relationship between LOLP and LOLE.

LOLP∗ =

8760
∑

l=1
Iout(l)

8760

Therefore,

LOLP∗ =
LOLE rate

8760
(14)

The EENS dependable rate is calculated, which states the amount of energy that is
not given by the integrated RES during the course of the year, and it is expressed by
Equation (15) [30].

EENS∗ =
8760

∑
l=1

Iload(l)− Ii,high(l)∀Iload(l) > Ii,high(l) (15)

where, Iload is the power of the load, and Ii,high is the highest power created in hours.
Figure 3 shows the flow chart of the proposed HOA boost converter. The boost

converter improves the step-up voltage to provide a DC bus. The HOA technique is
initialized to the boost converter, and if processed, the arbitrarily used duty cycle matrix
is evaluated using Equation (6). In addition, it generates the boost converter, calculates
the error rate, and calculates the step size using Equation (7). If the computed value is
maximum, a fresh duty cycle is assessed if the previous duty cycle range is not excellent. If
the value is perfect, it controls the pulse of the boost converter switch. Finally, a significant
result is obtained. Additionally, it solves the problems of the system’s effectiveness.
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5. Results and Discussion

The proposed method is implemented on MATLAB R2018b restricted and a mathe-
matical platform using an Intel (R) Core (TM) i5 CPU and 4 GB RAM. The specifications of
the system technique are listed in Table 2 [30].

Table 2. Specifications of the system technique.

Metrics Value

Reactive power 0.288 p.u

Real power 1.1 p.u

Wind

Output voltage 500 V

Cut-in speed 7 m/s

Speed of wind 2.5 m/s

Cut off speed 22 m/s

Highest energy 55 kW

SPV array

Highest energy 1.2 kW

Solar Irradiance 1000 (W/m2)

Panel Temperature 25 ◦C

Output voltage 300 V

BES B 0.01%

Rate of Load Load 9 kW and 11.25 KVAR

Grid metrics
Power and X/R 20 kW and 0.7

Voltage and Grid current 300 V and 2 A
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5.1. Case Study

The SPV performance is classified depending on the effects of the various irradiance
phases. Figure 4 depicts the output curve of an array of SPV-based current versus voltage
curves. The measurements are taken at various temperatures of the sunlight and each
separate cell of the PV array.
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As a result, the array of SPV energies with regard to the voltage factor at many solar
temperatures is estimated for each cell. Figure 5 shows the energy behaviors related to
the voltage. The observations show that each SPV cell achieved a current, voltage, and
power rate of roughly 0.6 kW/m2, 0.73 kW/m2, and 1.2 kW/m2 under varying levels of
solar irradiation.
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Figure 6 shows the array of SPV with a DC link voltage applied via the boost converter.
It is the result of the inverter’s input value and the boost converter. In addition, the energy
inverter’s input voltage is given as 250 V. Additionally, the electricity generated by the SPV
is fed into the grid system. Figure 7 shows the power of the grid voltage and current. The
estimated grid current and voltage are used to validate the output power.
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Figure 7. Output power given to the power grid.

The power of a solar PV system over a year is calculated using hourly temperature
and sun irradiation. Figure 8 demonstrates the solar irradiance as a function of time. In
addition, the voltage of wind from the model is shown in Figure 9. The wind voltage ranges
from 400 V to −400 V. However, the wind voltage ranges from −400 V to 400 V in a time
span of 0 to 0.1 s.
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The grid-coupled inverter function is complex under grid current and voltage with
low variation. Figure 10 shows the voltage process of the grid model. The obtained grid
voltage denotes that there are no oscillations in the grid voltage and that the grid voltage
waveform is sinusoidal.
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Figure 11 shows the current grid function. According to Figure 11, a small fluc-
tuation occurs when the proposed method is applied to the current waveform in the
sinusoidal condition.
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Figure 11. The current process of the grid model.

Load variation can produce oscillations in the grid systems. Using the HOA model in
a grid model reduces the voltage and current deformations in the grid model. As a result,
the grid voltage in the form of sinusoidal and recent deforms at the start. Furthermore, the
grid model’s THD is about 0.8%, and the method’s Energy Loss (EL) is about 0.05 MW. The
THD of the grid current is shown in Figure 12.
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Table 3 shows the reliable performance of the proposed method before and after
optimization. It verifies the consistent performance improvement achieved by using the
suggested HAO approach. In Table 4, the trustworthy parameters under varied loads,
such as 50% and 100% loads, are given. The suggested HAO model enhances the system’s
sustainability and reliability functions for LOLP, LOLE, and EENS.

Table 3. Reliability indices using the proposed model.

Reliable Parameters

EENS (103 MW) LOLE (%) LOLP

Before
optimization

After
optimization

Before
optimization

After
optimization

Before
optimization

After
optimization

4 0.278 0.436 0.123 31.03 41.25

Table 4. Reliability function under different load conditions.

Reliable Parameters

EENS (103 MW) LOLE (%) LOLP

Load of 50% Load of 100% Load of 50% Load of 100% Load of 50% Load of 100%

0.18 1.7 0.1428 0.12 40.1 60.5

5.2. Performance Estimation

The increased reliability function using the provided HAO methodology is compared
to other techniques for LOLP, LOLE, and EENS and is reported in Table 5. EENS, LOLE,
and LOLP have been confirmed for 70 MW wind and 70 MW solar with Hobbled Shepherd
Optimization (HSO) for Multi-Objective Based Golden Eagle (MOGE) [30]; 80 MW wind
and 80 MW SPV with Alternative Model Creating Technique (AMCT), Two Parameters
Based Alpha Model Technique (TPBAMT) and the proposed Fuzzy Fault Tree Based
Technique (HDFFTBT) [31]; 25 MW wind and 25 MW SPV with Roy Billinton Test System
(RBTS) [32]; and 1.5 MW SPV + 1.5 MW wind with Harmony Search (HS) [33]. The
proposed HOA approach outperforms other existing techniques in terms of characteristics
(LOLP, LOLE, and EENS). The objective function is constructed during sizing studies, and
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mathematical calculations are performed to obtain the lowest value of this function [34].
The Internet of Things (IoT) is an integrated system of advanced technologies and solutions
that connects devices, people, platforms, software, and solutions via the Internet [35].
Existing grids face challenges, such as security and privacy, reliability, diverse renewable
energy sources, and rising energy consumption. A smart grid is the best solution to
these problems [36].

Table 5. Comparison of methods.

Cases Methods LOLE LOLP EENS (103 MW)

70 MW SPV + 70 MW wind
HSO 0.314 75.25 3

MOGE 0.354 76.85 2.8

80 MW SPV + 80 MW wind

AMCT 0.83 70.38 2.5

TBBAMT 0.89 72.18 2.76

HDFFTBT 1.25 68.43 1.2

100 MW SPV + 100 MW wind Proposed (HAO) 0.23 43 0.32

The total findings demonstrate that the present HAO technique for the grid system
has boosted the sustainability and dependability of the power-generating system.

5.2.1. LOLE

A comparison between the proposed HAO and the existing techniques in terms of LOLE
is shown in Figure 13. The LOLE of our proposed horse herd optimization is 0.23 (MWh/year).
At the same time, compared to other existing methods, the LOLE of the proposed HOA has
a lower value. The existing method of HSO with MOGE is 0.314 (MWh/year) with 0.354
(MWh/year). The value it represents is greater than that of the proposed HOA method.
Compared to the other existing techniques, AMCT and TBBAMT with HDFFTBT are 0.83
(MWh/year) and 0.89 (MWh/year) with 1.29 (MWh/year), which is high. When Compar-
ing the values of HS and RBTS, our proposed method demonstrates a lower level of LOLE.
Specifically, the LOLE of the proposed method is 0.23 (MWh/year), which is significantly
lower than that of the HOA and other existing techniques.
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5.2.2. LOLP

A comparison between the proposed HAO and existing techniques in terms of LOLP
is shown in Figure 14. The LOLP method of the proposed HOA has a lower value. The
existing method of HSO with MOGE is 75.25% with 76.85%. It is a higher value than that of
the proposed HOA method. Compared to other existing techniques, AMCT and TBBAMT
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with HDFFTBT are 70.38% and 72.18% with 68.43%, which is high. Comparing the HS and
RBTS values, our proposed method shows a lower value of LOLP. The LOLP of HOA is
43%, which is low compared to other existing techniques.
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5.2.3. EENS

A comparison between the proposed HAO and the existing techniques in terms of
EENS is shown in Figure 15. The EENS method of the proposed HAO has a lower value. The
existing method of HSO with MOGE is 3 (103 MW) with 2.8 (103 MW). It is a higher value
than that of the proposed HAO method. Compared to other existing techniques, AMCT
and TBBAMT with HDFFTBT are 2.5 (103 MW) and 2.76 (103 MW) with 1.2 (103 MW),
which is high. Comparing HS and RBTS values, our proposed method shows a lower
value of EENS. The EENS of HOA is 0.2 (103 MW), which is a low value compared to other
existing techniques.
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6. Conclusions

A hybrid RES with a grid system is an important choice for an advanced power system.
The use of fossil fuels is increasing due to the fast expansion of industry, vehicles, and
population growth. They are harmful to both humans and the environment. However,
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fossil fuels play an important role in electricity generation. As a result, RES is a preferable
alternative to fossil fuels since it is sustainable and renewable. Wind and solar PV are the
most often used sources since they provide adequate power to the loads. Furthermore,
the BE system is linked to the distributed grid systems in remote areas. The HOA method
is a novel approach that has been shown to improve the function of boost converters in
smart grid systems. By optimizing the converter parameters, the algorithm can improve the
system’s efficiency and ensure that the power generated by the solar panels is fully utilized.
The proposed method reduced THD and EL by 0.8% and 0.05 MW, respectively. Comparing
parameters such as EENS, LOLP, and LOLE with other current models proves the system’s
dependability, which can be improved by 68%, 35.82%, and 36.36 to an existing model.
The parameters of the proposed model are robust and dependable. Machine learning or
deep learning methods will be developed in future work to increase the system model’s
sustainability and reliability.
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