
Citation: Pierre, A.A.; Akim, S.A.;

Semenyo, A.K.; Babiga, B. Peak

Electrical Energy Consumption

Prediction by ARIMA, LSTM, GRU,

ARIMA-LSTM and ARIMA-GRU

Approaches. Energies 2023, 16, 4739.

https://doi.org/10.3390/en16124739

Academic Editors: Gianluca Brando,

Paweł Pijarski, Piotr Kacejko and

Piotr Miller

Received: 24 April 2023

Revised: 24 May 2023

Accepted: 13 June 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Peak Electrical Energy Consumption Prediction by ARIMA,
LSTM, GRU, ARIMA-LSTM and ARIMA-GRU Approaches
Agbessi Akuété Pierre 1, Salami Adekunlé Akim 1,*, Agbosse Kodjovi Semenyo 1 and Birregah Babiga 2

1 Department of Electrical Engineering, Ecole Polytechnique de Lomé (EPL), Centre d’Excellence Régionale
pour la Maîtrise de l’Electricité (CERME), University of Lomé, Lomé P.O. Box 1515, Togo;
pierreagbessi2@gmail.com (A.A.P.); sagbosse@moov.tg (A.K.S.)

2 Laboratoire Informatique et Société Numérique (LIST3N), University of Technology of Troyes,
10300 Troyes, France

* Correspondence: asalami@univ-lome.tg; Tel.: +228-99469726

Abstract: Forecasting peak electrical energy consumption is important because it allows utilities to
properly plan for the production and distribution of electrical energy. This reduces operating costs
and avoids power outages. In addition, it can help reduce environmental impact by allowing for
more efficient power generation and reducing the need for additional fossil fuels during periods of
high demand. In the current work, electric power consumption data from “Compagnie Electrique
du Benin (CEB)” was used to deduce the peak electric power consumption at peak hours. The peak
consumption of electric power was predicted using hybrid approaches based on traditional time
series prediction methods (autoregressive integrated moving average (ARIMA)) and deep learning
methods (long short-term memory (LSTM), gated recurrent unit (GRU)). The ARIMA approach
was used to model the trend term, while deep learning approaches were employed to interpret the
fluctuation term, and the outputs from these models were combined to provide the final result. The
hybrid approach, ARIMA-LSTM, provided the best prediction performance with root mean square
error (RMSE) of 7.35, while for the ARIMA-GRU hybrid approach, the RMSE was 9.60. Overall, the
hybrid approaches outperformed the single approaches, such as GRU, LSTM, and ARIMA, which
exhibited RMSE values of 18.11, 18.74, and 49.90, respectively.

Keywords: peak consumption; ARIMA; LSTM; GRU; ARIMA-LSTM; ARIMA-GRU

1. Introduction

The production of electricity must meet the demand of consumers. Therefore, based
on consumer demand, the electrical system must instantly adjust its level of electricity
production and meet consumer demand without any shortages or wastage. Consequently,
producing electricity to meet consumer demand is a truly challenging operation because
electricity cannot be easily stored. A way to forecast future demand during peak hours
would be highly beneficial for electrical grid operators when deciding on the electricity
production model, thereby allowing the system to improve the quality and reliability of
electricity. Electrical grid operators can then decide to rely on their own generators or
seek another independent electricity producer to meet the demand, such as the Electricity
Company of TOGO, which also relies on certain independent electricity producers.

Following the increasing interest in artificial intelligence (AI) and machine learning
(ML), several forecasting models have been used worldwide to estimate electricity con-
sumption. These include single models, ensemble models, and hybrid models. The time
horizons for these models are as follows: very short-term for load and frequency control
and economic dispatch functions [1–3], short-term for daily operations of electrical sys-
tems, medium-term for generator scheduling, and long-term for the construction of new
transmission lines and substations for system improvement. The forecast periods for very
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short-term, short-term, medium-term, and long-term range from a few minutes to an hour,
from an hour to a week, from a week to a year, and from a year to a decade, respectively [3].

In Slovakia, Pavlicko et al. proposed models for forecasting the daily maximum hourly
electricity consumption that are more accurate than the official load forecasts of the Slovak
distribution company [4]. In their publication, they present and compare different models.
The first group of models is based on the cross-sectional ensemble of grey models and
nonlinear Bernoulli grey models. The second approach is based on a feedback multilayer
backpropagation neural network.

In recent years, many prediction techniques, including fuzzy logic, neuro-fuzzy, lo-
gistic regression, random forest, support vector machines, and artificial neural networks
have been proposed. In the context of short-term load forecasting, Cao et al. adopted
the hybrid decision model based on ARIMA (autoregressive integrated moving average)
and similar day method for daily load forecasting in households. Their results showed
that the hybrid method performed well compared to the individual basic methods [5].
Guo Fend et al. used the Empirical Mode Decomposition (EMD) method, Support Vector
Regression (SVR) model, Particle Swarm Optimization (PSO) algorithm, Thermal Reaction
Dynamics (TRD) theory, and an econometric model (AR-GARCH model) to develop a new
hybrid forecasting model, namely the EMD-SVR-PSO-AR-GARCH model, to forecast elec-
tricity consumption [6]. Karin Kandananond used the artificial neural network approach
(ANN) to predict electricity demand in Thailand [7]. This author adopted a comparative
approach with other old methods such as ARIMA and multilinear regression, and found
the ANN approach was the best. In Togo, Guenoukpati et al. used three machine learning
approaches, namely, Support Vector Regression (SVR), the multilayer perceptron (MLP)
approach, and a long short-term memory (LSTM) recurrent neural network to predict the
electricity production of the Benin Electricity Community. The results of their work argue
that machine learning methods offer better results than linear regression methods and
are better suited for short-term predictions [8]. Yalcinoz et al. also used MLP to predict
medium0 and short-term electrical load in Turkey [9]. Three load prediction modules
were developed using feedforward neural networks. The neural networks were trained to
recognize the day’s peak load, the day’s total load, and the monthly power consumption. In
their work, Xion et al. proposed a new GM (grey model) (1,1) based on the initial condition
optimization, according to the principle of new information priority, to model and predict
energy consumption and production in China [10]. This new model was compared to five
other GM models. The results show that the optimized model performs better than the
other five models. Furthermore, in the literature, hybrid approaches involving statistical
and neural models have been proven. Manowska et al. predicted the consumption of
natural gas in Poland for the year 2040 with the hybrid ARIMA-LSTM approach. This
approach was validated with a percentage error of 2% [11]. Zhou et al. used the mixture of
integrated wavelet decomposition, autoregressive integrated moving average (ARIMA),
and a managed recurrent unit (GRU) model, abbreviated as the W-ARIMA-GRU model,
to predict the water quality. The results were satisfactory, with an accuracy of more than
97% [12].

Several research works have been conducted to compare forecasting models and
determine which ones perform best in predicting peak electricity demand. Different
studies have been conducted to identify the best performing models to anticipate these
peaks in electricity demand. Several of these studies have been especially conducted on
buildings [13,14] and few are oriented to territorial consumption. In particular, in Togo,
no work has been undertaken in the framework of forecasting the peak consumption of
electricity. Therefore, the aim of the current work is to fill this gap.

In this paper, we study five approaches, one of which is based on the statistical model
applied to time series (ARIMA), two on neural models (LSTM and GRU), and the remaining
two on hybridization (ARIMA-LSTM and ARIMA-GRU).



Energies 2023, 16, 4739 3 of 12

2. Data

The electricity demand data are provided by the Benin Electricity Company (CEB).
These data include the daily demand for electrical energy from the population over a period
of four (04) years. The data are collected at hourly intervals at the CEB recording station.
The daily peak demand is therefore the maximum recorded within a 24 h period. Since our
study focuses on daily consumption peaks, we performed a processing step to extract the
daily peaks in order to create a new training dataset for the models. Table 1 provides a
brief description of the input data. Figure 1 shows the histogram of the demand peak data.
We observe that the demand peaks are more concentrated between 5:00 PM and 08:00 PM.
This explains the high consumption levels in residential areas.

Table 1. Data statistics.

Number Min (MW) Max (MW) Mean (MW) Std

1461 178.77 497.48 312.05 38.83
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3. Models

Time series analysis and dynamic modeling are very diverse research areas with many
applications in business, economics, finance, and computer science [15]. The objective of
time series analysis is to study the path of time series observations and build a model to
describe the structure of the data, and then predict future values of the time series. Due
to the importance of time series forecasting in many branches of applied sciences, it is
essential to build an effective model with the aim of improving the accuracy of the forecast.
A variety of time series forecasting models have been developed in the literature.

3.1. LSTM

In this section we describe the long short-term memory (LSTM) recurrent neural
network approach. The long short-term memory (LSTM) is a type of recurrent neural
network (RNN) capable of remembering values from previous steps for future use. The
main weakness of the RNN is that it is good for short-term memory but not good for
long-term memory [15]. Due to the existence of the activation function (the range of output
values [0,1]), when the information and residuals are transmitted into the RNN neuron, they
will be lost from time to time (in simple terms, the absolute value decreases and is smaller).
This feature weakens the ability of RNN neurons to retain information far from the current
time step, or in other words, weakens the ability of RNN to describe long sequences.

Due to the structure of the cell state, the stored historical information does not easily
change, so it has better memory and supports LSTM to better describe long sequences.
The form of realization of the cell state is the “gate” that is often referenced. There are 3
“gates” in the classical LSTM structure. The information forgetting gate is characterized
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by Formula (1). It helps RNNs to selectively forget some historical information [16]. The
entry gate or memory gate, characterized by Formulas (2) and (3), is used to reinforce the
memory of some historical information. The last gate is the exit gate. It is characterized by
Formulas (4) and (5) [17,18]. It is responsible for the complete review of long-term memory
information and the generation of output signals.

ft = σ
(

W f [ht−1, xt] + b f

)
(1)

it = σ(Wt[ht−1, xt] + bt) (2)

_
C t = tanh(Wc[ht−1, xt] + bc) (3)

ot = σ(Wo[ht−1, xt] + bo) (4)

ht = ot × tanh(Ct) (5)

where W f , Wc, Wo are the weight matrices corresponding to the inputs of the neural network
and σ represents the sigmoid activation function.

In the literature, there are two varieties of LSTM, the standard LSTM and the LSTM
based on the sequence-to-sequence architecture (S2S). Our choice is based on the S2S
architecture because of the research undertaken in the framework of electricity consumption
prediction. These studies show that the S2S LSTM gives better results than the standard
one [19]. Figure 2 shows, in a more pragmatic way, the architecture of an LSTM cell with its
inputs and outputs.
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3.2. GRU (Gate Reccurent Unit)

First introduced by Cho et al., GRU is similar to LSTM, but it has fewer gates [20,21].
In addition, it relies only on a hidden state for memory transfer between recurrent units, so
there is no separate cell state. In GRU, both the reset gate and the update gate are employed
to solve the leakage gradient problem [21], which are two vectors that can manipulate the
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information in the networks/layers flowing to the desired output [18]. What makes these
two gates special is that they can be trained to retain long-term memories, without deleting
relevant information that is important for later predictions. Figure 3 shows the structure of
a GRU block with inputs and outputs. GRUs are similar to LSTMs but they do not have a
cell state vector and they have only two gates, a reset gate r and an update gate z:

- the reset gate r determines the amount of information to be forgotten;
- the update gate z defines the amount of information to keep (it works like the forget

and input gate of an LSTM).
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The reset gate is implemented by Equation (6):

rt = σg(Wrxt + Urht−1 + br) (6)

where σg is the logistic sigmoid function, and the index j denotes the jth element of the
vector. xt is the input of the neuron at time t and ht−1 indicates the previous hidden state at
time t−1. Wr and Ur are the weights of the read matrices and bz is the bias. By analogy, the
update gate is expressed by the same equation.

zt = σg(Wzxt + Uzht−1 + bz) (7)

where zt is the gate update function, which is the activation function; Wz and Uz are
the weights, xt is the neuron input at time t; ht−1 is the cell state at time t−1; and bz is
corresponds to the bias.

Note that the computed reset gate is re-equated to introduce new content into the
memory (Equation (8)).

∼
ht = σh(Wzxt + (rt ◦Uhht−1) + bh) (8)

where
∼
ht is the output candidate of the cell state vector, σh is the activation function, Wz

and Uh are the assigned weights, xt is the neuron’s input at time t, ht−1 is the memory state
at time t−1, and bh is the bias.

Finally, we need to incorporate the effect of the update gate zt. This determines the
extent to which the new hidden state ht is simply the old state ht−1 and the extent to which

the new candidate state
∼
ht is used. The update gate zt can be used for this purpose simply

by taking elementwise convex combinations between the two
∼
ht and ht−1.

Finally, the current state vector of the cell (ht) is computed to pass the hold information
to the next unit. To do this, the update gate (zt) is involved in Equation (9):

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t (9)
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3.3. ARIMA

The autoregressive integrated moving average (ARIMA) approach is a time series
forecasting method widely used in electrical load prediction [22,23]. Electrical load is
the amount of electrical energy consumed by users in a given electrical system. Accu-
rate prediction of electrical loads is essential for the efficient planning and operation of
power systems.

This is a generalized autoregressive moving average (ARMA) model, which combines
autoregressive (AR) and moving average (MA) processes. In other words, ARIMA (p, d, q)
captures the main features of the model: autoregression (AR), integration (I) to make the
time series stationary, and a moving average (MA) to take into account the dependencies
between the observations and the residual errors [15].

Autoregression (AR) adopts the dependence between an observed value and lagged
previous observed values for predictions. In electric load forecasting, this is equivalent to
saying that there will be upcoming consumption in the next hour or there may be a peak in
consumption in the next hour. The integrated part (I) of the model (d) includes the model
terms that incorporate the amount of differentiation to be applied to the time series. The
moving average part of the model (q) allows us to define the error of our model as a linear
combination of error values observed at previous times [8]. The ARIMA (p,d,q) model
using the lag polynomial L is illustrated by Equation (10) [8].(

1−
p

∑
i=1
ϕiLi

)
(1− L)d =

(
1−

q

∑
j=1
θjLi

)
εt (10)

where Li is the lag operator,ϕi represents the autoregressive model parameters,θj represents
the moving average parameters, and εt are the error terms. Since the parameters of the
model have to be defined, we chose the Akaike information criterion for the optimal
selection of the parameters.

The Akaike information criterion (AIC) is a commonly used measure for selecting the
parameters of an ARIMA model. The AIC criterion is based on the maximization of the
likelihood function of the model and takes into account the complexity of the model by
adding a penalty for the number of estimated parameters in the model [8,22]. The Akaike
criterion is defined as follows:

AIC = 2k− 2 ln(Γ) (11)

where k is the number of estimated parameters in the model and Γ is the maximized
likelihood function for the model.

The ARIMA model with the smallest AIC is generally considered the best model. This
is because the AIC takes into account the goodness of fit of the model (measured by the
likelihood) and the complexity of the model (measured by the number of parameters), and
thus favors models that provide an adequate fit with a minimal number of parameters.

3.4. Hybrid Models

Hybrid models combining the advantages of ARIMA, LSTM, and GRU models are
used in this section to predict electrical peak consumption. In the time series prediction
problem, the characteristics of linear and nonlinear models determine that the former can
only recognize the linear pattern of the time series, while the latter has the advantage of
being able to take advantage of the nonlinear relationship of the time series. The literature
shows that many experiments and uses have shown that when using a single series of
temporary components, using a single model can be beneficial. However, a single model
has limitations when dealing with complex problems. Since the temporal series describing
the object of research contains both linear and nonlinear components, it is not possible to
use either a single linear or a single nonlinear model [24–26]. The equation governing our
approach is the following:

Yt = Lt + Nt (12)
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where Yt is the original signal, Lt is the linear component, and Nt is the nonlinear compo-
nent. Figure 4 shows the process modeling flowchart.
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4. Methodology

In our work we used data provided by the Electric Company of Benin (CEB) over 4
years (from 2017 to 2021) with a frequency of one hour. These data are missing at certain
times, so we used a filter. In the following work we use 80% of the data for training our
models and 20% for testing.

The goal of our work is to predict peak consumption, so we go through a series of five
models to find the best one for the prediction.

After data acquisition, pre-processing was undertaken in order to eliminate missing
data. Once this part was completed, we proceeded to the constitution of a new database of
peak consumption. Then we proceeded to the training of our models and to the prediction
with the choice of the hyperparameters for a better result. The performance of our models
was evaluated by the statistical indicators, as shown in Section 5. A comparison is then
made at the end between the different models for each prediction horizon.

The daily data for our work are shown in Figure 5 and represent the consumption
over the four years.
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GRU and LSTM share an identical deep learning configuration, which has three
input layers and one output layer. The number of neurons in the hidden layers was set
to 64 for both LSTM and GRU, while a single neuron was designed in the output layer.
Before entering the deep learning model, the input data were converted into a matrix with
various dimensions depending on the windows chosen. Twenty-four windows were used
to determine the most optimal models for prediction. When the deep learning neural
networks were compiled, RMSE was specified as the loss function while adaptive moment
estimation (Adam) was applied as the optimization algorithm. Compared to ARIMA, we
varied the parameters (p, d, q) to determine the optimums that can give a better prediction.
This choice was made via the Akaike information criterion. The hybrid models inherit the
configurations of the models already used for a better comparison. Thus, the residuals
from the ARIMA model are introduced in the neural models. These neural models inherit
the basic configurations of the respective single models.

5. Performance Evaluation

In our work, we used RMSE as an indicator of statistical performance to determine
the optimal approach for estimation. As noted by several authors, the qualification of a
very low root mean square error (RMSE) indicates the performance level of a model as well
as the mean absolute percentage error (MAPE) [27,28]. The expressions for calculating the
indicators are illustrated by the following equations:

RMSE =

√
n

∑
i=1

(Pi −Ai)
2/n (13)

MAPE =
n

∑
i=1
|(Pi −Ai)/Ai|/n× 100 (14)

where Pi denotes the ith predicted energy and Ai denotes the ith actual energy. Pao et al. [27]
interpreted the results provided by MAPE to judge the accuracy of the prediction approaches
used, and found that less than 10% is a very accurate prediction, 10–20% is a good prediction,
20–50% is a reasonable prediction, and more than 50% is an inaccurate prediction.

6. Results and Discussion

In this part, we predict the consumption peak for the month of December 2021. With
the five models, we predicted the data for the last month while optimizing the parameters
of our models. For ARIMA, the parameters (p, d, q) are chosen based on the Akaike
information criterion. The triplet (2, 1, 2) is chosen as the parameters (p, d, q) for the
ARIMA model. As shown in Table 2, we observe that the forecasts made by ARIMA do not
align with the actual data. With an RMSE of 49.90 and MAPE of 12.06, they confirm one
of the weaknesses of the ARIMA model, namely, its limited ability to accurately predict
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nonlinear data [29,30]. ARIMA models are based on linear assumptions and are more
effective at capturing and forecasting linear patterns in time series data. Thus, this ability
to predict linear data will be useful in facilitating the prediction of data by separating the
data to be predicted for the hybrid models. In Figure 6, we can observe that the prediction
made by the ARIMA model simply follows a straight line.

Table 2. Statistical indicators.

Approaches ARIMA LSTM GRU ARIMA-LSTM ARIMA-GRU

RMSE 49.90 18.74 18.11 7.35 9.60
MAPE 12.05 3.01 2.60 1.52 1.56
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The neural approaches of deep learning, LSTM, and GRU, give convincing results
with respective RMSEs of 18.74 and 18.11, and respective MAPEs of 3.01 and 2.60. These
two approaches come closer to the actual results due to their ability to adapt to different
types of data. LSTMs and GRUs are more flexible than traditional RNN models. They can
handle sequences of varying lengths and adapt to different types of data, whether they are
univariate or multivariate time series.

However, the results of the performance indicators for the hybrid approaches are
significantly improved. The ARIMA-LSTM approach slightly outperforms the ARIMA-
GRU approach with an RMSE of 7.35 compared to 9.60, and in terms of MAPE, ARIMA-
LSTM surpasses ARIMA-GRU (1.52% versus 1.56%). This forecasting performance is
mainly due to the ARIMA approach. As mentioned earlier, ARIMA is able to better
predict the linear part of the input data. One observation is that the GRU approach, which
outperformed LSTM in the unimodal prediction, falls behind with the hybrid approach.
This reversal is simply explained by the fact that the residual data from the ARIMA model
are better predicted by LSTM than GRU. Although there are small differences between
the results, both approaches can be used for prediction. As shown in Figure 6, the two
approaches almost overlap.

The following figure shows the graph of the predicted and actual consumption. This
leads us to better appreciate the impact of the use of hybrid approaches on the prediction.
Table 3 shows the values of these peaks of electrical energy consumption. Given this
consistency and the accuracy of the hybrid ARIMA-LSTM model, it can be selected as the
best model for estimating peak consumption and peak hours.
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Table 3. Predicted data.

Date Peak_Real Peak_ARIMA Peak_LSTM Peak_GRU Peak_ARIMA-LSTM Peak_ARIMA-GRU

2021-12-03 352.11 316.68 348.95 358.56 358.55 363.10
2021-12-04 351.52 316.51 351.83 360.39 363.26 367.11
2021-12-05 371.95 316.66 360.11 365.15 370.46 370.44
2021-12-06 359.56 316.83 347.58 365.41 357.19 362.94
2021-12-07 374.59 317.00 364.55 374.46 375.40 379.78
2021-12-08 358.05 317.18 350.81 368.70 362.15 364.60
2021-12-09 383 317.35 366.82 373.98 380.09 383.44
2021-12-10 346.67 317.53 343.75 362.54 351.27 357.86
2021-12-11 350.72 317.70 341.56 352.63 355.22 358.00
2021-12-12 382.51 317.88 360.14 365.35 374.13 376.68
2021-12-13 376.92 318.05 367.21 375.39 370.96 376.08
2021-12-14 450.53 318.23 367.00 366.64 435.20 428.92
2021-12-15 376.01 318.40 371.77 368.68 379.47 382.77
2021-12-16 329.33 318.58 325.13 349.67 350.41 353.35
2021-12-17 348.88 318.75 339.35 351.98 358.80 357.13
2021-12-18 351.77 318.93 346.71 351.99 362.56 364.84
2021-12-19 338.77 319.10 332.83 352.98 339.57 341.48
2021-12-20 357.77 319.28 347.99 356.32 362.39 360.16
2021-12-21 360.86 319.45 349.27 360.67 362.60 363.24
2021-12-22 356.88 319.63 352.00 366.38 360.87 362.29
2021-12-23 368.28 319.80 354.67 365.81 368.24 367.92
2021-12-24 349.94 319.98 354.94 348.85 355.03 361.47
2021-12-25 352.02 320.15 350.55 363.58 361.93 366.76
2021-12-26 343.32 320.32 325.73 342.79 345.25 349.93
2021-12-27 362.46 320.50 354.81 368.31 362.41 364.12
2021-12-28 348.84 320.67 348.64 364.91 354.74 360.77
2021-12-29 382.46 320.85 361.85 368.00 374.94 373.22
2021-12-30 385.4 321.02 367.94 374.56 379.82 382.63
2021-12-31 374.1 321.20 365.71 373.83 370.94 376.33

7. Conclusions

In this study dedicated to the prediction of peak consumption of electrical energy
in Togo, five approaches were studied: ARIMA, LSTM, GRU, and hybrid approaches
including ARIMA-LSTM and ARIMA-GRU. The results from the predictions with our
models revealed that the hybrid ARIMA-LSTM approach provides better accuracy with
an RMSE of 7.35. The results from this work indicate the hybrid approaches are better at
predicting peak electrical energy consumption than the single approaches. These results
complement the work undertaken in the field, especially in Togo. They will be more useful
for the energy distribution company to optimize the external energy purchase policy and to
promote the integration of renewable sources in the electrical network as back-up sources.
Future work may consider increasing the size of the dataset and re-examine deep learning
approaches such as LSTM and GRU.
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