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Abstract: The rising interest in the security of network infrastructure, including edge devices, the
Internet of Things, and smart grids, has led to the development of numerous machine learning-based
approaches that promise improvement to existing threat detection solutions. Among the popular
methods to ensuring cybersecurity is the use of data science techniques and big data to analyse online
threats and current trends. One important factor is that these techniques can identify trends, attacks,
and events that are invisible or not easily detectable even to a network administrator. The goal of this
paper is to suggest the optimal method for feature selection and to find the most suitable method to
compare results between different studies in the context of imbalance datasets and threat detection in
ICT. Furthermore, as part of this paper, the authors present the state of the data science discipline
in the context of the ICT industry, in particular, its applications and the most frequently employed
methods of data analysis. Based on these observations, the most common errors and shortcomings
in adopting best practices in data analysis have been identified. The improper usage of imbalanced
datasets is one of the most frequently occurring issues. This characteristic of data is an indispensable
aspect in the case of the detection of infrequent events. The authors suggest several solutions that
should be taken into account while conducting further studies related to the analysis of threats and
trends in smart grids.

Keywords: smart grids; network anomalies; threat detection; feature selection; machine learning;
performance metrics

1. Introduction

Digital technology surrounds us at every moment. We have become accustomed
to it and are no longer surprised by such incremental changes in our environment. Not
so long ago, self-service checkouts began appearing in stores to make shopping easier,
and today stores are moving toward a checkout-free model that is even further tied with
technology. We can rent a car in minutes from our smartphone, and upon entering our
home we are greeted by the familiar voice of an electronic assistant from a speaker on the
coffee table. Moreover, Internet of Things (IoT) devices are present in all areas of our lives,
in places directly connected to us as well as in sectors of the economy that we often do not
think about; for example, in supply chains or smart grids. Smart grids refer to enhanced
electrical grids that integrate state-of-the-art technologies and communication systems to
improve the efficiency, reliability, and sustainability of energy generation, transmission,
distribution, and consumption. The growing use of renewable energy sources further
increases the complexity of smart grids, while creating new opportunities for malicious
actors. Protecting the exchange of sensitive data within smart systems is crucial to prevent
theft, manipulation, or loss of information, which can compromise consumer privacy and
cause significant losses for businesses. Because of these weaknesses, edge devices, the IoT,
and smart grids have become a prime target for attacks in recent years [1]. In the domain
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of smart grids, information and communication technologies (ICTs) are a fundamental
element. ICT plays a key role in extending the functionality and capabilities of smart grids.
This includes a variety of technologies, hardware, and software systems that facilitate
data collection, communication, analysis, and control within the smart grid infrastructure.
The technological advances associated with the introduction of smart solutions have had a
positive impact on the energy industry. Yet, this advancement has also created opportunities
for attackers to exploit security vulnerabilities, which has led to the rise of additional threats
that need to be addressed proactively. As such, the role of ICT, and the experience that
comes with it, is particularly relevant with regard to critical infrastructure and its connected
devices. To mitigate these vulnerabilities, it is necessary to establish an effective real-time
detection and response mechanism that relies on informed reasoning. Given the growing
interest in securing ICT systems and the ever-evolving threats in the network ecosystem,
a number of machine learning-based approaches have emerged that offer the promise
of improving existing threat detection solutions. Machine learning (ML) techniques can
identify trends, attacks, and events that are invisible or not easily detectable even to a
network administrator. However, to properly leverage the full range of possibilities that
ML methodologies can offer, not only is the domain knowledge of smart grids required,
but also an understanding of selected mathematical and probabilistic concepts, as well as a
background in raw data cleansing and pre-processing. Finally, the awareness of common
continuous development, integration, and deployment cycles or processes, such as the
cross-industry standard process for data mining (CRISP-DM), Sample, Explore, Modify,
Model, and Assess (SEMMA), or Team Data Science Process (TDSP), is also beneficial. This
is particularly useful when we want to revise a solution, enhance its capabilities, or simply
adapt it to a newer or different dataset.

The aim of this paper is to propose an optimal approach for feature selection and to
identify the most appropriate method for comparing outcomes across various studies in the
context of imbalanced datasets and detecting threats in the domain of digital technology
and communication. We are certain that the correct selection of features is an essential
step in the machine learning pipeline that can help make the future models more accurate,
efficient, and interpretable. Beforehand, we present the actual state of the data science
discipline in the context of the ICT industry, with consideration of currently known solu-
tions to threat detection in networks. We provide valuable guidance to readers by directing
them to articles that comprehensively discuss the various aspects of threats emerging in
the smart grid landscape. These articles delve into in-depth analyses of various types of
threats and their implications, offering a holistic overview of the risk in the context of smart
grids. We reviewed available datasets related to threat detection in the ICT domain. We
identified the most frequently used algorithms for threat, anomaly, or incident detection.
On the basis of this, we identified the most prevalent mistakes and shortcomings associated
with machine learning-based solutions in ICT applications. This includes the entire process
associated with the development of a solution, from data preparation through to feature
selection for supervised machine learning, to the proper selection of metrics that evaluate
the effectiveness of the resulting model. For the purpose of this paper, we have focused
mainly on the CSE CIC IDS2018 dataset [2] in order to examine the underlying problems,
but our findings are valid throughout the domain. The CSE CIC IDS2018 dataset is an
imbalanced dataset that contains per-flow statistics, labelled network attacks, and appro-
priately captures the reality of the network environment. Filter, wrapper, and embedded
methods for feature selection were compared, as well as accuracy, F1-score, Cohen’s kappa,
and ROC AUC metrics. Finally, random forest (RF), multi-layer perceptron (MLP), and
linear support vector classifier (LSVC) were used in order to evaluate the impact of the
earlier efforts. Based on this work, we suggest several solutions that should be taken into
account while conducting further studies related to the analysis of threats and events in
the ICT field, which are apparently still overlooked. Among others, the correct choice of
a feature selection method can have a significant impact on the effectiveness of a model.
Moreover, to reliably present findings in studies that use imbalanced datasets, adequate
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metrics should be used to appropriately show the obtained results. The main contributions
of this paper are as follows:

• We reviewed papers related to machine learning-based threat detection in smart grids;
• We conducted a thorough review of the datasets pertaining to machine learning-based

threat detection;
• We identified the most frequently used algorithms for threat, anomaly, or incident

detection in smart grids;
• We compared the effectiveness of the filter, wrapper, and embedded methods for

feature selection, as well as accuracy, F1-score, Cohen’s kappa, and ROC AUC metrics;
• We proposed the optimal method for feature selection;
• We proposed new feature sets for training machine learning algorithms on the CSE

CIC IDS2018 dataset;
• We found the most suitable method to compare results between different studies in

the context of imbalance datasets and threat detection in smart grids;
• We identified the most common errors and shortcomings in adopting best practices in

data analysis;
• We suggested several solutions that should be taken into account while conducting

further studies related to the analysis of threats in smart grids.
• We confirmed that Cohen’s kappa and F1-score are more suitable for comparison with

imbalanced datasets;
• We strongly suggested the use of a baseline model that should serve as a reference

point throughout the research;
• We recommended the use of feature selection methods based on random forest, ANOVA

F-value, or logistic regression with L1 regularisation for processing large datasets;
• We identified that the use of more than one metric should not be neglected in academic

studies, especially in the case of experiments with imbalanced datasets;
• We stated that it is fundamental to have a clear and thorough description of the entire

process of model creation, starting from data preparation through to model setup,
testing methodology, and result visualisation.

This paper is organised as follows. Section 2 provides an overview of the state of the art
concerning data science techniques in conjunction with one of the recent datasets enabling
threat detection in the ICT environment. Section 3 guides readers to the resources that cover
threats, and presents the most popular solutions for their detection. Section 4 provides an
overview of future selection methods. Section 5 describes the data preparation process,
including initial data analysis and data cleaning. The methodology behind conducted
experiments is presented in Section 6. Section 7 shows the results. Finally, Section 8
concludes the paper.

2. State of the Art

Machine learning empowers STEM professionals with powerful tools for data analysis,
automation, optimisation, and prediction. Leveraging the benefits of ML, engineers can
make better decisions, improve system performance, detect faults, optimise maintenance,
improve design processes, and drive engineering innovation. Examples of the application
of ML techniques can be found in numerous fields, such as cybersecurity [3], biology [4,5],
civil engineering [6,7], and logistics [8,9].

Methodologies that promise improvements to cybersecurity with the use of data
science techniques and big data to analyse existing and emerging threats in smart grids
are currently a hot topic and the subject of numerous scientific research studies [10,11].
These methods can efficiently leverage the overwhelming amount of network-related data,
which would be unfeasible for a human to analyse, with the goal of identifying patterns of
activity and underlying trends. These makes it easier for cybersecurity specialists to analyse
incidents or abnormal events. Furthermore, such initial analyses can be used to make data-
driven reasoning in an automated manner. This allows for increased efficiency of systems
designed by definition for the detection of potential threats within ICT infrastructure. Data
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science offers a promising solution as it can be used to detect a variety of cyber-attacks or
malicious activity by automatically analysing communication patterns between nodes.

The ability of communication services providers and internet service providers (ISPs)
to offer statistical data regarding their services’ usage is a prerequisite for the development
of methods that are capable of identifying suspicious patterns, as well as the development
of new approaches that can provide further insight into network traffic analysis, which is
another building block in threat detection. In addition, data science techniques may provide
additional case-related uses, especially with the usage of machine learning processes or
anomaly detection to block unwanted activities in the network, such as an intrusion
detection system (IDS), an intrusion detection and prevention system (IDPS), or security
information and event management (SIEM) solutions. Information obtained with the help
of ML group solutions can support the development of classic rules for firewalls but also
the generation of automated rules for this class of systems itself.

Machine learning can provide valuable pieces of information related to the detection
of threats, such as cyber-attacks or social engineering. While the latter can be used to
gain unauthorised access to critical systems and confidential data with the use of human
imperfections, ML solutions might prove their necessity. Machine learning techniques
can provide a threat detection system with the ability to learn from users’ behaviours and
improve results over time, which in turn will reduce the number of false positives that
generate unwanted alarms, which is the scourge of present systems of this kind.

The following part of this section presents papers related to intrusion detection sys-
tems, using mainly one of the most recent datasets created for this task and the one used in
the experiments in this work: the CSE CIC IDS2018 dataset.

A paper published by Kanimozhi and Prem Jacob [12] was among the first that
utilised the CSE CIC IDS2018 dataset. The authors evaluated two variations of the MLP
algorithm [13] on the modified dataset consisting of benign and DoS samples only. The first
model was not additionally configured; all parameters were set to default. The second
one used the “lbfgs” solver: the L2-regularisation alpha value was set to 1 × 10−5 and
the GridSearchCV hyperparameter optimiser hidden layer arrangement was set to 9 and
4 neurons in the second and the third layer, respectively. The first configuration achieved a
0.9995 accuracy score but was marked as an overfitted model, and the latter achieved nearly
perfect scores in accuracy, precision, recall, F1-score, and ROC AUC score. The parameter
hyper-tuning aspect is worth mentioning, but the lack of details regarding data cleaning
and feature selection processes can be considered a drawback.

In the next paper, Chastikova and Sotnikov [14] proposed a long-short term memory
(LSTM) [15] model to analyse network traffic. Even though the work was just theoretical, it
is interesting that the utilisation of the focal loss function [16] was mainly used in the area
of computer vision to address the imbalance in the distribution of classes in the dataset.
Not addressing the problem of non-uniform data distribution, which is a common case
when working with this type of dataset, can cause a misunderstanding of the problem
and consequently mask the shortcomings of the proposed method that should solve the
issue and include bias in the results [17,18]. Given imbalanced classes, one example of
unintended misrepresentation of results might be the use of only the accuracy metric, which
does not account for and will not correctly report such a characterisation, as in the case
of [19]. Evaluation with proper metrics is a topic that has been addressed in [20,21].

In [22], with six classifiers (RF [23],decision tree (DT) [24], logistic regression [25],
SGDClassifier [26], Adaboost [27], and MLP) and custom dataset consisting of CIC-DoS,
ISCX2012, CIC IDS2017, and CSE CIC IDS2018, Filho et al. created a comprehensive
scenario for DoS attack detection. The compiled dataset featured 33 attributes derived from
source and destination ports, IP packet sizes, and TCP flags. Using the recursive feature
elimination with the cross-validation method, they reduced the size of the feature set to
20 attributes and achieved their highest score of 1.0 accuracy and 1.0 recall with the RF
classifier. The paper represents a solid approach to the subject. The only drawback of this
work is the use of the outdated ISCX2012 dataset, which is considered easy to analyse
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because of its structure and limited diversity of traffic. It is worth noting that the use of the
cross-validation method is considered to be effective when working with an imbalanced
dataset [28].

Basnet et al. [29], with the use of MLP implemented using different tested tools such
as Keras or PyTorch, achieved their top score of 0.99 accuracy. In terms of data cleaning,
they dropped around 20 thousand samples with infinity or missing values. For training
and validation, a 10-fold cross-validation with either an 80:20 or a 70:30 split ratio between
training and test subsets was used. The research was correctly performed, but the lack of
any reference to the baseline model or any other model is a considerable shortcoming of
this paper.

With two datasets, CSE CIC IDS2018 and Bot-IoT, Ferrag et al. [30] evaluated a re-
current neural network (RNN) [31], a deep neural network [32], a restricted Boltzmann
machine [33], a deep belief network [34,35], a convolutional neural network (CNN) [35,36],
a deep Boltzmann machine [37,38] and deep autoencoders [39]. Despite the fact that the ex-
periments are just a small portion of the whole work, the authors achieved 97.38% accuracy
with the RNN and 98.18% recall with the deep autoencoder. However, as the emphasis
was mainly on a review of approaches and datasets, the experiment part of the study
lacked detail.

With the use of an aggregator module integrating four ML architectures—Boltzmann
machine, deep feed-forward neural network, LSTM, and gated recurrent unit
(GRU) [40]—Atefinia and Ahmadi [41] achieved a perfect score of 1.0 in accuracy, precision,
and recall metrics for the DoS, DDoS, and brute force attack types. The data pre-processing
involved the removal of IP addresses and port numbers. The authors used one-hot encod-
ing for labels and feature scaling for numeric feature normalisation. In terms of the data
cleaning process, there is just information about the removal of rows with missing values
and columns with too many missing values. For training purposes, stratified sampling with
an 80-20 train-to-test ratio was utilised. The research lacks reference to the baseline model or
any other model.

Of the papers concerning the CSE CIC IDS2018 dataset, the paper by Karatas et al. [42]
performed the best work in terms of data cleaning. The dataset was pre-processed to
address issues such as missing and infinity values. In addition, one-hot encoding was used,
and rows were shuffled. To address class imbalance, the synthetic minority oversampling
technique (SMOTE) [43] was used. The five-fold cross-validation was applied to a training
set comprising 80% of the samples, while the remaining instances served as the test set.

Sawadogo et al. [44] presented a deep learning approach with the tree-CNN model,
not only to detect threats but also to classify them. As with the previous paper, the au-
thors also used the SMOTE to address class imbalance. The model reached a score of
99.94% accuracy in threat detection. Additionally, the results were presented using accu-
racy, precision, and F1-score metrics. However, the research missed several key aspects.
The data preparation phase was entirely omitted. The final selected features were not
present. In the comparison with related works, the authors mention difficulties in properly
comparing results with previous experiments. Yet, they themselves do not address the
aforementioned issue.

A comprehensive study, presented in [45], delved into the application of three powerful
machine learning techniques for the detection of internet threats. The study specifically
concentrated on a limited set of parameters, and the techniques under analysis included
long short-term memory (LSTM), isolation forest, and support vector machine (SVM).
To conduct the analysis, two datasets were employed: ASNM-CDX-2009 and CIC-IDS2017.
The findings of the study revealed notable disparities between the performance of the
different techniques, as well as the impact of the dataset size and the balance of samples
in datasets on the results. It was demonstrated that increasing the number of analysed
features can lead to improved classification accuracy. However, each increase in the number
of elements requires a more extensive analysis. To facilitate the practical implementation of
the proposed analysis methods, the authors outlined future steps that should be taken.
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The ML-based approaches to threat detection in the ICT infrastructure seem to be
prominent. The performed studies show affirmative results. However, the manner in which
the experiments are described does not allow for a meaningful comparison of the applied
methods. On the basis of the performed research, we identified the most prevalent mistakes,
deficiencies associated with ML-based solutions, and shortcomings in the adoption of data
analytics best practices. This includes the entire process associated with the development
of a new solution, missing details in the description of the preparation process of used
data, disregard of the application of an imbalanced dataset, lack of features selection
information, incomplete explanation of the testing methodology, and improper selection
of metrics that evaluate the effectiveness of the resulting model. Ultimately, the problem
of how to compare the effectiveness of models becomes evident. Taking into account
the previous comments would allow the opportunity of reproducing approximate results.
Furthermore, presenting the gain relative to the baseline model would also be beneficial.
Without these crucial pieces of information, a consecutive paper with a model achieving
accuracy over 99.99% is meaningless. Therefore, in this work, we intend to address the topic
of optimal feature selection for ML-based approaches to threat detection in ICT, as well as
the matter of a consistent approach when comparing results from various studies using
adequate metrics. Overall, proper feature selection techniques can lead to more accurate,
efficient, and interpretable models, making it an important step in the machine learning
pipeline. Similarly, the use of proper metrics in studies involving imbalanced datasets can
provide a more accurate evaluation of the model’s performance, better identification of
the minority class, more informed decision-making, and consistency in the comparison of
different models.

3. Threats and Threat Detection Solutions

Smart grids offer benefits such as improved energy efficiency and reliability by en-
abling real-time monitoring, control, and optimisation of electricity generation, transmis-
sion, and consumption. They also facilitate the integration of renewable energy sources,
demand response programs, and advanced metering systems, enabling a more sustainable
and resilient energy infrastructure. With the integration of connected devices into the grid,
however, new risks have emerged [46]. Challenges and threats associated with modern
medical, financial, emergency, or air traffic control information systems are now affecting
another fragment of critical infrastructure. The majority of these kinds of threats are well
known and classified in the ICT domain. The majority of threats in the smart grid domain
are widely acknowledged and classified within the ICT domain. In this section, we will
focus on showcasing the cyber security solutions implemented to effectively counter these
threats. However, for a comprehensive understanding of the specific threats encountered
in the smart grids field, we highly recommend referring to well-prepared review papers
that extensively delve into the subject [1,47,48]. These papers serve as valuable resources,
providing in-depth insights into the intricacies and nuances of smart grid threats, thus
enhancing the reader’s familiarity with this critical domain.

Given the ever-changing landscape of challenges in cybersecurity, there is always
a need for better and improved tools that can help cyber analytics and specialists to
monitor and react to emerging threats. The use of machine learning techniques for threat
detection has been applied in several commercial products that are used by some of the
largest companies in different markets. These include IBM’s Watson Studio for fraud
detection, WatchGuard Technologies’ Cloud Access Security Broker (CASB), and Cisco’s
Cognition Engine.

3.1. Intrusion Detection and Prevention Systems

An IDPS monitors network traffic and alerts when suspicious activity is detected.
Systems can monitor traffic in real-time, offer a way to set up rules to flag uncharacteristic
behaviour, label the type of event or set severity and proper actions for different detected
alerts. Most solutions allow for customisation to suit specific needs. IDPSs can detect a
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broad range of malicious activities, including port scans, denial-of-service attacks, and bot-
net activity. Depending on their capabilities, solutions can be further classified into IDS
(detection only), IPS (reaction only), and full-fledged IDPS.

IDSs can be classified into different categories depending on the specific case, such as
host-based or network-based, as well as signature-based or anomaly-based. Host-based
IDSs primarily focus on the internal monitoring of a computer system, and perform tasks,
such as Windows registry monitoring, log analysis, and file integrity checking. On the other
hand, network-based IDSs analyse network traffic to identify various threats, including
DoS attacks, SQL injection attacks, and password attacks. A signature-based IDS relies on
predefined patterns of known attacks and requires regular updates of its signature database
to effectively detect and mitigate threats. However, it may be difficult for this kind of
system to identify previously unknown attacks. Anomaly-based IDSs, on the other hand,
focus on identifying deviations from normal traffic behaviour, allowing for the detection of
previously unseen attacks or unusual network activity.

3.2. Security Information and Event Management Tools

SIEM tools are used to monitor traffic across networks, categorise and describe it,
and provide an informative overview of the overall state of the available resources. SIEM
tools can monitor a broad range of network activity, including traffic patterns, logs, IP
addresses’ activity, and system configuration changes. A comprehensive SIEM tool will
allow for the identification of all sorts of attacks, usage patterns, and potentially infectious
files using network traffic data.

3.3. Firewalls

Firewalls can range from a state-of-the-art distributed system [49] to a simple device.
They all comes down to the use of a set of rules that separates benign traffic from malicious
or abnormal traffic in order to protect an internal network from outside actors. A fire-
wall monitors inbound and outbound traffic and blocks any unauthorised attempts to
communicate across the barrier. However, despite their widespread implementation in
network deployments, the misconfiguration or outright absence of a firewall is considered
a significant vulnerability in smart grids [1].

4. Feature Selection

In the data science field, there is no such thing as an excessive amount of data. Nonethe-
less, there is a phenomenon called the curse of dimensionality [50], which is associated
with various problems that arise when analysing, organizing, and processing data in high-
dimensional spaces, such as decreased computational efficiency or reduced interpretability.
The use of fewer features tends to reduce the required amount of memory and space
and time complexity, thus allowing machine learning algorithms to run more efficiently
and effectively. Moreover, some machine learning algorithms can be misled by irrelevant
input features, resulting in worse predictive performance and overfitting [51]. The set of
techniques that enable the selection of a subset of the original features from the dataset
based on their relevance or importance to the task is referred to as feature selection.

One should note, however, that feature selection may be less effective for deep learning
algorithms, which, by design, have the ability to automatically extract relevant features from
the raw data. That said, there are still possible cases where feature selection is beneficial
for this technique. For example, in scenarios with limited data, limited computational
resources, or high-dimensional input data, feature selection techniques can still contribute
to a reduction in computational complexity and an improvement in model performance [52].
Additionally, in transfer learning scenarios, where pre-trained deep learning models are
tuned for specific tasks, feature selection can be used to more efficiently adapt the learned
representations to the target task [53,54].

Among feature selection methodologies, three general classes can be distinguished:

• Embedded (intrinsic or implicit) methods;
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• Filter methods;
• Wrapper methods.

Table 1, located at the end of this section, provides an overview of the advantages and
disadvantages of different feature selection techniques.

4.1. Filter Methods

Filter methods are one of the earliest feature selection approaches for machine learn-
ing [55]. The basic principle of operation is straightforward, as seen in Figure 1. Given the
features significant score (which can be, e.g., any kind of statistic coefficient), the algorithm
filters out insignificant features that are perceived as having little impact on the analysis.
Compared to other methods, filter algorithms are computationally less expensive and more
generic as they do not interact with the classifier incorporated in the learning step.

Figure 1. General scheme of a filter method for feature selection.

4.1.1. Chi Square

The chi-square test (χ2) is a statistical method used to assess the independence between
two events or variables. The test compares the observed occurrences of the data O with
the expected occurrences E, which are based on the assumption of independence. The test
calculates the chi-square statistic, which follows a chi-square distribution. By comparing
the observed O and expected E occurrences, the chi-square test helps determine whether
there is a statistically significant relationship between the variables and indicates the degree
of association between the variables.

4.1.2. ANOVA F-Test

ANOVA, which stands for “analysis of variance”, is a statistical hypothesis test used to
assess whether the means of two or more data samples are drawn from the same population
distribution. The ANOVA F-test assumes that the data follows a normal distribution
and that the groups being compared have equal variances. The test compares the ratio
of the mean square between the groups to the mean square within the groups. If the
calculated F-value is larger than the critical value from the F-distribution, it indicates
that there is a significant difference between at least one pair of groups. From a feature
selection standpoint, the ANOVA test can be a good choice for classification tasks due to
its effectiveness in applications where one variable is numeric (vector of numerical input
variables) and the other is categorical (target variable).

4.2. Wrapper Methods

Wrapper methods select a subset of features using a provided learning algorithm as
part of the feature evaluation process, as seen in Figure 2. The learning algorithm serves
the purpose of a guide in the search for a better subset. The evaluation function for each
possible feature subset returns an estimate of the quality of the model, which therefore
causes a better estimate of the algorithm performance. Wrapper methods tend to be slower
and exhibit higher computational requirements compared to other methods. Furthermore,
they are prone to overfitting, since they rely on a provided classifier. Wrappers have proven
to be an interesting choice in many domains for tasks such as DNA analysis, intrusion
detection, text categorisation, or information retrieval [56].

Recursive Feature Elimination

Recursive feature elimination (RFE) is a feature selection technique that aims to identify
the most relevant features by iteratively considering subsets of features based on their
assigned weights by an external estimator. Initially, the estimator is trained on the full



Energies 2023, 16, 4632 9 of 25

feature set and the importance of each feature is evaluated. The features with the lowest
importance scores are then eliminated from the current set. RFE provides a systematic
approach to progressively narrow down the feature space, focusing on the most influential
variables. The combined use of RFE with cross-validation looping can be used to find the
optimal number of features [57].

Figure 2. General scheme of a wrapper method for feature selection.

4.3. Embedded Methods

In contrast to the filter and wrapper methods, in embedded methods, the feature
selection part and the learning part are performed together, as shown in Figure 3. This
method is less computationally expensive than the wrapper method and less prone to
overfitting, but unlike the filter method, it can detect feature interactions.

Figure 3. General scheme of an embedded method for feature selection.

Table 1. An overview of feature selection techniques.

Method Advantages Disadvantages Examples

Filter

Independence of the classifier
Lower computational cost

(compare to wrappers)
Relatively fast

Good generalisation ability

Ignores interaction with the classifier
Ignores feature dependencies

Chi square
Euclidean distance
Information gain
Correlation-based
feature selection

Wrapper
Interaction with the classifier

Accounts for
feature dependencies

Depends on classifier selection
Overfitting risk

Computationally expensive

Sequential forward selection
Recursive feature elimination

Genetic algorithms

Embedded

Interaction with the classifier
Lower computational cost

(compare to wrappers)
Accounts for

feature dependencies

Depends on classifier selection

Decision trees
Multivariate adaptive regression

spline models
Least absolute shrinkage and

selection operator

5. Data Preparation and Overview

The following section describes data cleaning and preparation steps performed after
initial data analysis. For the research purpose, the CSE CIC IDS2018 dataset [2] was divided
into two subsets, hereafter referred to as dataset A and dataset B. The split was determined
based on the number of features in the files forming the entire dataset. Dataset A has
80 features and 8,284,181 samples (files: Thursday-15-02-2018, Friday-16-02-2018_clean,
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Wednesday-21-02-2018, Friday-23-02-2018, Wednesday-28-02-2018, Wednesday-14-02-2018,
Thursday-22-02-2018, Thursday-01-03-2018, and Friday-02-03-2018) and dataset B has
84 features and 7,948,748 samples (file Tuesday-20-02-2018.csv). Each sample describes a
single flow and a statistic associated with it. Features of the samples along with information
on the data types are described in Appendix A.

Overall, the original dataset is nearly ready to work with after being downloaded.
There is one minor issue regarding duplicated headers in some files, as mentioned before
in some publications. For the sake of subsequent works, the following list presents the
files and duplicated headers count: Friday-16-02-2018: 1 duplicate; Thursday-01-03-2018:
25 duplicates; Wednesday-28-02-2018: 33 duplicates. Duplicates were removed.

As mentioned before, dataset A is composed of 80 features collected over a period of
9 days. Nearly 74% of the data is labelled as benign traffic. The remaining part of the data
represents groups of some of the most common threats on the internet. The distribution of
the labelled data is presented in Table 2.

Table 2. Overview of types of traffic in dataset A, including the percentage share in the total traffic.

Label Count As a Percentage

Benign 6,112,137 73.7808%
DDOS attack-HOIC 686,012 8.2810%
DoS attacks-Hulk 461,912 5.5758%

Bot 286,191 3.4547%
FTP-BruteForce 193,360 2.3341%
SSH-Bruteforce 187,589 2.2644%

Infilteration 161,934 1.9547%
DoS attacks-SlowHTTPTest 139,890 1.6886%

DoS attacks-GoldenEye 41,508 0.5011%
DoS attacks-Slowloris 10,990 0.1327%

DDOS attack-LOIC-UDP 1730 0.0209%
Brute Force-Web 611 0.0074%
Brute Force-XSS 230 0.0028%

SQL Injection 87 0.0011%

The cleaning process of dataset A consists of the following actions.

• Removal of the old samples (before year 2000): four entries from Thursday 01-03-2018
and eight entries from Friday 02-03-2018.

• Removal of void features (zeroed columns): Bwd PSH Flags, Bwd URG Flags, Fwd
Byts/b Avg, Fwd Pkts/b Avg, Fwd Blk Rate Avg, Bwd Byts/b Avg, Bwd Pkts/b Avg,
and Bwd Blk Rate Avg.

• Removal of 22,954 samples with NaN values and replacement of infinity values for
120,000,000 value, as the observed maximum of other features.

Dataset B is composed of 84 features collected over a period of one day. Labelled
data are split into two categories, benign and DDoS attacks, in a nearly 93 to 7 ratio.
The distribution of the labelled data is presented in Table 3.

Table 3. Overview of types of traffic in dataset B including the percentage share in the total traffic.

Label Count As a Percentage

Benign 7,372,557 92.75%
DDoS attacks-LOIC-HTTP 576,191 7.25%

The cleaning process of dataset B consists of the following actions.

• Removal of void features (zeroed columns): Bwd PSH Flags, Fwd URG Flags, Bwd
URG Flags, CWE Flag Count, Fwd Byts/b Avg, Fwd Pkts/b Avg, Fwd Blk Rate Avg,
Bwd Byts/b Avg, Bwd Pkts/b Avg, and Bwd Blk Rate Avg.
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• Remove of non-relevant feature: Flow Id.
• Removal of 36,767 samples with NaN values and replacement of infinity values for

120,000,000 value, as observed maximum of other features.

6. Methodology

The following section describes the methodology behind the conducted experiments.
Most parts of the work were performed using a combination of Google Colaboratory,
Python 3, and libraries such as pandas, numpy, and sklearn.

6.1. Feature Selection

The original CSE-CIC-IDS2018 dataset has a class imbalance, with roughly 17% of the
instances comprising attack (anomalous) traffic, which had to be addressed. The dataset
was prepared from a large network of simulated clients and attacking machines, resulting
in a dataset that contains 16,233,002 instances gathered from 10 days of network traffic,
where each instance represents a single flow and its statistics. After preliminary cleaning
and dividing into two sets, we were left with two matrices with around 8 million samples
each. For further analysis, the two datasets needed to be additionally processed, ultimately
reducing each sample to a reasonable size. As a reasonable parameter for the number of
features, a value of 20 was chosen, as most of the conducted experiments in this dataset
choose something around this number of features for analysis [22]. Due to insufficient
resources, the feature selection process was conducted several times using undersampled
datasets. One-tenth of the data from the prepared datasets was used, precisely every tenth
sample, sorted by the timestamp set. An overview of the selected parameters for different
feature selection methods is shown in Table 4.

Table 4. Selected parameters for feature selection methods.

Feature Selection Method Parameters

Random selection None

Recursive feature elimination with random forest (RFE RF) Number of trees: 50

Chi2 None

ANOVA F-value None

Random forest (RF) Number of trees: 100

Logistic regression with L1 regularisation (LR L1)

Penalty: L1
Solver: saga
Dual formulation: false
C: 0.1
Class weight: balanced
Max number of iterations: 100

Linear support vector classification (LSVC)

Penalty: L1
Dual formulation: false
C: 0.01
Class weight: balanced

Tables 5 and 6 present ranked lists of features selected, respectively, from datasets A
and B by RFE RF. Among all the methods, this one most accurately captures the dynamics
of the datasets. As demonstrated in [58], information about inter-arrival times (IATs) may
prove their potential to provide a valuable contribution to network analysis. Figures 4 and 5
provide an overview of the selected features by method, and Tables 7 and 8 represent the
degree of similarity in feature selection using the Jaccard similarity coefficient. Finally,
Table 9 provides a comparison of selected features between all selected feature sets for both
datasets. It can be observed that there are no major similarities between the sets of selected
attributes, which confirms that there is no single predefined answer when selecting features.
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Interestingly, the features selected just partly match those proposed by the authors of the
CICIDS2018 dataset [59].

Table 5. Dataset A features ranked by recursive feature elimination with random forest as a classifier.

Feature Rank Feature Rank Feature Rank
Dst Port 1 Tot Bwd Pkts 6 ECE Flag Cnt 30

Fwd Seg Size Min 1 Pkt Len Max 7 Bwd IAT Tot 31
Init Fwd Win Byts 1 Subflow Bwd Byts 8 Bwd IAT Max 32

Pkt Size Avg 1 Bwd Pkt Len Std 9 Idle Min 33
Pkt Len Mean 1 TotLen Bwd Pkts 10 Bwd IAT Std 34

Bwd Pkts/s 1 Tot Fwd Pkts 11 Idle Mean 35
Fwd Pkts/s 1 Pkt Len Std 12 Idle Max 36

Fwd Header Len 1 Fwd Seg Size Avg 13 Down/Up Ratio 37
Fwd IAT Min 1 Bwd Pkt Len Mean 14 Active Mean 38
Fwd IAT Max 1 ACK Flag Cnt 15 Idle Std 39

Fwd IAT Mean 1 Flow IAT Std 16 Fwd Pkt Len Min 40
Fwd IAT Tot 1 Subflow Fwd Pkts 17 Active Min 41

Flow IAT Min 1 Bwd Seg Size Avg 18 Active Max 42
Flow IAT Max 1 PSH Flag Cnt 19 Bwd Pkt Len Min 43

Flow IAT Mean 1 Bwd Pkt Len Max 20 Active Std 44
Flow Pkts/s 1 Subflow Fwd Byts 21 Pkt Len Min 45

Bwd Header Len 1 URG Flag Cnt 22 FIN Flag Cnt 46
Flow Byts/s 1 RST Flag Cnt 23 Protocol 47

TotLen Fwd Pkts 1 Fwd Act Data Pkts 24 Fwd PSH Flags 48
Flow Duration 1 Fwd IAT Std 25 SYN Flag Cnt 49

Fwd Pkt Len Max 2 Bwd IAT Min 26 Fwd URG Flags 50
Init Bwd Win Byts 3 Pkt Len Var 27 CWE Flag Count 51
Fwd Pkt Len Mean 4 Bwd IAT Mean 28
Subflow Bwd Pkts 5 Fwd Pkt Len Std 29

Figure 4. Summary of selected features by different methods for dataset A.

6.2. Models and Training

Prepared datasets were split into training and test stratified subsets in an 80:20 ratio
using the train_test_split function from the sklearn library. Subsequent experiments were
performed using the stratified 10-fold cross-validation technique. RF, MLP, and LSVC were
selected in order to evaluate the impact of the earlier efforts. These algorithms effectively
capture the diverse problem-solving groups of strategies and represent some of the most
commonly used approaches in this area. Each test’s pipeline consists of a pipeline with
one of the selected models and a scaler at the input. Except for the MLP model, where
MinMaxScaler was used instead of StandardScaler. Due to insufficient resources, the LSVC
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model was not used for dataset A. The configuration of all the models used is given in
Tables 10 and 11.

Table 6. Dataset B features ranked by recursive feature elimination with random forest as a classifier.
Features marked in bold were selected for further experiments. The two features marked in bold and
italics are used interchangeably with source and destination IP addresses.

Feature Rank Feature Rank
Feature Rank

Src Port 1 Subflow Fwd Pkts 7 Fwd Act Data Pkts 30
Flow IAT Min 1 ACK Flag Cnt 8 Bwd Pkts/s 31

Subflow Fwd Byts 1 Fwd Seg Size Min 9 TotLen Bwd Pkts 32
Fwd IAT Tot 1 Pkt Len Var 10 Protocol 33

Fwd IAT Mean 1 Idle Mean 11 Bwd IAT Tot 34
Fwd Pkt Len Std 1 Tot Fwd Pkts 12 URG Flag Cnt 35

Fwd Pkt Len Mean 1 Fwd Header Len 13 Bwd IAT Mean 36
Fwd IAT Std 1 Bwd Pkt Len Max 14 Bwd Seg Size Avg 37

Fwd Pkt Len Max 1 Idle Max 15 PSH Flag Cnt 38
Fwd IAT Max 1 Subflow Bwd Pkts 16 Pkt Len Min 39

TotLen Fwd Pkts 1 Pkt Len Max 17 Active Max 40
Fwd IAT Min 1 Tot Bwd Pkts 18 Bwd IAT Min 41

Fwd Seg Size Avg 1 Bwd Header Len 19 RST Flag Cnt 42
Flow Duration 1 Idle Min 20 Idle Std 43

Fwd Pkts/s 1 Active Min 21 Bwd IAT Max 44
Dst Port 1 Pkt Size Avg 22 Fwd Pkt Len Min 45

Flow IAT Max 1 Bwd IAT Std 23 ECE Flag Cnt 46
Flow IAT Mean 1 Active Mean 24 Down/Up Ratio 47

Flow Pkts/s 2 Pkt Len Mean 25 SYN Flag Cnt 48
Bwd Pkt Len Std 3 Subflow Bwd Byts 26 Fwd PSH Flags 49

Pkt Len Std 4 Bwd Pkt Len Mean 27 FIN Flag Cnt 50
Flow IAT Std 5 Flow Byts/s 28 Bwd Pkt Len Min 51

Init Fwd Win Byts 6 Init Bwd Win Byts 29 Active Std 52

Figure 5. Summary of selected features by different methods for dataset B.
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Table 7. Comparison of selected features by method using Jaccard similarity coefficient for dataset A.

Method Random RFE RF Chi2 ANOVA
F-Value RF LR l1 LSVC

Random 100.00% 11.11% 8.11% 11.11% 11.11% 14.29% 8.11%
RFE RF 11.11% 100.00% 33.33% 25.00% 90.48% 14.29% 5.26%
Chi2 8.11% 33.33% 100.00% 14.29% 29.03% 0.00% 2.56%
ANOVA F-value 11.11% 25.00% 14.29% 100.00% 25.00% 29.03% 25.00%
RF 11.11% 90.48% 29.03% 25.00% 100.00% 14.29% 5.26%
LR L1 14.29% 14.29% 0.00% 29.03% 14.29% 100.00% 25.00%
LSVC 8.11% 5.26% 2.56% 25.00% 5.26% 25.00% 100.00%

Table 8. Comparison of selected features by method using Jaccard similarity coefficient for dataset B.

Method Random RFE RF Chi2 ANOVA
F-Value RF LR l1 LSVC

Random 100.00% 11.11% 17.65% 14.29% 5.26% 14.29% 17.65%
RFE RF 11.11% 100.00% 29.03% 37.93% 81.82% 25.00% 14.29%
Chi2 17.65% 29.03% 100.00% 11.11% 25.00% 14.29% 0.00%
ANOVA F-value 14.29% 37.93% 11.11% 100.00% 37.93% 21.21% 29.03%
RF 5.26% 81.82% 25.00% 37.93% 100.00% 29.03% 14.29%
LR L1 14.29% 25.00% 14.29% 21.21% 29.03% 100.00% 17.65%
LSVC 17.65% 14.29% 0.00% 29.03% 14.29% 17.65% 100.00%

Table 9. Comparison of selected features by method using Jaccard similarity coefficient for datasets
A and B.

Method Random A RFE
RF A Chi2

A
ANOVA
F-Value

A RF A LR l1 A
LSVC

Random 100.00% 11.11% 8.11% 11.11% 11.11% 14.29% 8.11%
B RFE RF 11.11% 42.86% 33.33% 21.21% 42.86% 14.29% 0.00%
B Chi2 17.65% 29.03% 60.00% 5.26% 29.03% 2.56% 0.00%
B ANOVA F-value 14.29% 17.65% 11.11% 17.65% 21.21% 33.33% 17.65%
B RF 5.26% 42.86% 37.93% 25.00% 42.86% 17.65% 0.00%
B LR L1 14.29% 5.26% 14.29% 14.29% 8.11% 25.00% 2.56%
B LSVC 17.65% 25.00% 2.56% 42.86% 29.03% 37.93% 25.00%

Table 10. The configuration of all the models used in experiments with dataset A.

Model Configuration

Dummy classifier Strategy = ‘most_frequent’

Random forest classifier (RF)
from sklearn.ensemble package

n_estimators = 12
criterion = ‘gini’
max_depth = 22
min_samples_split = 10
class_weight = ‘balanced’

Multi-layer perceptron classifier (MLP)
from sklearn.neural_network package

hidden_layer_sizes = (15)
activation = ‘relu’
solver = ‘adam’
batch_size = ‘auto’
alpha = 0.001
learning_rate_init = 0.001
max_iter = 20
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Table 11. The configuration of all the models used in experiments with dataset B.

Model Configuration

Dummy classifier strategy = ‘most_frequent’

Random forest classifier (RF)
from sklearn.ensemble package

n_estimators = 12
criterion = ‘gini’
max_depth = 22
min_samples_split = 10
random_state = 2021
class_weight = ‘balanced’

Multi-layer perceptron classifier (MLP)
from sklearn.neural_network package

hidden_layer_sizes = (15)
activation = ‘relu’
solver = ‘adam’
batch_size = ‘auto’
alpha = 0.001
learning_rate_init = 0.001
max_iter = 20

Linear support vector classifier (LSVC)
from sklearn.svm package

penalty = ‘l2’
loss = ‘squared_hinge’
dual = False
C = 1.0
class_weight = ‘balanced’
max_iter = 50

7. Results

Given the results, there is a clear difference between cases of datasets A and B, with the
first one representing multiclass classification problems (14 classes), and the second one
representing binary classification (benign and DDoS). In both cases, we can see the slight
advantage of the three-layer MLP model over RF, which prevails in publications related
to network threat detection. The linear support vector classifier achieved reasonable
results. Considering the full results (Figures 6–10), we can confirm the statement given
in [57], suggesting that the efficiency of feature selection using random forest is better than
that based on the support vector classifier. Interestingly, LSVC-based feature selection
performed better with the task of binary classification. In the case of multiclass, the basic
solution with randomly selected features performs better. For the case of both subsets,
the effectiveness of the chi-square method is not satisfying, although better results can be
observed for the binary classification task in combination with RF and MLP models.

As mention in the previous section, configurations of the RF and RFE RF methods
differs slightly. Overall, RF, with double the number of trees compared to RFE RF, shows
a slight advantage. Moreover, when we take into consideration the processing time,
the RF-based feature selection should be preferred over the RFE RF method. In accordance
with [18], Cohen’s kappa and F1-score metrics proved to be more suitable for comparison
with imbalanced datasets compared to the widely used accuracy metric. The results also
support the statement in [60] that, although AUC metrics might be useful as summary
statistics, there is a lack of visual inspection capability of the curves to provide more
information about evaluation.

Taking a holistic view of all the charts we can see how important it is to perform a
comprehensive analysis of the subject. Not every feature selection method behaves exactly
the same with different classifiers and classification tasks. This is why it is important to
pay extra attention to data analysis and comparison of outcomes. Firstly, by taking into
account at least two metrics, it is possible to capture the characteristics of the domain
under evaluation. Secondly, the inclusion of a baseline model in the results shows the
complexity of the problem and provides minimum expectations for the newly developed
solution. The same holds true for the basic solution of feature selection (random feature
selection). As such, for publications proposing yet another model for threat detection for
datasets achieving over 99% effectiveness this may come as a surprise. However, given that
some of the data may be filtered for the purposes of that new research and that the basic
model can achieve efficiency of over 90% for basic metrics that do not take into account the
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distribution of the data, these doubts can be alleviated. The model and results are correct,
but the context may not be fully covered.

Figure 6. Comparison of the influence of feature selection methods on the effectiveness of the random
forest model with dataset A.

Figure 7. Comparison of the influence of feature selection methods on the effectiveness of the
multi-layer perceptron model with dataset A.

As mentioned earlier, the classification issues differ between subsets. The case for
subset A represents a multilabel classification problem while the case for subset B represents
a binary classification problem. The former case is, by definition, more difficult, represented
by the differences in the results obtained in each metric. What seems interesting is that,
using an appropriate feature selection method, the MLP model gives superior results when
compared to the RF model, which is often highlighted in the literature.

A comparison between the ANOVA F-value (filter method) and RFE RF (wrapper
method) (Figures 11 and 12) shows that, in the case of the CSE CIC IDS2018 dataset, there
is no major difference in the observed results. This contrasts to the time aspect of the exper-
iments, where the wrapper method requires much more of this resource. Overall, the best
results were achieved with the embedded feature selection method: feature selection based
on random forest. In this case, however, a different aspect is noteworthy. Although the
feature selection methods do not exhibit significant differences in their outcomes, the per-
formance variations among the models become significantly pronounced. This example
underscores the importance of presenting the results alongside the baseline model, as it
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provides valuable context and perspective. Moreover, including two or three additional
metrics does not impose a substantial overhead but greatly enhances the comparability of
the proposed solutions for future researchers. This practice not only improves the overall
understanding of the findings but also fosters a more comprehensive and meaningful
comparison between different approaches. By incorporating these additional metrics,
we contribute to the advancement of research in the field and facilitate more informed
decision-making in subsequent studies.

Figure 8. Comparison of the influence of feature selection methods on the effectiveness of the random
forest model with dataset B.

Figure 9. Comparison of the influence of feature selection methods on the effectiveness of the
multi-layer perceptron model with dataset B.
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Figure 10. Comparison of the influence of feature selection methods on the effectiveness of the linear
support vector classifier model with dataset B.

Figure 11. Comparison between filter (ANOVA F-value) and wrapper (RFE with RF) feature selection
methods with dataset A. Each row represents a different type of metric.
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Figure 12. Comparison between filter (ANOVA F-value) and wrapper (RFE with RF) feature selection
methods with dataset B. Each row represents a different type of metric.

Confidence intervals are not shown in the figures because of their minor values. For the
sake of transparency, the most significant values for experiments with datasets A and B
are presented in Figure 13 and Figure 14, respectively. The rest of the confidence intervals
values were below 0.005.

Figure 13. Top 95 confidence intervals for results of experiments with dataset A. X-axis is represented
by the type of a model, a feature set, and a metric from the bottom to the top.

The most challenging part, in addition to data preparation, which took around 60%
of the total work time (domain average for this task is around 60–70% of the total work
time), was to constantly optimise the use of resources, with an emphasis on RAM usage,
due to the large amount of data being processed. The duration of each test cycle, which
was counted in days, was also a problem. Due to limited resources and time constraints,
we were unable to properly optimise the parameters of every feature selection algorithm
for every machine learning model. Additionally, a detailed exploration of the influence
of the number of processed features remains an area that requires further investigation in
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future work. Although these aspects were not comprehensively addressed in our current
study, they present valuable directions for future research and development in this field.

Figure 14. Top 95 confidence intervals for results of experiments with dataset B. X-axis is represented
by the type of a model, a feature set, and a metric from the bottom to the top.

8. Conclusions

This paper discusses the problems of feature selection and metric choice for the
performance evaluation of network traffic threat detection solutions that use machine
learning techniques. These network solutions requires rapidity of response and accuracy as
well as precision of detection. Data science tools, including machine learning approaches,
have a broad range of applications. As research shows, the ICT domain is also a place
where their use delivers promising results. That is mainly because of the nature of this area.
By definition, ICT infrastructure including smart grid infrastructure directly or indirectly
process a significant volume of data, which is often structured and is appropriate for big
data applications. In addition to domain knowledge, a proper understanding of a specific
case, the related data, and the understanding and awareness of available tools are also
essential. These tools include pre-processing methods, dimension reduction and feature
selection techniques, and means of verifying the correct and effective operation of the
developed application. The proper adoption of data analysis best practice in research is able
to positively affect the quality of research in a given area and the authenticity of the achieved
results; however, we noticed that this aspect of research is still frequently overlooked.

In this work, we proposed new feature sets for training machine learning algorithms
on the CSE CIC IDS2018 dataset, suggested the effective techniques for features selection,
and proposed the appropriate method for comparing results between different studies
in the context of imbalanced datasets and threat identification. Dismissing part of the
features may appear to be an information loss. However, the use of a streamlined feature
set in machine learning can lead to faster, more accurate, and more interpretable models,
while also lowering computational complexity and storage requirements. Regarding the
comparison of the effectiveness of the proposed ML-based solutions for threat detection,
at this moment there is no common framework used whatsoever. Therefore, we suggest
several general steps that should be taken into consideration before publishing future
findings. To reach these conclusions, firstly, we reviewed the available datasets and papers
related to machine learning-based threat detection in the ICT domain. Secondly, we
identified the most frequently used algorithms for threat, anomaly, or incident detection.
On the basis of this, we identified the most prevalent mistakes and shortcomings associated
with machine learning-based solutions in ICT applications. To examine the underlying
problems, we used an imbalanced CSE CIC IDS2018 dataset that contains labelled network
attacks and appropriately captures the reality of the network environment. Then, we
compared the effectiveness of the filter, wrapper, and embedded methods for feature
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selection, as well as accuracy, F1-score, Cohen’s kappa, and ROC AUC metrics. Subsequent
experiments were performed using the stratified 10-fold cross-validation technique, and
we used random forest, multi-layer perceptron, linear support vector classifier, and dummy
classifier, which serve the purpose of a reference point, in order to evaluate the impact of
the earlier efforts with regard to multiclass classification and binary classification problems.

As a short summary of the article and our work, the following conclusions can
be presented:

• Feature selection methods based on random forest, ANOVA F-value and logistic
regression with L1 regularisation have proven their robustness and are recommended
for processing large datasets.

• The baseline model serves superbly as a reference point throughout the research.
The same holds true for the basic solution for feature selection, which relied on
randomly selected features. This aspect should not be ignored in scientific research,
as it appears to be the case in most publications.

• Compared to the widely used accuracy metric, Cohen’s kappa and F1-score metrics are
more suitable for comparison with imbalanced datasets. Once again, the use of more
than one metric should not be neglected in academic studies, especially in the case of
experiments on imbalanced datasets where appropriate metrics need to be used.

• Finally, it is fundamental to have a clear and thorough description of the entire
process of model creation, starting from data preparation, through model setup, testing
methodology, and result visualisation. The absence of such information undermines
the credibility of a study and makes it impossible to make meaningful comparisons
with future research.

To conclude, with reference to the data, information, knowledge, wisdom (DIKW) and
data science pyramids, what is important in data science research is not only the final result
achieved by the model but also the way in which the result was obtained and the model
was developed. In order to gain deeper insights and wisdom from the developed model,
it is crucial to have a strong foundation at the lower levels of the pyramid, starting with
the proper preparation of data and information. The quality of the data and the methods
used to process these data are essential to the accuracy and reliability of the final model
and its results.
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Appendix A

Table A1. Description of features available in the CSE CIC IDS2018 dataset [2]. Bolded features
indicates differences between dataset A and B in our studies.

Feature Data Type Description

ACK Flag Cnt int64 Number of packets with ACK flag
Active Max float64 Maximum time a flow was active before becoming idle

Active Mean float64 Mean time a flow was active before becoming idle
Active Min float64 Minimum time a flow was active before becoming idle
Active Std float64 Standard deviation time a flow was active before becoming idle

Bwd Blk Rate Avg int64 Average number of bulk rate in the backward direction
Bwd Byts/b Avg int64 Average number of bytes bulk rate in the backward direction
Bwd Header Len int64 Total bytes used for headers in the backward direction

Bwd IAT Max float64 Maximum time between two packets sent in the backward direction
Bwd IAT Mean float64 Mean time between two packets sent in the backward direction
Bwd IAT Min float64 Minimum time between two packets sent in the backward direction
Bwd IAT Std float64 Standard deviation time between two packets sent in the backward direction
Bwd IAT Tot float64 Total time between two packets sent in the backward direction

Bwd PSH Flags int64 Number of times the PSH flag was set in packets travelling in the backward
direction (0 for UDP)

Bwd Pkt Len Max float64 Maximum size of packet in backward direction
Bwd Pkt Len Mean float64 Mean size of packet in backward direction
Bwd Pkt Len Min float64 Minimum size of packet in backward direction
Bwd Pkt Len Std float64 Standard deviation size of packet in backward direction
Bwd Pkts/b Avg int64 Average number of packets bulk rate in the backward direction

Bwd Pkts/s float64 Number of backward packets per second
Bwd Seg Size Avg float64 Average size observed in the backward direction

Bwd URG Flags int64 Number of times the URG flag was set in packets travelling in the backward
direction (0 for UDP)

CWE Flag Count int64 Number of packets with CWE flag
Down/Up Ratio float64 Download and upload ratio

Dst IP object Destination IP address
Dst Port int64 Destination port

ECE Flag Cnt int64 Number of packets with ECE flag
FIN Flag Cnt int64 Number of packets with FIN flag
Flow Byts/s float64 Flow byte rate that is number of packets transferred per second

Flow Duration int64 Flow duration
Flow IAT Max float64 Maximum time between two flows

Flow IAT Mean float64 Average time between two flows
Flow IAT Min float64 Minimum time between two flows
Flow IAT Std float64 Standard deviation time two flows

Flow ID object Flow ID
Flow Pkts/s float64 Flow packets rate that is number of packets transferred per second

Fwd Act Data Pkts int64 Number of packets with at least 1 byte of TCP data payload in the forward direction
Fwd Blk Rate Avg int64 Average number of bulk rate in the forward direction
Fwd Byts/b Avg int64 Average number of bytes bulk rate in the forward direction
Fwd Header Len int64 Total bytes used for headers in the forward direction

Fwd IAT Max float64 Maximum time between two packets sent in the forward direction
Fwd IAT Mean float64 Mean time between two packets sent in the forward direction
Fwd IAT Min float64 Minimum time between two packets sent in the forward direction
Fwd IAT Std float64 Standard deviation time between two packets sent in the forward direction
Fwd IAT Tot float64 Total time between two packets sent in the forward direction

Fwd PSH Flags int64 Number of times the PSH flag was set in packets travelling in the forward direction
(0 for UDP)

Fwd Pkt Len Max float64 Maximum size of packet in forward direction
Fwd Pkt Len Mean float64 Average size of packet in forward direction
Fwd Pkt Len Min float64 Minimum size of packet in forward direction
Fwd Pkt Len Std float64 Standard deviation size of packet in forward direction
Fwd Pkts/b Avg int64 Average number of packets bulk rate in the forward direction

Fwd Pkts/s float64 Number of forward packets per second
Fwd Seg Size Avg float64 Average size observed in the forward direction
Fwd Seg Size Min int64 Minimum segment size observed in the forward direction

Fwd URG Flags int64 Number of times the URG flag was set in packets travelling in the forward direction
(0 for UDP)

Idle Max float64 Maximum time a flow was idle before becoming active
Idle Mean float64 Mean time a flow was idle before becoming active
Idle Min float64 Minimum time a flow was idle before becoming active
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Table A1. Cont.

Feature Data Type Description

Idle Std float64 Standard deviation time a flow was idle before becoming active
Init Bwd Win Byts int64 Number of bytes sent in initial window in the backward direction
Init Fwd Win Byts int64 Number of bytes sent in initial window in the forward direction

Label object Label
PSH Flag Cnt int64 Number of packets with PUSH flag
Pkt Len Max float64 Maximum length of a flow

Pkt Len Mean float64 Mean length of a flow
Pkt Len Min float64 Minimum length of a flow
Pkt Len Std float64 Standard deviation length of a flow
Pkt Len Var float64 Minimum inter-arrival time of packet
Pkt Size Avg float64 Average size of packet

Protocol int64 Protocol
RST Flag Cnt int64 Number of packets with RST flag
SYN Flag Cnt int64 Number of packets with SYN flag

Src IP object Source IP address
Src Port int64 Source port

Subflow Bwd Byts int64 The average number of bytes in a sub flow in the backward direction
Subflow Bwd Pkts int64 The average number of packets in a sub flow in the backward direction
Subflow Fwd Byts int64 The average number of bytes in a sub flow in the forward direction
Subflow Fwd Pkts int64 The average number of packets in a sub flow in the forward direction

Timestamp datetime64
[ns] Timestamp

Tot Bwd Pkts int64 Total packets in the backward direction
Tot Fwd Pkts int64 Total packets in the forward direction

TotLen Bwd Pkts float64 Total size of packet in backward direction
TotLen Fwd Pkts float64 Total size of packet in forward direction

URG Flag Cnt int64 Number of packets with URG flag
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