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Abstract: A High-Altitude Electromagnetic Pulse (HEMP) could induce very fast transient overvolt-
age (VFTO) with nanosecond level rise time and mega-volt amplitude, which severely threatens
the electrical devices connected to the elevated transmission line. An elevated transmission line
with different locations may suffer different levels of HEMP threat since the dip angle could in-
fluence the polarization of the HEMP wave. The combination of Rosenblatt Transformation and
Polynomial Chaos Expansion (R-PCE) is introduced in this paper. With this method, the efficiency of
calculating the overvoltage of an elevated transmission line under HEMP is improved, speeding up
24.75 times. The influence of different factors (dip angle, elevated height, and earth conductivity) on
the overvoltage of elevated transmission lines applied in power systems is calculated and analyzed.
The numerical result shows with 99.9% confidence that the overvoltage would be over 3.7 MV of
amplitude and 6.7 × 1014 V/s of voltage derivative, which is much more rigorous than a lighting
pulse. We also find that elevated transmission lines may have a larger HEMP threat in a small dip
angle area. The corresponding data are shown at the end of the paper, which could be useful for
relative researchers in pulse injection experiments and reliable evaluation.

Keywords: High-Altitude Electromagnetic Pulse (HEMP); VFTO; transmission line; Rosenblatt
Transformation; Polynomial Chaos Expansion; Monte Carlo; dip angle

1. Introduction

The electrical grid has become more complicated and vulnerable to unusual elec-
tromagnetic phenomena, such as very fast transient overvoltage (VFTO), due to more
electronics and informational devices being used. High-Altitude Electromagnetic Pulse
(HEMP) could induce a fast, high-amplitude current or voltage pulse on the transmission
line, threatening the devices connected to the transmission line, such as metal oxide ar-
resters, insulators, and transformers [1–6]. Because the whole electrical grid cannot be
tested under a HEMP radiation wave simulator, such as a vertical or horizontal polarization
device, the main testing method is to use pulse injection, which injects the energy of a
HEMP into the electrical equipment. The energy of pulse injection is expressed by short
current or open voltage, and the value of this energy is calculated using the statistical
characteristics of the response of the transmission line under a HEMP [7,8]. However, the
statistical characteristics for the overvoltage of a transmission line under a HEMP could
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vary dramatically with different parameter settings, such as elevated height, ground con-
ductivity, and, especially, dip angle related to the line location. The usual way of obtaining
the overvoltage is by solving a first-order ordinary differential equation, which has low
efficiency in a traditional statistical calculation, for example, using the Monte Carlo Method
despite its high robustness [9,10].

Recently, more and more researchers have pursued more efficient uncertainty calcula-
tion methods. Polynomial Chaos, expressing the response with orthogonal polynomials,
can be regarded as a rational choice that transfers the uncertainty of response on the co-
efficients of the polynomial. It has been widely and sophisticatedly used in multiport
systems, structural mechanics, and acoustic wave propagation [11–18]. As for the aspect of
electromagnetic, the stochastic simulation of interconnects illuminated by random external
fields is calculated based on Polynomial Chaos, and the uniform distribution is assumed.
However, in a real situation, the distribution of variables in the propagation of a HEMP
is not uniform when the randomness of the relationship between a HEMP burst and an
elevated transmission line is considered. Moreover, there are several independent variables
in the calculation of a HEMP response, and all uncertain variables for Polynomial Chaos
are required to be independent. For this issue, the Rosenblatt transformation, as a type of
probability integral transform, is available for approaching all kinds of distributions in a
unified manner. At this time, all variables are independent of each other [19,20].

This paper establishes an efficient calculation method based on Rosenblatt transforma-
tion and Polynomial Chaos Expansion (R-PCE) to obtain the statistical characteristics for
the open voltage response of an elevated transmission line. The variables and environmen-
tal parameters in calculating the HEMP response are listed and transformed into unified
distribution using Rosenblatt transformation; hence, the method is available to Polynomial
Chaos. Monte Carlo Samples verify the accuracy and efficiency of this method. According
to the calculation results, we analyze the voltage peak and derivative of transmission
line response under the influence of different ground conductivity, elevated height, and
dip angle with a confidence of 99.9%. A comprehensive data table consisting of different
heights and dip angles is shown, which could contribute to the pulse injection experiment
and its reliable evaluation.

The rest of this article is organized as follows. Section 2 introduces the variables in
HEMP propagation and efficient calculation methods combined with Rosenblatt transfor-
mation and Polynomial Chaos. In Section 3, the method is verified, and numerical results
are analyzed. Finally, Section 4 concludes this article.

2. Variables Analysis and Calculation Methods
2.1. The Coupling Model of Transmission Line

Many researchers have studied the coupling model of elevated line and electromag-
netic pulse, and Figure 1 shows a coupling model. The first way to calculate the response
of an elevated line under a HEMP is by solving the telegraph equation in the frequency
domain and transforming the results into the time domain with inverse fast Fourier trans-
formation (IFFT), known as the transmission line (TL) method. It is easy to consider a lossy
ground environment around the transmission line and could be solved by analytic expres-
sions. However, the TL method might be questionable when the cross-section of the line
is not small with respect to the wavelength at high frequencies under a quasi-transverse
electromagnetic assumption. Meanwhile, there is radiation loss on the line due to the
discontinuities at the line termination. The other methods are full wave techniques such
as finite difference time domain (FDTD) or method of moments (MoM). The advantage
of these methods is that they are highly accurate by solving the response step by step in
the time domain. However, it is time-consuming and unacceptable to pursue a statistical
calculation since the single-time cost of the full wave technique is hour-level for long
elevated lines in the power system. Commonly, for the statistical calculation of the response
of transmission lines under an electromagnetic pulse, the TL method is used.
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Figure 1. Random HEMP coupling to an elevated transmission line.

Because the TL model is a suitable alternative for the statistical calculation of long
elevated transmission lines, much work to improve the model with the consideration of
high-frequency correction has been pursued. For a conventional TL model in Figure 1, k
Ei, Hi and h are wave vector of HEMP, electric field intensity and magnetic field intensity,
the height of the line, respectively. The voltage at terminals of the transmission line on a
lossy ground is calculated by solving the Baum-Liu–Tesche (BLT) equation according to the
following expression.[
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where ρi is the voltage reflection coefficients at the line terminals, γ is the complex propa-
gation constant of the transmission line, and Si is the distributed voltage sources calculated
from the incident electric field along the line path.
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ZC is the characteristic impedance of the transmission line. Z′ and Y′ are impedance
and admittance of per-unit-length line, respectively. V′S2 is the sum of incident electric
filed and reflection electric field along the transmission line. Rv and Rh are the vertical and
horizontal Fresnel reflection coefficients of a lossy ground.
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The voltage sources Vi at the terminations in this paper are calculated as the integral
of the vertical field along the risers, as shown in Figure 2, and the increase in the effective
line length because the vertical riser is not considered in this paper [21].
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Figure 2. Modeling of transmission line with field variation and radiation resistances.

Meanwhile, additional resistance is introduced as the resistance of a radiating monopole
to make a high-frequency correction in BLT equations and is considered in the voltage
reflection coefficients [21].

Rrad = 160π2
(

h
λ

)2
(8)

ρi =
Zi + Rrad− ZC
Zi + Rrad + ZC

(9)

λ is the electromagnetic wavelength of a certain frequency. This radiating resistance
is negligible at low frequencies and increases as a function of the frequency. Because the
spectrum of the HEMP is so high, the losses increase dramatically for the transmission line
response calculation. The radiating resistances are set at both ends of the transmission line.
However, resistance only plays an important role when the termination value is comparable
with radiating resistance. In this paper, the value of termination is 1 MΩ, which expresses
the status of open voltage and the influence of different values of terminations on the
voltage, as shown in Figure 3. In the calculation, the standard E1 HEMP waveform with
50 kV/m amplitude, 2.5 ns rise time, and 23 ns pulse width defined by IEC is selected.
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The characteristics of lossy ground are expressed as ground resistance depending on
the relative permittivity of ground εr and ground conductivity δg:

Z′g =
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2π
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1 + γgh
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γg =
√

jωµ0
(
δg + jωεrε0

)
(11)

Zg
′ approximates Sunde’s formula for the per-unit length Earth return impedance,

γg is the propagation constant of the electromagnetic wave in the ground, and h is the
height of the elevated transmission line. Obviously, the ground parameters are frequency
dependent in real situations and influenced by many factors, such as percentage moisture
content. However, only a slight difference of less than 4% of coupling response is obtained
according to the reference [21]. Therefore, in this paper, relative permittivity and ground
conductivity are considered constant.

2.2. Variables in the HEMP Calculation

The random relationship between a HEMP burst and an elevated transmission line area
(see Figure 4) causes uncertainty of the voltage response on the line. Different relationships
between burst and transmission lines would cause the response to be different; therefore,
the worst peak amplitude and derivative of voltage pulse would not exist in the same
field-to-line situation. In conclusion, all the situations of the HEMP pulse incidence should
be considered in the statistical calculation.
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The relationship is shown in Figure 4; for an elevated transmission line A with a
stationary location whose dip angle is not changed, the burst, B, is randomly distributed
around elevated transmission line A.

In order to describe the randomness of HEMP propagation, there are four variables in
the propagation of a HEMP pulse as follows.

2.2.1. Height of Burst, HOB

The HOB defines the vertical height between nuclear burst and earth ground. It is
normally considered a unified distribution with a range of 50 to 400 km.

2.2.2. Elevation Angle Ψ

As shown in Figure 1, the elevation angle is not only anon-classic distribution but also
dependent; therefore, HOB could influence its type of distribution. The specific expression
of the probability distribution function is shown below, where R defines the radius of Earth
with the value of 6400 km [10].

F(ψ) =
[

1 +
R

HOB

]
sin

[
Ψ + sin−1 cos ψ

1 + HOB
R

]
− R

HOB
(12)
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2.2.3. Orientation Angle δ

The definition of orientation angle is shown in Figure 4; since the relationship between
the burst and the elevated transmission line is randomly distributed, it has a uniform
distribution with the range from 0 to 2π.

2.2.4. Azimuthal Angle Φ

The definition of azimuthal angle Φ is shown in Figure 1; since the relationship
between the burst and the elevated transmission line is randomly distributed and the
elevated transmission line in the calculation is always considered as central symmetry, it
has a type of uniform distribution with a range from 0 to π/2.

2.3. How Variables Influence HEMP Propagation

The vector u in Figure 4 defines the HEMP pulse from burst to the elevated trans-
mission line, and Be defines Earth’s magnetic field vector. The dip angle θdip between
the magnetic south and the dip angle θdip would influence the polarization angle α of the
HEMP pulse as follows.

α = arctan
∣∣∣∣ sin θ sin θb − cos θ cos δ cos θb

− sin δ cos θb

∣∣∣∣ (13)

The line of sight angle θ shown in Figure 4 can be expressed as follows.

θ = π − arcsin
(

R
R + HOB

cos ψ

)
(14)

As discussed above, the variables discussed in Section 2.2 are connected with the
polarization angle α and the line of sight angle θ, which would influence the response of
the elevated transmission line under a HEMP.

2.4. Norm for Coupling Response

There are two norms in the coupling process between the HEMP pulse and the elevated
transmission line: peak value and max derivative. The peak value of voltage VP is the
infinite norm and denotes the max absolute value of open voltage in the time domain,
which is connected with the level of HEMP threat.

VP = |V(t)|max (15)

The max derivative kmax is also an infinite norm and denotes the max voltage deriva-
tive in the time domain. It reflects how fast the voltage changes during the pulse’s rise time.

kmax =

∣∣∣∣dV(t)
dt

∣∣∣∣
max

(16)

As discussed above, the worst of these norm parameters would not occur in the
same coupling situation. We need to obtain the statistical calculation so that specific norm
parameters with certain confidence would be available for pulse injection experiments and
relatively reliable evaluation of the electrical grid.

2.5. Efficient Calculation Method

In order to analyze the statistical characteristics of the voltage of elevated transmis-
sion lines under a HEMP with different parameter settings such as dip angle, elevated
height, and ground conductivity, an efficient calculation method compared with the Monte
Carlo method is necessary. Polynomial Chaos can transfer the uncertainty of random
processes into coefficients, meaning the bulk cost is solving polynomial coefficients instead
of sampling generation. To meet the requirement of Polynomial Chaos that all the variables
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should be dependent, the Rosenblatt transformation is introduced here to decouple the
dependence of variables.

2.5.1. Polynomial Chaos Expansion

The main reason for adopting Polynomial Chaos Expansion (PCE) is that it provides
a compact closed form that is accurate in a statistical sense, and a non-intrusive PCE is
used in this paper. The method of non-intrusive PCE relies only on a collection of response
samples of the calculation model for the determination of PCE coefficients and is similar to
the Monte Carlo method, yet it exploits specific assumptions to improve the accuracy and
efficiency of the calculation. Actually, non-intrusive PCE is a kind of surrogate modeling,
with fewer times of model calculations, coefficients, and basic functions constructing the
surrogate model. The surrogate model could dramatically reduce the time cost of sample
generation.

The voltage VOV at the termination of the elevated transmission line under a HEMP
could be regarded as a function of the variables ξ = (HOB, Ψ, δ, Φ)T in Section 2.2, which
could be expanded by orthogonal polynomial Li as follows.

VOV = a0L0

+
n
∑

i=1
aiL1(ξi)

+
n
∑

i=1

i
∑

j=1
aijL2

(
ξi, ξ j

)
+

n
∑

i=1

i
∑

j=1

j
∑

k=1
aijkL3

(
ξi, ξ j, ξk

)
+ . . .

(17)

The expansion above can be truncated with the number of m + 1, which is related to
the highest order of polynomial p and the number n of variables; n is 4 in this case.

VOV =
m−1

∑
i=0

ci ϕi(ξ), m + 1 =
(n + p)!

n!p!
(18)

According to the orthogonality of polynomials, the coefficients can be solved by
calculating the inner product.

ai = 〈VOV(ξ), ϕi(ξ)〉/
〈

ϕi(ξ)
2
〉

(19)

The statistical characteristics parameters, such as mean value µ and variance σ2 are
available as follows.

µ = a0, σ2 =
m−1

∑
i=1

[
ai

2
〈

ϕ2
i

〉]
(20)

2.5.2. Rosenblatt Transformation

It is important that the elevation angle Ψ here is a dependent variable which means
the Polynomial Chaos expressed above cannot be used directly now, according to Formula
(4), that the elevation angle Ψ is relative to HOB.

Rosenblatt transformation offers a way that, given the actual conditional distribution,
we can transform the variable to independent and identically distributed uniform random
variables. For a non-uniform distributed variables vector ξ = (ξ1, ξ2, . . . , ξn)T, according



Energies 2023, 16, 4622 8 of 12

to the principle of equal probability changing, ξ can be transformed into a variable vector
η = (η1, η2, . . . , ηn)T with uniform distribution of range from 0 to 1 as follows [21].

Fη1(η1) = Fξ1(ξ1)
Fη2(η2|η1) = Fξ2( ξ2|ξ1)

...
Fηn(ηn|η1, η2, . . . , ηn−1) = Fξn( ξn|ξ1, ξ2, . . . , ξn−1)

(21)

Then the specific dependent variables are transformed into independent ones by
solving the equation below.

η1 = F−1
η1
(

Fξ1(ξ1)
)

η2 = F−1
η2
(

Fξ2( ξ2|ξ1)
∣∣η1
)

...
ηn = F−1

ηn
(

Fξn( ξn|ξ1, ξ2, . . . , ξn−1)
∣∣η1, η2, . . . , ηn−1

) (22)

As for the elevation angle Ψ depending on the HOB, it can be expressed by a variable
η1 with a type of uniform distribution with the range from 0 to 1. The Newton-iteration
method is used to solve the equation below. Fη1(η1) = FHOB(HOB)

Fη2(η2|η1) =
[
1 + R

HOB

]
sin
[

Ψ + sin−1 cos ψ

1+ HOB
R

]
− R

HOB
(23)

3. Method Verification and Numerical Results

Regarding Rosenblatt transformation, all the variables discussed in Section 2.2 are
decoupled and can be used in Polynomial Chaos to calculate the statistical characteristics
for the response of an elevated transmission line under a HEMP pulse. Here, we assumed
that HOB has a type of uniform distribution with a range from 50 to 400 km. The cumulative
distribution probability of elevation angle Ψ calculated by the Monte Carlo method and
Rosenblatt transformation is shown in Figure 5, which means the two methods fit well.
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Then, we assumed an elevated transmission line with a length of 2000 m, a height of
10 m, a line radius of 0.01 m, and terminated by a high resistance of 1 MΩ at both sides
of the line. The relative permittivity constant is 10 and 0.01 for the ground conductivity.
Meanwhile, the incidence waveform of the HEMP here is from [22], which is a double
exponential wave with an amplitude of 50 kV/m, a rise time of 2.5 ns, and a pulse width of
23 ns.

In this verification, we generate 246,240 Monte Carlo samples which are required
by IEC 61000-2-10 and its reference [10]. Meanwhile, 10 Gauss integral points are used
to calculate 7-order Polynomial Chaos Expansion. Because all the variables after the
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Rosenblatt transformation have the type of uniform distribution, the Legendre polynomial
is introduced in the Polynomial Chaos Expansion. The mean value and standard deviation
of the open voltage of an elevated transmission line under a HEMP using the Polynomial
Chaos and Monte Carlo method are shown in Figure 6. It is obvious that the two methods
fit well. According to Equation (13), well-fitting of mean values, means, and standard
deviation indicates that the integral accuracy and the order of Polynomial Chaos Expansion
are acceptable, respectively. In the same computing situation, the time costs are 0.53 h
and 13.12 h for Polynomial Chaos Expansion and Monte Carlo, respectively, which means
Polynomial Chaos has 24.75 times efficiency improvement.
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With the higher efficiency of Polynomial Chaos Expansion, we can calculate different
parameters’ influence on the overvoltage response of elevated transmission lines under a
HEMP with 99.9% confidence. First, voltage peak value and max derivative with different
elevated heights and ground conductivity are calculated, as shown in Figure 7.
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The electrical grid has a large-range distribution, and the dip angle is relative to the
polarization of the HEMP wave; hence, elevated transmission lines in different locations
would suffer different levels of HEMP threat. In order to analyze this difference, using the
results in Figure 7, we set the value of 0.1 for the ground conductivity to determine how the
dip angle influences the voltage of the elevated transmission line with 99.9% confidence.

Corresponding calculation results are shown in Figure 8. It is clear that with the
increasing dip angle, the norm of overvoltage response, such as voltage peak value and
max derivative, all decrease in most situations. This means that in the area with a small dip
angle and also a low-latitude area, the elevated transmission line may face a more rigorous
HEMP environment, with higher overvoltage and faster voltage derivative. Especially for
the norm of voltage derivative, nowadays, normal electromagnetic pulse protections on
elevated transmission lines are prepared for lighting pulses; however, the max voltage
derivative for lines over the height of 5 m from calculation results are all over 1.0 × 1014 V/s
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and the max value is 6.7 × 1014 V/s which is far more than 1.0 × 1012 V/s for the direct
effect of lighting environment according to MIL-STD-464. The max open voltage peak is
over 3.7 MV, which might hardly damage the devices terminating the elevated transmission
line. The most probable phenomenon is insulator surface flashover and overvoltage of
metal oxide arresters and transformer. The primary effect of a HEMP on the elevated
transmission line is from its speedy rise time and high amplitude. With the high efficiency
of Polynomial Chaos, plenty of voltage peak and derivative data are available to us, and
some of them, with a certain confidence, are listed in Tables 1 and 2. With these data, we
can set the value of pulse voltage injection on the electrical devices, which terminates the
transmission line according to the actual parameters such as line height and the location of
the line. Meanwhile, the results of pulse voltage injection could also certify whether the
electrical devices are able to resist the energy of a HEMP or which level of confidence the
devices are able to resist. Furthermore, the damage data from pulse injection would be
introduced into the vulnerability model of assessment to calculate the failure of the whole
system caused by the HEMP interfaces.
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Table 1. Different confidence levels for voltage peak for elevated transmission line (Values are in MV).

Height 10 m 20 m 30 m 40 m

Confidence 50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99%

Dip Angle/◦

40 0.26 0.62 1.58 0.47 0.97 1.97 0.68 1.25 2.25 0.87 1.47 2.44
45 0.24 0.61 1.39 0.44 0.97 1.85 0.62 1.23 2.15 0.79 1.45 2.36
50 0.23 0.61 1.28 0.40 0.97 1.77 0.57 1.22 2.05 0.73 1.43 2.31
55 0.21 0.61 1.17 0.37 0.97 1.65 0.53 1.22 2.02 0.66 1.43 2.28
60 0.20 0.60 1.04 0.36 0.96 1.59 0.48 1.20 1.95 0.60 1.40 2.22
65 0.20 0.60 0.95 0.34 0.95 1.49 0.46 1.21 1.90 0.56 1.42 2.19
70 0.19 0.59 0.87 0.33 0.95 1.43 0.44 1.21 1.83 0.53 1.42 2.13
75 0.19 0.59 0.82 0.33 0.95 1.37 0.43 1.22 1.79 0.50 1.42 2.10
80 0.19 0.58 0.79 0.32 0.95 1.34 0.42 1.21 1.75 0.49 1.41 2.06
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Table 2. Different confidence levels for voltage derivative for elevated transmission line (Values are
in 1014 V/s).

Height 10 m 20 m 30 m 40 m

Confidence 50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99%

Dip Angle/◦

40 0.69 1.26 2.08 1.05 2.02 2.80 1.22 2.67 3.71 1.30 3.30 4.56

45 0.63 1.18 1.95 0.97 1.86 2.71 1.13 2.43 3.54 1.20 3.00 4.31

50 0.57 1.12 1.85 0.87 1.73 2.58 1.02 2.21 3.34 1.09 2.71 4.00

55 0.52 1.07 1.73 0.79 1.57 2.47 0.92 2.00 3.17 0.98 2.41 3.69

60 0.46 1.00 1.66 0.71 1.44 2.40 0.82 1.78 2.95 0.89 2.12 3.42

65 0.42 0.97 1.60 0.62 1.30 2.29 0.74 1.59 2.86 0.79 1.86 3.27

70 0.38 0.93 1.53 0.55 1.20 2.22 0.64 1.41 2.70 0.70 1.61 3.05

75 0.34 0.90 1.50 0.47 1.12 2.18 0.55 1.26 2.61 0.60 1.38 2.91

80 0.32 0.87 1.48 0.40 1.07 2.10 0.45 1.16 2.52 0.49 1.20 2.78

4. Discussion

Using the Rosenblatt transformation and Polynomial Chaos Expansion, the statistical
calculation for open voltage of elevated transmission lines under a HEMP is sped up almost
25 times. With its high efficiency, multifold HEMP coupling situations with different param-
eters are listed, which indicates how these parameters influence the elevated transmission
line’s response. All the statistical calculations are modeled on the basis of typical HEMP
environment variables proposed by W. A. Radasky, which were cited in the IEC 61000-2-10
standard to calculate a HEMP conducted environment [7,10]. However, with the develop-
ment of research on power systems’ effect under a HEMP, the characteristics of voltage
gains more and more attention. According to the calculation results, a higher ground
conductivity could cause the overvoltage to be larger than others, which is different from
the short current. As for a large-range distribution of the electrical grid, the overvoltage
of elevated transmission lines in different areas with 99% confidence is shown, and we
found that lines in low-latitude areas may suffer a more rigorous HEMP threat by not only
overvoltage peak but also voltage derivative.

According to the published record data, a 110 kV power transmission line has a max
voltage value of 5.0 MV and 10 kV/m max voltage derivative by lighting pulse. Among all
the calculation data, the max voltage is over 3.7 MV, and the max voltage derivative is over
6.7 × 1014 V/s, indicating that the derivative induced by a HEMP is almost 67 times harder
than lighting with the nearly same voltage. Therefore, the devices applied in the electrical
grid, especially in low-latitude areas, need more consideration to prevent damage from a
HEMP.

Meanwhile, it is necessary to note that all the calculations here are based on the
analysis of open voltage without considering the effect of the devices terminating the
elevated transmission line, though much coupling data have been shown in this work. The
main reason we use the open voltage is that the operational status of protection devices
is typically open and connected to terminations. However, the nonlinear phenomena are
essential when protecting devices that suffer the VFTO. We would model devices such
as metal oxide arresters, insulators, or transformers directly connected to the elevated
transmission line and then calculate their statistical characteristics under a HEMP in future
research.
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