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Abstract: Participants in deregulated electricity markets face risks from price volatility due to various
factors, including fuel prices, renewable energy production, electricity demand, and crises such as
COVID-19 and energy-related issues. Price forecasting is used to mitigate risk in markets trading
goods which have high price volatility. Forecasting in electricity markets is difficult and challenging as
volatility is attributed to many unpredictable factors. This work studies and reports the performance
both in terms of forecasting error and of computational time of forecasting algorithms that are based
on Extreme Learning Machine, Artificial Neural Network, XGBoost and random forest. All these
machine learning techniques are combined with the Bootstrap technique of creating new samples
from the available ones in order to improve the forecasting errors. In order to assess the performance
of these methodologies, the Day-Ahead market prices are divided into three classes, namely normal,
extremely high and negative, and these algorithms are subsequently used to provide forecasts for the
whole year 2020 of the German and Finnish Day-Ahead markets. The average yearly forecasting errors
along with the computation time required by each methodology are reported. The findings indicate
that the random forest algorithm performs best for the normal and extremely high price categories,
while XGBoost demonstrates better results for the negative price category. The methodology based
on Extreme Learning Machine requires the least computational time and achieves forecasting errors
that are comparable to the best-performing methods.

Keywords: energy market; market conditions; production; demand; Day-Ahead forecasting;
extreme learning machine; XGBoost; Random forest

1. Introduction

Towards the end of the last century, a transformation of the power sector business
structure from a single, and often state owned company of generating, transmitting and
distributing electricity to a market oriented structure has been initiated. This means that
companies compete to sell electricity in response to demand. Moreover, with the advent
of the technology of harvesting solar and wind energy from renewable sources and that
of controlling demand facilitated the development of new market niches in which new
business opportunities appeared. These market niches were evolved to a nexus of electricity
markets operating in different time horizons. The overall system of markets in Europe
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consists of (a) future markets, with time-scale trading of weeks, months and years ahead,
(b) the spot markets that include the day-ahead, with trading occurring for each hour of
the next day, and intraday markets with continuous trading and (c) the balancing markets
with trading occurring in real time. A recent review from the business research perspective
can be found in [1].

The production and demand of electricity is greatly affected by weather conditions,
implementation of tariff policies, policies to mitigate the effects of climate change and other
unforeseeable events, such as pandemics and wars. These factors together with the lack of
technology for efficient electricity storage render the electricity price in all the electricity
markets volatile and thereby difficult to be forecast. A reliable market price forecasting
tool is a valuable instrument that market participants may exploit to deal with market
price volatility, as the availability of reliable forecasts enables better strategic planning.
The unexpected existence of negative and extremely high prices renders any forecasting
endeavour ever more challenging.

In this work, a comprehensive analysis is made of the conditions that affect market
price forecasting and subsequently the prices are divided into three classes, namely, normal,
extremely high and negative. Then, various machine learning-based prediction models
are used in combination with the bootstrap method to give forecasts and are compared in
terms of their performance. A novelty of this work is that these prediction models are used
to forecast negative prices, which is not present in the existing literature.

Another novelty of this work is that forecasts are given for a whole year, 2020, for the
German and Finnish Day-Ahead markets. This can be a benchmark for other studies
because the behaviour of the price for each day of the year is captured.

In addition, in the literature the separation of prices is usually performed based on a
fixed threshold. As explained in more detail in Section 3.3, this mode of separation is not
very convenient. In this work, a different way of separating the prices is proposed. A final
contribution of this work is the comparison of the various prediction models used in terms
of computational time and performance.

Section 2 of this paper reviews the relevant to electricity market conditions literature
whereas Section 3 describes the market conditions in Germany and Finland. In Section 4 a
description of the prediction models used is given. The results of the comparison and the
forecasting results with interpretation for each market price class can be found in Section 5.
The paper concludes with Section 6.

2. Literature Review

A significant problem related to deregulated energy markets is the prediction of
extremely high Market Clearing Prices. In [2], extreme price values are attributed to factors
affecting the normal operation of the grid, such as device failures, to the bidding strategies
of the market participants and to sudden increase in demand. Consumers can better
manage risks associated with peak values if more choices for purchasing electricity are
available, for example, from a centralized power pool or through bilateral contracts [3].
Extremely high prices can be stabilized by having elastic demand whereas a decrease in the
expected price may be obtained, at the expense of increased volatility, by using renewable
energy sources [4,5]. Demand elasticity is achieved by the demand-side management which
at the same time has the effect of reducing the market price volatility.

The use of electricity demand management together with historical price data demon-
strated that prediction methods must learn the actual relationships between prices and the
factors affecting them [6]. To this end, neural networks and extreme learning machines
were proposed in [7,8], respectively, to predict marginal prices, with forecasting Mean
Absolute Error (MAE) ranging between 0 and 8 ($/MWh). These articles concluded that
more detailed data concerning network structure and system operations is required for the
development of simulation techniques and analytical approaches to yield lower forecasting
errors. The use of predicting methodologies (ANN, ELM) is thus more suitable for cases
where sufficient system operational data acquisition is not feasible [2].
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Market power is defined as the ability of market actors to manipulate prices to their
benefit for specific periods of time [9]. As enormous profits can be achieved by increased
market prices [2] generators tend to exercise market power by changing their offer curves.
Market power can be exercised through the so called economic withholding or/and physical
withholding [10]. Economic withholding occurs when a producer submits an offer curve
with relatively high prices compared to its marginal cost [11]. Physical withholding is when
generators reduce the offers of their generation capacity in order to render a proportion
of the capacity of their power plants unavailable [10]. The market risks can be effectively
minimized via the design and utilization of monitoring and control mechanisms. These
mechanisms require that the behaviour of market participants is constantly monitored
to prevent power abuse. Specifically, the market prices of the supply curves offered by
the various generators should always be representative of the reasonable expectation
of their short-run marginal costs [12]. The supply market prices deemed unreasonable
are replaced by the default market values. Another option for market monitoring and
conditions identification is the examination of the generation and demand curves and how
they both affect the clearing price. A less complicated and less time consuming method
could be based on identifying signals in the demand and supply time series that indicate
the possibility of occurrence of extremely high or negative prices.

Local market suppliers attempt to sell their excessive energy at the highest possible
price [13]. On the other hand, buyers (consumers) in the same market are cost pruners
who seek market price that is lower to the utility rate [14]. On some occasions market
actors emphasize on gains obtained from prosumer models/profiles which enable users to
maximize their utility via price signaling [15,16]. An ANN oriented approach to estimate
the system marginal price (SMP) during weekends and public holidays was proposed
in [17]. The conclusion made therein was that lower error values were obtained during
Sundays due to the fact that SMP curve was less volatile as compared to that of Saturdays.

Over time, socio-economic factors, along with the global economy, have caused energy
markets to undergo substantial transformations. A measure named predictive density
which signals the likelihood of upward or downward trends of oil prices is given in [18]. It
was also concluded that during periods of extreme volatile economic climates, such vari-
ables can be considered for MCP forecasting. In [19] it was demonstrated that forecasting
methodologies that take into consideration such measures yield improved forecasts [19].
In order to further improve the forecasting results methodologies that classify the days
to days with, normal, excessively high and negative prices have been proposed. These
kinds of methodologies attempt to exploit the intrinsic characteristics of prices that appear
in these categories. Many authors have used machine learning- and/or statistical-based
methodologies to forecast normal and peak price values. To this end, the Extreme Machine
Learning (ELM) was deployed to forecast normal and extremely high Day-Ahead MCP
values [8,20].

Over the years, a variety of methodologies has been proposed for normal price fore-
casting. In [21] the asymmetric Takagi-Sugeno-Kang neuro-fuzzy model in combination
with the fuzzy c-mean (FCM) data pre-processing method which classifies the patterns that
may exist in the data was proposed. A two-stage methodology based on a cascaded neural
network (CNN) that relies on a two-stage feature selection has been developed in [22].
In the first stage the modified relief algorithm is used to capture the relevant features,
whereas in the second stage, the relevance values of the obtained features are further anal-
ysed to find the features to be used to train the network. Other types of neural networks
that have been exploited are the recurrent neural networks (RNN) [23] and probabilistic
neural networks (PNN) [24]. Deep learning-based algorithms such as the Lasso Estimated
Auto-Regressive model and Deep Learning models were proposed in [25]. It was concluded
that the Deep Learning model, in overall, could perform better than the LASSO model,
but the LASSO model is suitable for short-term forecasts.

In [26] it was argued that using a model incorporating about 400 explanatory variables,
a variance stabilizing transformation and a re-calibrated LASSO models gives better fore-
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casts. An improvement of the previously mentioned method was proposed in [27], where it
used the Seasonal Component Auto-Regressive (SCAR) model to decompose the electricity
market price time series into trend-seasonal and a stochastic parts, and subsequently, model
each one separately. It was observed that accuracy improved when the load forecasts were
deseasonalized. The model was tested on Global Energy Forecasting Competition 2014 and
Nord Pool data demonstrating lower weekly MAE than models proposed in other studies.

A hybrid model for accurate Day-Ahead forecasting was employed in [28]. In this pa-
per the empirical mode decomposition filter and the maximum dependency and minimum
redundancy criteria are together applied to construct features. This methodology gave
lower average MAPE, as compared to other models, for both 1 h and 24 h ahead forecasting.
However, the RMSE of the forecasts of the New South Wales (NSW) market prices was
higher than the RMSE given by other methods (average RMSE ($/MWh): NSW market was
28.96 and for PJM market was 7.29). Another hybrid model, which consists of a multiple
linear regression model, an ARIMA model and Holt-Winters model was proposed in [29].

There are cases in which extremely high or negative prices appear in the electricity
markets. The need for accurate forecasts in these cases has lead many researchers to develop
models or methodologies for spike forecasting, whereas, there are not reports of similar
endeavours in the direction of negative price forecasting. In order to identify extremely
high prices a fixed threshold (Threshold = µ± 2σ, where µ and σ are the estimated mean
and standard deviation of observed prices for a given period) is commonly used in the
literature. That is if the price exceeds the threshold it is considered as a extremely high.
The techniques that over the years have been proposed are based on: clustering analysis of
the market clearing values [30], probabilistic neural networks (PNN) [31] and a combination
of Bayesian experts and support vector machines (SVM) [32]. The techniques proposed
vary in complexity, however the key point is that the majority of them identify price
time series that contain extreme values and treat them in separate clusters from the other
ones. Each cluster contains its unique features that are subsequently used to implement
forecasting. A different approach was presented in [33] where a two-stage feature selection
methodology, based on information theory, for forecasting occurrence and spike price value
was proposed. The selected features were subsequently exploited by a methodology based
on a combination of PNN with Hybrid Neuro Evolutionary System (HNES) to forecast the
price values.

A combination of two ANNs was used in [34] to forecast normal market prices.
The first network gives forecasts for the next day and the second gives forecasts for the
next week. The forecasting of extremely high prices was performed using the Generalized
Pareto Distribution (GPD). The reason they separated the days to days of normal and of
exceedingly high market prices was that the networks could not capture the extremely
high prices even though the training set that was used was containing data of 16 years.
The market price data was for the period 7 December 1998–1 January 2014 and was related
to the Australian market zones. An ELM-based market price classification methodology
was proposed in [35]. More specifically, the training data was classified based on thresholds,
while for testing three-dimensional vectors were used. The methodology was tested on
the Ontario and PJM markets and it was found found are that the classification was more
accurate for the Ontario market.

A support vector machine-based method of forecasting the occurrence of the extremely
high prices was proposed in [36]. Therein the extremely high market prices were defined as
those that exceeded the 95th percentile, which was estimated by fitting a Generalized Pareto
distribution to the innovations an AR-EGARCH model. The data that was used were the
log-transformed market prices, demand and wind production. The selection of the input
features was conducted by finding the optimal number of lags of the log market prices.
The proposed methodology was compared to NN and XGBoost-based methodologies
which were unable to accurately classify extremely high or negative prices. A hybrid
methodology for forecasting both the appearance and the actual value of extremely high
prices was employed in [37]. The hybrid methodology was based on the wavelet transform
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and on certain time domain and calendar indicators. In addition, mutual information
(MI) was used for the feature selection, whereas the forecasting of the appearance of the
extremely high prices was carried out by a Probabilistic Neural Network (PNN). This
methodology was on data obtained from the PJM and QLD (Australia) markets. Regarding
the PJM market for threshold equal to 150, the extremely high price forecast accuracy was
97.3% with a forecast confidence interval of 87.7%, while for a threshold equal to 200 was
92% and confidence interval of 88.5%. The accuracy of the corresponding measures for
the QLD market for the month of June 2004 was lower. Namely, the extremely high price
forecast accuracy was 88.23% and the confidence interval was 83.33% and for January 2003
92.10% and 89.74%, respectively.

The interplay between grid engineering, congestion, and market prices, as supported
by studies [38,39], emphasizes the importance of diligent market design [2,38,39]. Uncer-
tainties, strategic behaviours, network failures, and renewable price volatility contribute to
extreme price risks. Examining grid constraints, competition dynamics, and implementing
effective measures [40–42] is crucial to prevent manipulation and ensure fairness, efficiency,
and stability. Given the current market inefficiencies, machine learning-based forecasting
tools attempt to learn historical data features preceding extreme prices to forecast and
address them.

Most of the methodologies proposed in the literature are machine learning-based and
the following conclusions are drawn from the literature survey presented above:

(a) The price behaviour in the markets on which forecasting implemented was
not discussed.

(b) The training processing time of the proposed methodologies was not reported,
making it difficult to assess their applicability in real-time scenarios.

(c) There is a lack of comprehensive study assessing the performance of the algorithms
for each day of the year.

(d) In cases where data is separated into different price classes, the defined threshold
may lead to misclassification of negative price days as normal days.

This article addresses these issues and presents a study that explores the behavior
of the German and Finnish Day-Ahead electricity markets in Section 3. It proposes a
new method of threshold definition. In the results Section 5, a detailed comparison of
the methodologies proposed in Section 4 is provided, considering both performance and
computational time. The comparison covers all days of the year for all three price classes of
market price data separation.

3. Market Conditions
3.1. Brief Description of the Nature of Electricity Markets

The role of electricity markets is to ensure that at each instant the amount of electricity
physically produced must equal the amount demanded to physically be supplied. As a
consequence a cluster of different markets has over the years evolved to meet this physical
condition. In such clusters normally one finds the so called Day-Ahead, Intraday and
Balancing markets.

In the Day-Ahead market, electricity trading takes place one day before the actual
transaction. The gate for buying and selling bids closes at 12:00 the day before the actual
sale and purchase occurs. After the gate closes, buying bids and selling bids for each
hour are collected. The buying bids are ranked in descending order, while selling bids in
ascending order. The point of intersection of the curves determines the market price (or
market equilibrium). It is based on auction and the pricing is uniform. Price forecasting
in the Day-Ahead electricity market is time-sensitive, requiring predictions to be made
before 12:00 of the next day. This time constraint necessitates the use of historical data and
forecasted values of factors that influence prices, such as electricity demand and production
from renewable energy sources. By incorporating this information, accurate forecasts can
be generated to assist market participants in making informed decisions.
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The Intraday market was created to facilitate the penetration of renewables into
the grid. At a given time of day, the intermittent character of renewable sources causes
deviation between the actual electricity amount available from the amount that was traded
the day before. In the Intraday market, bids are adjusted based on the available updated
forecasts. The Nord Pool offers the possibility of participating in the Intraday trading which
starts at 14:00 and ends one hour before the physical delivery. The trading in this market is
continuous and pricing is PaB (Pay-as-Bid).

Finally, the Balancing market corrects any deviations arising from either the Day-
Ahead or the Intraday market. In this market the TSO (Transmission System Operator)
buys Regulation power from Regulation market participants (or Balancing generators) to
cover the deviations. Usually, the Balancing market gate closes 30 min to one hour before
delivery. In addition, the Balancing market is usually based on auctions. The focus of the
work described in this paper is on the Day-Ahead market.

As previously mentioned, the market price in Day-Ahead markets is established at
the point where production and demand reach equilibrium. However, it is important to
acknowledge that the bids to buy and sell are formulated based on load forecasts, which
means that the market equilibrium point may deviate from the actual demand. From a
micro-economic perspective, when production exceeds demand, the market price tends to
decrease or even become negative. This scenario often occurs when there is a significantly
higher contribution from renewable energy sources. Conversely, when demand surpasses
production, market prices tend to rise.

3.2. Day-Ahead German and Finnish Markets: Exploratory Analysis

An exploratory data description and analysis of the German and Finnish Day-Ahead
markets is presented in an attempt to decipher their nature. A notable observation is that
Germany is a net exporter of electricity, whereas Finland imports electricity, specifically
purchasing it from Germany. In order to facilitate the understanding of these markets
Figures 1–8 plot the difference between production and consumption (i.e., Production
minus Consumption) against the market price ranges for years (2019–2022).

In other words, the difference shows the energy required to balance production with
consumption, which can come from the Intraday market if it is a renewable unit or from
the Balancing market. The role of the Balancing market in recent years has become very
important due to the increase in the penetration of renewables in the markets and in
combination with the technical limitations of the electricity grid or congestion points
that may arise balancing becomes even more difficult. The imbalance settlements are
determined based on the overall imbalance of the grid and the imbalance caused by each
market participant [43].

The wholesale Day-Ahead market prices, production and consumption data for the
German market were retrieved from [44], while for the Finnish market the wholesale
Day-Ahead market prices were taken from the Nord Pool [45] and the production and
consumption data from the Finnish TSO [46].

Figures 1 and 2 show the difference between production and consumption for the year
2019 (before COVID-19) for the German and Finnish markets, respectively. In the German
market, the equilibrium between production and consumption was within the market price
range of 30–60 (€/MWh). That is, in this market price range the actual production equals
the actual demand. On the contrary, in the Finnish market the equilibrium point is not clear
but the market price was higher compared to that of the German market, which can be
attributed to the fact that Finland buys electricity from Germany. An important feature that
Figure 1 portrays for the German market is that when this difference is high the market
price may be extremely negative. The excess production can be sold to other countries
(e.g., Finland). In particular, for differences greater than 5000 MWh profit is obtained.
Another important observation is that in the Finnish market (Figure 2) the distribution of
the differences over the price range 30–180 (€/MWh) is uniform.
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Figure 1. Mean of Difference for German Day-Ahead Market, 2019.
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Figure 2. Mean of Difference for Finnish Day-Ahead Market, 2019.

The distributions over the market prices of the difference between production and
consumption for the year 2020, during the COVID-19 period, for the German and Finish
markets are shown in Figures 3 and 4, respectively. Strict lock-downs significantly decreased
the demand and thereby, market prices in both countries were lower than those of 2019.
The balance between production and consumption for the German market (Figure 3) was
again in the market price range of 30–60 (€/MWh), while, the Finnish market (Figure 4)
presented negative market prices for the first time, due to very low demand. In the Finnish
market, negative prices never existed before 2020.

In addition, from Figures 3 and 4 it can be concluded that the negative market prices
in 2019 appeared when the difference was approximately 14, 000 MWh, while in 2020 at the
difference of approximately 9000 MWh. In addition, the excess production in the German
market was 4000 MWh lower than that of 2019. Regarding the market prices between the
two countries in 2020 Finland had slightly cheaper electricity than Germany.
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Figure 3. Mean of Difference for German Day-Ahead Market 2020.
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Figure 4. Mean of Difference for Finnish Day-Ahead Market, 2020.

The difference distribution over the price range for post-COVID-19 year, 2020, for the
two markets are shown in Figures 5 and 6. The market price was much higher compared
to 2020, especially in Germany. The reason for this was that the demand increased due to
the lifting of the strict lockdowns and consequently the difference between production and
consumption is lower compared to that of 2020. However, the equilibrium point is again in
the range of 30–60 (€/MWh). In addition, in Germany, the production from renewables
was very low during the second half of the year and the price of natural gas increased.
Additionally, since 1 January 2021, the European Union has increased the price for CO2
certificates. Therefore, the combination of low production from renewables and high costs
of coal or gas units had a direct impact on the market prices.

It is evident that for the year 2021 there were instances of excess production in Germany,
Figure 5, which explains the occurrence of several negative market prices. On the other
hand, Finland experienced an excess of demand (Figure 6), resulting in a different market
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dynamic. In terms of market prices, the electricity prices in Finland were generally lower
than those in Germany, as indicated by the observed price difference. This discrepancy
can be attributed to the difference in production and consumption levels between the
two countries. The gap between production and consumption amounted to just over
2500 MWh, leading to the import of electricity from Germany at a lower cost. The difference
distributions for market prices for the year 2022 are shown in Figures 7 and 8. It can be
observed that the market prices remain significantly high and this can potentially be
attributed to the Energy Crisis caused by the war in Ukraine. It is noteworthy that there
were fewer instances of negative market prices in Germany compared to Finland, and no
occurrences of negative prices were observed in Finland during the specified period.
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Figure 5. Mean of Difference for German Day-Ahead Market, 2021.
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Figure 6. Mean of Difference for Finnish Day-Ahead Market, 2021.
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Figure 7. Mean of Difference between German Day-Ahead Market, 2022.
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Figure 8. Mean of Difference between for Finnish Market, 2022.

3.3. Normal Market Price Range Determination

A threshold that is widely used to decide whether extremely high or low prices exist
for a given period of time is given by µ± 2σ as discussed in Section 2. The prices that
are outside the range (µ− 2σ, µ + 2σ) are considered extremely low or high accordingly
whereas those within this range as normal. However, there are cases that the lowest limit
of this range is negative and thereby cannot be used, for negative prices are classified as
normal. For example in the German market in 2022 the lower limit is −50.41 (€/MWh) and
negative prices between this value and 0 (€/MWh) are considered normal.

In order to avoid cases where the range that is designated for normal prices includes
negative prices the normal price range is determined by the number of price occurrences.
To this end Table 1 lists the frequency of market price occurrences of some market price
ranges for the German and Finnish wholesale Day-Ahead markets. The information in
Table 1 is used as follows: given that the number of hours in one year is 8760, normal ranges
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are determined when the number of price occurrences within that range is above 1000.
According to this definition the normal ranges per year listed in Table 2 were determined.
Based on these ranges extremely high prices are decided to be those that exceed the upper
limit of the normal price range and negative those that are lower than zero. Therefore,
data is distributed into three classes. This classification facilitates the learning process and
enables the methodology to generalize to new samples better.

Table 1. Frequency of wholesale Day-Ahead market price display per range.

Market Price Ranges (€/MWh) 2019 2020 2021 2022

German wholesale Day-Ahead Market
<−80 4 3 - -

[−80–−60) 11 18 4 -
[−60–−30) 30 28 21 -

[−30–0) 166 249 91 69
[0–30] 1700 3860 409 293
(30–60] 6501 4381 2449 222
(60–90] 326 207 2518 566

(90–120] 20 32 1254 710
(120–150] 2 4 488 694
(150–180] - - 415 816

>180 - 2 1088 5390
Finnish wholesale Day-Ahead Market

<−80 - - - -
[−80–−60) - - - -
[−60–−30) - - - -

[−30–0) - 9 5 27
[0–30] 1010 5441 1748 1623
(30–60] 6570 2768 2880 844
(60–90] 1125 487 1983 834

(90–120] 36 38 1202 961
(120–150] 11 19 345 751
(150–180] 2 5 143 716

>180 5 16 454 3004

Table 2. Normal price ranges (€/MWh) determination.

2019 2020 2021 2022

German Day-Ahead Market

10 ≤ Price ≤ 75 7 ≤ Price ≤ 70 2 ≤ Price ≤ 65 60 ≤ Price ≤ 120 or Price > 160

Finnish Day-Ahead Market

10 ≤ Price ≤ 70 1 ≤ Price ≤ 70 5 ≤ Price ≤ 120 10 ≤ Price ≤ 120 or Price > 160

4. Supervised Algorithms for Market Price Forecasting

The methodologies proposed and compared in this work revolve around four funda-
mental machine learning algorithms: ELM, ANN, XGBoost, and RF. When these algorithms
are individually applied to problems lacking clear cause-and-effect relationships, they
typically exhibit lower performance. Given the absence of explicit cause-and-effect laws
governing electricity market price behavior, the performance of these algorithms can be
improved by incorporating more training samples. Bootstrapping, a statistically driven
technique for generating additional samples, becomes valuable in this context. Since
the number of samples can increase to the order of thousands, it is important to utilize
computationally efficient machine learning algorithms. In this section, we describe the
methodologies developed using the aforementioned algorithms and evaluate them in terms
of both forecasting accuracy and computational performance.
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The time complexity of the back propagation training algorithm is exponential mean-
ing that the processing time increases exponentially with the increase in the number of
ANN layers. In contrast, the ELM makes use of the Moore-Penrose pseudo-inverse to fit
the randomly chosen weights of the hidden layer. This results to linear complexity increase.
Each of these approaches, ELM or ANN has its advantages and disadvantages in terms of
training time, accuracy, spatial and run-time complexity. As the ELM can be considered
a variant of the ANN, a comparison can be performed between the two. The XGBoost
and Random Forest machine learning-based models make use of bootstrapping, bagging
and boosting and constitute a part of the methodology proposed herein. The rationale of
this choice lies to the fact that their underlying mathematical formulation is similar. As a
consequence their comparison provides insights on the behaviour of the various machine
learning-based methods and how when used with fundamental tools such as bootstrapping
and bagging the outcome is altered.

As it is mentioned above, the Bootstrap method is used in association with the machine
learning-based methods. Details on Bootstrapping can be found in Section 4.5 and on
training the forecasting models in Section 4.6.

4.1. Extreme Learning Machine (ELM) Model

An ELM [20] is a Single Layer Neural Network with a single hidden layer consisting of
N neurons, Figure 9. Given that its activation function is c(x) it learns to model Z arbitrary
data samples (ki,ti), ki ∈ <n using the following equation:

h

∑
j=1

cj
(
k j
)

β j =
h

∑
j=1

c
(
~wT

j ·~k + bj

)
β j =~t (1)

where wj is the weight vector connecting the jth hidden neuron to the z input neurons, β j
is the weight vector connecting the jth hidden neuron with the output neuron. The bias of
each hidden neuron is denoted by bj.

Figure 9. Extreme Learning Machine (ELM) diagram.

Equation (1) can be cast in matrix form as:

H~β = T (2)

where H is the hidden layer matrix T is the matrix containing the target vectors~ti.
The output weight vector β is estimated by solving the following equation,
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~β = H†T (3)

where H† is the pseudo-inverse.

4.2. Artificial Neural Network (ANN) Model

ANNs are universal fitting machines that can be utilized as non-linear approximators
for applications with available input-output data. Their structure mimics the architecture of
the human brain with some simplifications. Their basic structure includes weights, neurons
and activation functions. Each of the former components described above represents the
actual brain’s synapses and neurons. The mathematical representation of an ANN is similar
to that of an ELM with a significant difference on the number of hidden layers and the
training/fitting algorithm. The most commonly used algorithm for setting the weights of a
Neural Network is the back-propagation method. More details about its implementation
can be found in [47]. Figure 10 shows the typical structure of the ANN.

Figure 10. Artificial Neural Network (ANN) diagram.

4.3. Extreme Gradient Boosting (XGBoost) Model

The XGBoost model (see Figure 11 the typical structure) belongs to the category of
boosting algorithms. Its main advantages are the very low runtime complexity and its
accuracy. The XGBoost model is based on the gradient lifting decision trees of Classification
and Regression type, abbreviated as (CART) in the relevant literature [48]. The model is
described by:

ŷ =
T

∑
i=1

ft(xt), ft ∈ F (4)

where T is the number of trees, ft is specific CART tree and F all possible CART trees [48].

4.4. Random Forest (RF) Model

Random Forest (RF), Figure 12 is a supervised learning algorithm consisting of mul-
tiple decision trees trained via the bagging method. It can be utilized for classification,
regression and forecasting problems. A RF has nearly the same hyper-parameters as a
decision tree or a bagging classifier. A RF structure adds additional randomness to a model
as the number of trees grows. It searches for the best feature among a random subset of
features [49].
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Figure 11. XGBoost diagram.

Figure 12. Random Forest diagram.

4.5. Bootstrap Method

The advantage of short learning time of the algorithms described above enables the use
of statistical methods that can improve the forecasts. One such widely used method, that is
based on resampling and replacement, is bootstrapping [8]. In the context of forecasting,
the residuals, which are the difference between the forecasts given by an estimated model
and the training data are computed as follows,

εj = tj − T̂(xj) (5)

where T̂(ki) are the forecasts obtained by the the trained model. Then, the residuals are
subsequently re-centered according to,

ε̂j = εj −
1
n

p

∑
i=1

εi, j = 1, 2, 3, . . . , p (6)

and finally are re-sampled with replacement. The newly generated residuals are added to
the existing forecasts to create new training data as follows

t?j = T̂(k j) + ε̂j (7)

where t?j is the newly generated bootstrap data.
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4.6. Description of the Training Process

The forecasting models employed in this study were used for Day-Ahead market price
forecasting. The stochastic and highly erratic nature of electricity markets, renders any
forecasting attempt challenging. In addition, the forecasting methodologies should be of
low runtime complexity in order to facilitate the testing of multiple scenarios.

The models were trained using normalized to (0-1) data including historical Day-
Ahead prices, production forecast, consumption forecast, renewable production forecast,
and forecasted residual load data. The training data set was consisted of data of approxi-
mately 45 days leading up to the day of interest. This amounted to 21 training samples. The
input vector contained data of 24 days while the output included the actual Day-Ahead
prices of the 25th day.

The choice of activation functions, the number of hidden neurons, the number of train-
ing samples, the number of estimators, and the number of input neurons are determined
by trial and error.

Regarding the training process, the first input vector, ~k1, included data of day I-45
up to its subsequent 23 days. The corresponding output vector, ~T1 included the actual
Day-Ahead prices for the day I-21, where I, is the day of interest. Subsequently, the next
training sample contained the data from day I-44 to day I-21, while the output vector, ~T2
the actual Day-Ahead prices of day I-20. This procedure was repeated, giving 21 training
samples with their corresponding 21 outputs. Each training sample trained one prediction
model, resulting to 21 trained models. For each of the 21 models, the bootstrap method
was applied by calculating the residuals between actual and predicted prices, followed by
1000 iterations of sampling with replacement for each of the 21 models. The final forecasts
were obtained by calculating the mean of the output vectors, ~T of the 21 models according
to the equation below,

T̂ =
1

21

21

∑
j=1

T̂j (8)

5. Results

This section presents the forecasting results. Section 5.1 presents and discusses the
results of the comparison in terms of computing time and performance of the methodologies
proposed in this study. Section 5.2 presents the actual results obtained for typical days from
each price class, namely, normal price days, days with extremely high prices, and days
with negative prices.

5.1. Comparison of the Proposed Methodologies

The prediction models were compared in terms of computational time and perfor-
mance. The data used were those of German market for the year 2020. In the case of
methodologies involving the ELM and ANN, the number of internal neurons was changed
and tested, while for those involving the XGBoost and the RF, the number of estimators was
changed. Table 3 lists the results of ELM and ANN whereas Table 4 those corresponding to
the XGBoost and RF methodologies. The time reported in these tables corresponds to the
duration required to implement forecasting for the entire year.

As it can be seen from the results, the ELM-based methodology required the least
computational time. It took 83.40 min to implement forecasting for the entire year and this
time was about 3 and 2.60 times less than the time taken by the ANN-XGBoost and RF,
respectively. ELM (Extreme Learning Machine) required a total of 9.40 min to implement
the forecasting for the extremely high price class whereas for the other methodologies took
approximately 7 to 8 times longer to complete the same forecasting task. Finally, for the
negative price class, the ELM runtime was 19.17 min which was 8, 4.70 and 4.30 times less
than the implementation runtime of ANN, XGBoost and RF, respectively.
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Table 3. Average yearly RMSE (€/MWh) for ELM and ANN-based methodologies.

Normal Prices Extremely High Prices Negative Prices

Internal
Neurons Time (mm.ss) Average RMSE

(€/MWh) Time (mm.ss) Average RMSE
(€/MWh) Time (mm.ss) Average RMSE

(€/MWh)

ELM
10 87.00 7.29 9.46 13.67 19.32 17.88
20 85.80 7.26 9.45 13.44 19.17 17.40
30 83.40 7.39 9.40 14.02 19.44 17.51
40 89.40 7.42 9.43 13.52 20.12 17.92
50 93.00 7.41 9.50 13.48 19.40 17.98
60 91.20 7.33 9.48 13.63 20.22 17.72

ANN
10 252.00 12.13 69.00 16.04 153.60 20.07
20 252.60 10.97 73.20 15.11 181.80 17.55
30 256.80 10.82 67.20 15.82 184.80 18.23
40 255.60 11.74 75.60 16.41 155.40 18.07
50 259.20 11.05 79.80 16.00 187.20 18.50
60 255.00 11.07 77.40 16.13 189.60 18.62

Table 4. Average yearly RMSE (€/MWh) for XGBoost and RF-based methodologies.

Normal Prices Extremely High Prices Negative Prices

Number of
Estimators Time (mm.ss) Average RMSE

(€/MWh) Time (mm.ss) Average RMSE
(€/MWh) Time (mm.ss) Average RMSE

(€/MWh)

XGBoost
50 266.40 15.50 70.80 22.19 90.00 21.90

100 311.40 13.01 84.60 20.57 138.60 20.08
150 331.20 12.39 95.40 17.41 154.20 19.60
200 379.80 9.10 129.60 14.77 192.20 18.77
250 423.00 7.55 148.80 13.90 214.80 17.95
300 454.20 7.12 187.20 13.32 252.00 17.05

RF
50 215.40 8.02 75.00 14.07 82.00 18.23

100 253.20 7.26 88.20 13.50 126.60 17.82
150 268.20 7.00 121.80 13.17 139.20 17.27
200 307.80 7.14 137.40 13.72 150.00 17.36
250 330.00 7.62 144.00 14.60 184.80 17.96
300 369.60 7.85 155.40 15.03 195.60 18.06

As it has been already mentioned, the proposed methodologies were tested for the
entire year 2020 for the German Day-Ahead market. As far as the normal price class
concerned, the RF gave the best result, average RMSE = 7 (€/MWh) using 150 estima-
tors. The XGBoost and ELM-based methodologies gave close results to that of the RF.
The advantage of the ELM-based methodology is that the time it requires to give these
results is three and four times less that the times required by the RF and XGBoost-based
methodologies. The ANN-based methodology gave the highest errors. For the extremely
high price class, the RF gave a slightly better result, average RMSE = 13.17 (€/MWh) than
those obtained by implementing the XGBoost and ELM-based methodologies whereas
for the class of negative prices, the XGBoost-based methodology gave the best result, av-
erage RMSE = 17.05 (€/MWh). Overall the best results obtained from the XGBoost and
RF-based methodologies are comparable with those obtained by the ELM-based method-
ology. The ELM-based methodology offers several advantages, including significantly
lower runtimes and consistent errors. The ELM-based methodology offers several key
advantages, including significantly lower runtimes and consistent errors, meaning that
the average root mean square error (RMSE) remains relatively stable with the change
of the number of internal neurons. The significantly lower runtimes of the ELM-based
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methodology indicate that it is more efficient in terms of computational resources and time
required for implementation, an advantage that can be beneficial when dealing with large
datasets and/or time-sensitive forecasting tasks.

5.2. Forecasting Results for Each Class

As it is mentioned in Section 4.6, 1000 forecasts were obtained through the bootstrap
methodology, and the final actual forecasts are taken to be their mean. Note that the
number of hidden of neurons used for the ELM and ANN models was 20, while the
number estimated for the XGBoost and RF was 300 and 100, respectively.

5.2.1. Normal Market Price Class

Forecasting results for 6 August 2019 for the German Day-Ahead market for pre-
diction models are shown in Figures 13–16 and the corresponding ones for 11 April
2020 for the Finnish D.A. market are shown in Figures 17–20. In all cases, the fore-
casted prices are close to the actual ones. The best results for both markets are given
by the ELM, MAE = 1.37 (€/MWh), RMSE = 1.60 (€/MWh) for the German market, and
MAE = 1.84 (€/MWh), RMSE = 2.39 (€/MWh) for the Finnish market. The ELM can capture
accurately the behavior (peaks: 05:00–07:00 and 16:00–20:00) of the two markets.

The results for normal prices obtained by the ELM-based methodology, when com-
pared to those given in the literature, exhibit lower error and short computational run-
times. Specifically, in [8] an ELM-based methodology was used with price data with load
data (QLD-Australia 2002) for training demonstrated an average RMSE (for four seasons)
8.27 ($/WMh). In addition in [23] a RNN was used and tested using data obtained from
different American markets gave average RMSE (four seasons) 2.13 ($/MWh). In [24] the
PNN was tested to give forecasts for some days of 2002 with reported RMSEs ($/MWh) 2.80,
2.69 and 2.54, while RMSEs in [28] were 7.30 ($/MWh) for PJM market, 2018. Comparing
results from different studies in the literature can indeed be challenging due to variations
in the datasets used and the methodologies employed. According to [25], the lack of clear
information about how the data is separated into training and testing sets in some studies
can lead to misrepresentations of the actual price behavior over the course of the year.

Figure 13. 6 August 2019 (normal prices), German D.A. market, ELM model: MAE = 1.37 (€/MWh),
RMSE = 1.60 (€/MWh).

5.2.2. Extremely High Market Price Class

Forecasting results for 19 November 2019 for the German D.A. market are shown in
Figures 21–24 and the corresponding ones for 16 February 2021 for the Finnish D.A. market
are shown in Figures 25–28. In general, the results given by the prediction models are
higher compared to those of the normal market prices. The better result for both markets
is given by the RF, MAE = 7.83 (€/MWh), RMSE = 8.19 (€/MWh) for the German market
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and MAE = 7.36 (€/MWh), RMSE = 8.09 (€/MWh) for the Finnish market. In [50] where
the ACH model is used on different data set corresponding to the Australian market zones.

Figure 14. 6 August 2019 (normal prices), German D.A. market, ANN model: MAE = 4.63 (€/MWh),
RMSE = 4.93 (€/MWh).

Figure 15. 6 August 2019 (normal prices), German D.A. market, XGBoost model: MAE = 3.31 (€/MWh),
RMSE = 4.56 (€/MWh).

Figure 16. 6 August 2019 (normal prices), German D.A. market, RF model: MAE = 1.93 (€/MWh),
RMSE = 2.39 (€/MWh).
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Figure 17. 11 April 2020 (normal prices), Finnish D.A. market, ELM model: MAE = 1.84 (€/MWh),
RMSE = 2.39 (€/MWh).

Figure 18. 11 April 2020 (normal prices), Finnish D.A. market, ANN model: MAE = 2.06 (€/MWh),
RMSE = 2.70 (€/MWh).

Figure 19. 11 April 2020 (normal prices), Finnish D.A. market, XGBoost model: MAE = 4.60 (€/MWh),
RMSE = 5.33 (€/MWh).

In addition, none of the methodologies could capture the exceedingly high price that
appears at 19:00 in the German market, however, the rest of the forecast prices are close
to the actual ones. With regards to the Finnish market, the RF captured the peak price
that occurs between 07:00 and 10:00 in contrast to the other methodologies that give higher
forecasted prices.
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Figure 20. 11 April 2020 (normal prices), Finnish D.A. market, ELM model: MAE = 2.39 (€/MWh),
RMSE = 3.04 (€/MWh).

Figure 21. 19 November 2019 (extremely high prices), German D.A. market, ELM model:
MAE = 8.36 (€/MWh), RMSE = 9.52 (€/MWh).

Figure 22. 19 November 2019 (extremely high prices), German D.A. market, ANN model:
MAE = 8.23 (€/MWh), RMSE = 9.17 (€/MWh).

5.2.3. Negative Market Price Class

Forecasting results for 24 December 2019 for the German D.A. market are shown in
Figures 29–32 and the corresponding ones for 6 July 2020 for the Finnish D.A. market are
shown in Figures 33–36. Based on the results, the forecasting models do not accurately
predict the occurrence of negative market prices. These prices are relatively rare and unpre-
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dictable, which renders the training of forecasting models insufficient. As a consequence,
the errors tend to be higher when compared to the forecasting of other price classes.

Figure 23. 19 November 2019 (extremely high prices), German D.A. market, XGBoost model:
MAE = 8.00 (€/MWh), RMSE = 8.71 (€/MWh).

Figure 24. 19 November 2019 (extremely high prices), German D.A. market, RF model:
MAE = 7.83 (€/MWh), RMSE = 8.19 (€/MWh).

Figure 25. 16 February 2021 (extremely high prices), Finnish D.A. market, ELM model:
MAE = 7.49 (€/MWh), RMSE = 8.23 (€/MWh).

For the German market, the RF gave the best results, MAE = 7.88 (€/MWh) and
RMSE = 8.23 (€/MWh) while for the Finnish market, the ELM gave the best results,
MAE = 17.88 (€/MWh), RMSE = 20.03 (€/MWh). An exception is the XGBoost (Figure 31)
which gave negative prices in the time period 03:00–06:00.
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Figure 26. 16 February 2021 (extremely high prices), Finnish D.A. market, ANN model: MAE = 10.71
(€/MWh), RMSE = 11.87 (€/MWh).

Figure 27. 16 February 2021 (extremely high prices), Finnish D.A. market, XGBoost model: MAE = 10.20
(€/MWh), RMSE = 11.55 (€/MWh).

Figure 28. 16 February 2021 (extremely high prices), Finnish D.A. market, RF model: MAE = 7.36
(€/MWh), RMSE = 8.09 (€/MWh).

The appearance of negative prices is limited and thereby their forecasting using
historical data becomes challenging due to the lack of satisfactory amount of training data.
The ELM-based methodology has the potential to be generalized to forecasting negative
values, given that sufficient training information is provided. The number of training
samples should at least be equal to the number of hidden neurons.
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Figure 29. 24 December 2019 (negative prices), German D.A. market, ELM model: MAE = 9.91
(€/MWh), RMSE = 10.44 (€/MWh).

Figure 30. 24 December 2019 (negative prices), German D.A. market, ANN model: MAE = 12.93
(€/MWh), RMSE = 13.60 (€/MWh).

Figure 31. 24 December 2019 (negative prices), German D.A. market, XGBoost model: MAE = 11.45
(€/MWh), RMSE = 13.02 (€/MWh).
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Figure 32. 24 December 2019 (negative prices), German D.A. market, ELM model: MAE = 7.88
(€/MWh), RMSE = 8.23 (€/MWh).

Figure 33. 6 July 2020 (negative prices), Finnish D.A. market, ELM model: MAE = 17.88 (€/MWh),
RMSE = 20.03 (€/MWh).

Figure 34. 6 July 2020 (negative prices), Finnish D.A. market, ANN model: MAE = 20.42 (€/MWh),
RMSE = 21.02 (€/MWh).
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Figure 35. 6 July 2020 (negative prices), Finnish D.A. market, XGBoost model: MAE = 20.90 (€/MWh),
RMSE = 21.93 (€/MWh).

Figure 36. 6 July 2020 (negative prices), Finnish D.A. market, RF model: MAE = 21.01 (€/MWh),
RMSE = 22.15 (€/MWh).

6. Conclusions

The Day-Ahead market prices are influenced by many factors and events and as a
consequence highly volatile and unpredictable behavior is observed. As the exploratory
study depicted in Section 3, the COVID-19 and the energy crisis have played and still play
an important role in determining the market price.

As a result of the above, and amongst other factors, electricity markets and the global
economy have changed their state (fuel prices, production, demand, etc.) and this has an
impact on the forecasting performance of the various models. In this paper, the market
prices were divided into three classes: normal, extremely high and negative market prices.
The separation was based on the frequency of the appearance of the prices. That is,
the range of prices that appears most often is determined to be the normal price range,
the prices that were higher than the upper limit of the normal price range were deemed to
be extremely high prices, while the prices that were smaller than zero constituted the class
of negative prices.

The forecasting methodologies used in this work were, ELM-, ANN-, XGBoost- and
RF-based. The best results were obtained for the normal price class. The ELM-based
methodology had the lowest computational time, namely, for a period of an entire year it
took about 90 min, to give the average RMSE. This time was about three times shorter than
the time taken by the ANN and four times shorter than the time taken by the XGBoost and
RF. The RF gave the lowest average RMSE, 7.00 (€/MWh) but the XGBoost and ELM gave
7.12 and 7.26 (€/MWh), respectively. All the methodologies gave MAE (RMSE) of less than
5 (5.40) (€/MWh) for both markets for a typical normal price day.
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The runtime required by the ELM-based methodology to forecast prices in the ex-
tremely high price class was about 9.45 min. This runtime was about 7–7.5 times shorter
than the runtimes required by the other methods. The RF gave the lowest mean RMSE,
13.17 (€/MWh) which was 1.90 times higher than the average RMSE of normal prices.
In the German Day-Ahead market an extremely high price appears around 19:00 and none
of the methods could accurately capture it. The errors obtained were over 8 (€/MWh).
Similar observations were made for the Finnish market.

The runtime of the ELM-based methodology for negative prices class was approxi-
mately 20 min. This time was 7.5 and 4.5 times lower than the time taken by the ANN and
the XGBoost-RF, respectively. The XGBoost gave the lowest average RMSE, but in general it
is higher than the errors obtained for the other two classes, 2.43 and 1.29 times higher than
the lowest average RMSE for the class of normal and extremely high prices, respectively.

It was demonstrated that machine learning-based methodologies give accurate fore-
casts on normal price days whereas for days with extremely high or/and negative prices
the forecasting error increases. Based on the results presented in this study, future work
on improving the performance on days with high and negative prices could follow two
directions. One direction is to develop a two stage methodology of which the first stage
would perform next day class classification. Then, the machine learning-based algorithms
discussed earlier could be used to generate price intervals. Additionally, according to the
next day class forecast, the actual price would be determined as follows: by the upper
prices of the interval if the next day is classified as day with high prices, lower prices
of the interval for days classified as days with negative prices. Finally, additional study
must be carried out to determine the actual relationship between the current market state
with the next day forecasting. For example, high positive difference between production
and consumption signals lower or negative prices. These signalling instances could be
rigorously defined, using notion from information theory and signalling, and exploited
in forecasting both the actual time of occurrence and actual value of extremely low or
negative price.
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DA Day-Ahead
MCP Market Clearing Price
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PaB Pay-as-Bid
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COVID Coronavirus Disease
ANN Artificial neural Network
ELM Extreme Learning Machine
XGBoost Extreme Gradient Boosting
RF Random Forest
FCM Fuzzy C-Mean
RNN Recurrent Neural Network
SVM Support vector Machine
PNN Probabilistic Neural Network
HNES Hybrid Neuro Evolutionary System
CART Classification and Regression Type
MAE Mean Absolute Error
RMSE Root Mean Square Error
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