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Abstract: Several previous experiments showed that the leapfrog–hopscotch and the adapted Dufort–
Frankel methods are the most efficient among the explicit and stable numerical methods to solve
heat transfer problems in building walls. In this paper, we extensively measure the running times
of the most successful methods and compare them to the performance of other available solvers,
for example, ANSYS transient thermal analysis and the built-in routines of MATLAB, where three
different mesh resolutions are used. We show that the running time of our methods changes linearly
with mesh size, unlike in the case of other methods. After that, we make a long-term simulation (one
full winter month) of two-dimensional space systems to test the two best versions of the methods. The
real-life engineering problem we solve is the examination of thermal bridges with different shapes in
buildings to increase energy efficiency.

Keywords: heat conduction; thermal insulation; long-term simulation; types of thermal bridges;
transient thermal Analysis; ANSYS

1. Introduction

Significant progress toward a sustainable economy may be made via improved build-
ing energy efficiency, where the buildings account for 40% of the primary energy use
and 24% of the generation of greenhouse gases [1]. When compared to other industries,
the construction industry has the ability to significantly reduce energy usage and, by
extension, greenhouse gas emissions [2]. Heat transfer calculations are widely used in
buildings, including determining how much energy is lost or gained through the building’s
envelope (heat conduction), conducting environmental analyses inside the building, and
troubleshooting issues with specific materials or structural elements [3,4].

Exterior wall conduction, interior mass conduction, heat gain/loss conversion to
cooling and heating load, and ground heat loss from the slab-on-grade floor and basement
walls are all issues related to conduction heat transfer that arise in the context of buildings,
so the rate at which heat moves through walls can be changed by changing the thickness of
the walls or by making the layer of insulation thicker [5]. Transitory wall conduction heat
transfer reacts to weather conditions such as temperature swings, sunshine, air movement,
etc. Increasing the building envelope’s thermal insulation and decreasing the heat loss
via walls is one of the most efficient strategies to raise a structure’s energy efficiency and
decrease its energy consumption [6]. Walls account for around 35% of the heat loss in a
house, with the vast majority of the heat entering and leaving them [7]. Since the walls of a
house are in direct contact with the colder air outside, heat is often lost by conduction or
physical contact.
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EN ISO 13789 [8] is a commonly used standard for calculating transmission heat
transfer through a building envelope; which in turn mentions two standards for thermal
bridges; EN ISO 10211 [9] provides a structure for thorough calculations of thermal bridges
in building construction and EN ISO 14683 [10] provides a simplified approach with default
linear thermal transmittance values.

Because thermal bridges have a big effect on heat loss and reduce building energy effi-
ciency, durability, and air quality, requiring integrated thermal and structural design [11],
and the thermal bridge models that were looked into should be especially interesting to
architects, civil engineers, and people who work in the insulation materials industry. The
examination of the effects of thermal bridges is meant to illuminate the feasibility of imple-
menting energy renovation techniques in existing structures [12]. Thermal bridge effects are
analyzed using a stationary linear thermal transmittance method for a wide variety of foun-
dation types and construction parameters. Validation tests on over a thousand real-world
examples corroborated the validity of those correlations, allowing for a straightforward
and practical analysis of thermal bridges in existing structures and providing practitioners
with a resource that accounts for the vast majority of scenarios [13].

A thermal analysis may reveal the heat distribution patterns of a system or its indi-
vidual parts. Most research into thermal quantities focuses on temperature distributions,
thermal fluxes, and heat capacities. Since diverse heat transfer applications within engineer-
ing fields involve many thermal models, the analysis of transient heat transfer is an essential
problem that is often solved using numerical rather than analytical methods. Analytic
techniques provide precise results, but they can only be used for isotropic, homogeneous
situations with straightforward geometries and boundary conditions [14].

Heat transfer across a layer is found to be proportional to the ∆T temperature dif-
ference across the layer and the heat transfer area, but inversely proportional to the layer
thickness. It is called “transient conduction” when the mode of thermal energy transfer
occurs throughout a time period in which temperatures vary at any location inside an
item. Time-dependent temperature fields are referred to as “non-steady-state” conduction.
Conduction of heat through the composite wall may be modeled if required. Assuming
this is the case, we simply require boundary conditions at the outside wall surface, with
the same conditions applied to the inside wall surface. Solving heat conduction equations
across the wall layers yields their temperatures.

The heat conduction equation, often known as the “heat equation”, is a partial differ-
ential equation (PDE) used to explain the conduction of heat through a solid. Innovative
analytical approaches [15] exist for spatially homogeneous systems, and mathematicians
create and evaluate most numerical techniques for homogeneous cases. However, some
analytical solutions for steady-state and transient situations are also available for the one-
dimensional inhomogeneous system, for example, multilayer systems [16]. Most of the
time, these systems are used to determine how much heat is gained or lost through the
outside envelope and how much heat is stored inside buildings [3]. Density, thermal
conductivity, and specific heat are the key examples of material qualities that may change
greatly in a building’s system. Weather conditions also change over time. These imply that
most heat conduction issues are multi-dimensional and transient [15]. As a result, we need
to use numerical computer simulation.

Our research group works on transient heat transfer calculations using fundamental
physical laws (ab initio approach). Therefore, it is expected that these results are much
more accurate than those based on the usual (ISO) standards, which are steady-state calcu-
lations without solving the transient PDE and therefore cannot properly take into account,
for example, the heat capacity of the envelope. Our long-term goal is to revolutionize
these simulations (at this stage by the numerical methodology) in order to make transient
simulations more available due to reduced computational cost and programming difficulty,
as follows.
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Heat transfer and other similar problems are routinely solved by lots of numerical
methods. Most of them fall into one of two categories: explicit method or implicit method.

Compared to one another, each type has some key benefits and at least one serious
drawback. The widely used explicit algorithms, such as the classical FTCS (forward time
central space), execute time steps in a small amount of time and are quite straightforward
to parallelize. The problem is that the so-called Courant-Friedrichs-Lewy (CFL) limit
constrains their stability domain and causes them to become unstable if the time step size is
above this limit [16]. Moreover, since an insulated wall consists of very different materials,
the coefficients can change sharply from mesh point to mesh point; thus, this limit is rather
tiny and the stiffness ratio is large.

Since the stability of the implicit algorithms is substantially greater, many scholars see
them as superior and frequently employ them to solve these and other similar PDEs [17–19].
The drawback comes from the fact that in each time step, a system of algebraic equations
must be solved, a procedure that is difficult to parallelize. In addition, the large amounts
of the required RAM can also make calculations extremely slow. These problems are
remarkable typically when the physical space is two or three-dimensional.

It has been shown that explicit approaches can be more effective even when tiny
time step sizes are required [20]. Moreover, various ingenious combinations of explicit
and implicit methods, such as semi-explicit or semi-implicit methods, have also been
presented [21–24]. However, they do not really solve the problems and the drawbacks of
the explicit and implicit approaches discussed above.

In light of the aforementioned data, it is reasonable to assume that explicit algorithms,
particularly if they have improved stability qualities (see, for example, [25–32]), will have a
growing comparative advantage over time. We started working on new explicit schemes a
couple of years ago for determining heat conduction in any number of spatial dimensions.
In our original articles [33–40], the novel algorithms were theoretically and experimentally
investigated. They were proven to be stable for the linear diffusion- or diffusion-reaction
equation, and their theoretical order of convergence is also stated. The algorithms were
tested using analytical as well as numerical reference solutions. It was demonstrated that
they deliver fairly accurate results at a remarkably greater speed than the widely used
methods, for example, the built-in ODE solvers of MATLAB and that they can be used
in a wide variety of situations involving random discontinuous parameters and initial
conditions.

In our paper [38], we tested 12 explicit and stable numerical algorithms to simulate
heat conduction in building’s walls, with and without insulation, using equidistant and
non-equidistant meshes. We obtained that the original odd–even hopscotch (OOEH), the
leapfrog–hopscotch (LH), and the Dufort–Frankel (DF) are the most effective methods.
Then, in [37] we adopted some of the above-mentioned 14 methods to include not only
heat conduction but also convection and radiation. According to the results, the LH and
the non-standard version of the OOEH are the most accurate if the system is not really stiff.
However, the OOEH becomes less accurate when the stiffness is larger, which is the case
if the mesh is non-equidistant and/or there are materials in homogeneity. In these cases,
the LH takes the lead, but the DF, as well as the shifted-hopscotch (SH) and asymmetric
hopscotch (ASH) methods, also perform well. Those methods which are unconditionally
stable for the simple conduction case can be used without stability problems with fairly
large time step sizes, so they outperform the conventional explicit time integrators. Since
usually the LH was the best method, we devoted a whole paper [37] on the question of
how to implement the convection and radiation term in an optimal way. However, in
those papers [37,38], no running-time measurements were made, and the performance was
evaluated only in terms of accuracy versus time step size.

In our current work, we continue the above-mentioned investigations. We use ANSYS’
thermal analysis solutions that help engineers solve the most complex thermal challenges,
and predict how their designs will perform with temperature changes. However, because
simulation by this kind of software takes a long time and requires serious computer
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resources, we compare our methods with ANSYS to investigate runtime, stability, and
other features [41]. Now the goal is to systematically evaluate how the performance
of the various solvers (including MATLAB routines and ANSYS) depends on the mesh
settings to see which one is optimal for certain accuracy requirements. Therefore, the
paper is organized as follows: Section 2 presents the examined system with the equations,
followed by the numerical methods and implementations of the convection and radiation
terms, as well as the methods used for comparison purposes. Sections 3.1–3.3 display the
preliminary conditions for the simulation of the wall: materials, mesh construction, initial,
and boundary conditions.

In Section 3.4, we start by verifying our codes in a 2D system for three different cases
and comparing the results against simple analytical solutions on a grid that is equidistant.
Section 4 displays the results of the numerical tests performed to compare differences in
errors and running times. Section 5 shows the second part of this study, where we chose
our best methods to perform a long-term simulation of one month for a real wall in Miskolc
city with and without insulation. Two kinds of the thermal bridges are included, and it is
calculated how much energy is lost due to the thermal bridges. Section 6 finally concludes
with a summary of our findings.

2. The Studied Cases
2.1. The Equation and Its Discretization

Using a linear parabolic PDE, we can characterize the phenomenon of the simplest
Fourier-type heat conduction inside a homogeneous medium with a heat source as follows:

∂u
∂t

= α∇2u + q, (1)

where u = u
(→

r , t
)

is the temperature, q is the heat generation or heat source, and α is

the thermal diffusivity, which is given as α = k/(cρ), where c = c
(→

r , t
)

, k = k
(→

r , t
)

,

ρ = ρ
(→

r , t
)

are the specific heat, heat conductivity, and the density of the material,
respectively.

Newton’s law of cooling suggests that a term K(ua − u) can describe convective heat
transfer [42], where the ambient temperature ua (measured in Kelvin) can be considered
as independent from the unknown variable u. Consequently, it makes sense to include
the Kua term in the expression q, which represents the heat source. Stefan-Boltzmann’s
law [43] says that a term −σu4 can be used to describe the surface’s radiative heat loss,
where now the proportionality constant σ is the product of the Stefan-Boltzmann constant
and the surface area, which are all positive quantities. We can incorporate the incoming
radiation, which may include direct sunshine, into the source term q similarly to the Kua
term above. The following is an extension of the heat conduction Equation (1) to include
the terms for convection, radiation, and the source of heat:

∂u
∂t

= α∇2u + q− K · u− σ · u4. (2)

Note that all terms in Equation (2) are local, except the conduction term. In the case of
Equation (1) in one space dimension, we apply to the α∇2u term the most common central
difference Equation

∂2

∂x2 u(xi) ≈
u(xi+1)−u(xi)

∆x +
u(xi−1)−u(xi)

∆x
∆x

=
ui−1 − 2ui + ui+1

∆x2 (3)
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which is second order in ∆x, where i = 1 , . . . , N and N is the overall number of nodes.
By doing this, we are able to derive the spatially discretized version of the heat transfer
Equation (2) in one space dimension as follows:

dui
dt

= α
ui−1 − 2ui + ui+1

∆x2 + q− Kui − σui
4. (4)

Let us now present the discretization of the heat transfer equation assuming that the
quantities describing the properties of materials, namely α, k, c, and ρ, are functions of the
space, rather than a fixed value. Now in one space dimension, instead of the α∇2u term,
we have to deal with the term

1
c(x)ρ(x)

∂

∂x

(
k(x)

∂u
∂x

)
In this case, the heat conduction equation can be discretized as follows

c(xi)ρ(xi)
∂u
∂t

∣∣∣∣
xi

=
1

∆x

[
k
(

xi +
∆x
2

)
u(xi + ∆x)− u(xi)

∆x
+ k
(

xi −
∆x
2

)
u(xi − ∆x)− u(xi)

∆x

]
.

Section 5 of the book [44] presents more details about this procedure for the case
of underground reservoirs. The nodes are surrounded by cells, and ki,i+1 is the heat
conductivity between node i and its right neighbor. The discretized equation attains the
following form

dui
dt

=
1

ciρi∆x

(
ki,i+1

ui+1 − ui
∆x

+ ki−1,i
ui−1 − ui

∆x

)
+ q− Kui − σui

4. (5)

The dimensions of a cell, measured along its length and across its (typical) cross-section,
are represented as ∆x and S. Since the volume of the cell can be given as V = S ∆x, the heat
capacity is estimated as Ci = ciρiV. The thermal resistance between the two neighboring
nodes can be determined as Ri,i+1 ≈ ∆x/(ki,i+1S). Based on these new quantities, one can
obtain the following expression for the time derivative of each cell variable:

dui
dt

=
ui−1 − ui
Ri−1,iCi

+
ui+1 − ui
Ri+1,iCi

+ q− Kui − σui
4 (6)

It is not hard to generalize Equation (6) even more for the case of arbitrary number of
neighbors to obtain the following spatially discretized version of Equation (2):

dui
dt

= ∑
j 6=i

uj − ui

Ri ,jCi
+ q− Kui − σui

4. (7)

This ODE system is applicable to arbitrary (i.e., unstructured) grids with cells that may
have different forms and characteristics. Naturally, uneven discretization might reduce
spatial accuracy, but in this research, only cells with a rectangular form are employed.

2.2. The Leapfrog–Hopscotch Structure

It is necessary to discretize the space domain using a special, so-called bipartite mesh
before applying the leapfrog–hopscotch or any other odd–even hopscotch algorithm.

Therefore, the mesh is split into two separate subgroups. The nodes or cells belonging
to the first and second subgroups are designated as odd and even, respectively. The primary
criterion is that, like on a checkerboard, all the near neighbors of the odd cells must be even
and vice versa. We explain it using a 1D interval as an example x ∈ [x0 , xN ], L = xN − x0
on which coordinates are used to create an equidistant grid x0 , x1 , . . . , xN of nodes, so
xj = xj−1 + ∆x , j = 1, . . . , N, ∆x = L/N . The time domain is t ∈

[
t0, tfin], and it is
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discretized as usual: tj = t0 + jh , j = 1, . . . , T , hT = tfin − t0, where h is the time step
size.

The leapfrog–hopscotch (LH) space-time structure [33] is presented in Figure 1. The
calculation consists of two half and several full-time steps. The calculation starts by taking
a half-sized time step for the odd nodes based on the initial values. This “zeroth” stage is
symbolized by a blue half-circle in the figure. After that, full-sized time steps (red circles in
the figure) are taken strictly alternately for the even and odd nodes up until the end. At
the end, the last time step (purple half-circle) should be cut in half for odd nodes to reach
the same final time point as the even nodes. It is essential that when a stage-calculation is
executed for node i, the most recently obtained values of the neighbors i − 1 and i + 1 are
used in the equations.
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2.3. The Mathematical Equations We Use

In this paper, we give only the formulas applied for Equation (7). Note that the
discretization and the formulas for a 1D equidistant mesh can be found in the given
references.

It is well known that the theta-method for the ODE y′ = f (t, y) has the Equation

yn+1 = yn+1 + ∆t
[
θ f (tn, yn) + (1− θ) f

(
tn+1, yn+1

)
,
]

(8)

where θ ∈ [0, 1]. If we adapt it for Equation (7), we obtain

un+1
i = un

i + θ
[

An
i − riun

i − ∆tKun
i − ∆tσ(un

i )
4
]
+ (1− θ)

[
An+1

i − riun+1
i − ∆tKun+1

i − ∆tσ
(

un+1
i

)4
]

, (9)

where

An
i = ∆t∑

j 6=i

un
j

Ri ,jCi
+ ∆t · qi, and ri = ∆t∑

j 6=i

1
Ri ,jCi

, i = 1, . . . , N, n = 0, . . . , T. (10)

The first quantity mediates the accumulated effect of the temperatures of the cell i’s
neighbors. The second quantity is the generalization of the often-used mesh ratio r = α∆t

∆x2 ,
more specifically for Equation (4), the ri = 2r relation holds.

One should note that the sum in Equation (7) is separated into two terms: the first
contains the actual cell variable, whereas the other, An

i , contains only its neighbors. The
theta method given in Equation (9) is an implicit method if θ < 1. It can be made explicit
by the so-called pseudo-implicit trick: the neighbors in the second term at the r. h. s. of
(9) must be taken at the n-th time level. Furthermore, 3 of the four powers of un+1

i in the
nonlinear term can be replaced by un

i . With this, we obtain:

un+1
i = un

i + θ
[

An
i − riun

i − ∆tKun
i − ∆tσ(un

i )
4
]
+ (1− θ)

[
An

i − riun+1
i − ∆tKun+1

i − ∆tσun+1
i (un

i )
4
]
, (11)



Energies 2023, 16, 4604 7 of 27

which can be rearranged as

un+1
i =

un
i + An

i − θ
[
riun

i + ∆tKun
i + ∆tσ

(
un

i
)4
]

1 + (1− θ)
[
ri + ∆tK + ∆tσ

(
un

i
)3
] . (12)

The value θ = 1 yields the explicit Euler method, which has a low CFL limit. If θ = 0
and q is non-negative, Equation (12) preserves the positivity of the temperature for arbitrary
time step sizes. In this case, it can be considered as an adaptation of the so-called UPFD
(unconditionally positive finite difference) scheme invented a decade ago [45]. Generally,
smaller values of θ mean better stability, but it can imply worse accuracy as well. Now we
fill the LH structure with this generalized theta-formula as follows.

In the pure conduction case (where K = 0 and σ = 0), the following theta values were
obtained [39] during optimization: Stage 0: θ = 0, all other stages: θ = 1/2, which will
be used everywhere in this work for the term An

i − riun
i . However, there is no reason to

believe that for the convection and radiation terms, the optimal theta values are the same.
In fact, in our last work [43], we examined the different treatments of these two terms, and
according to our experience, only a few versions are competitive. For the convection term,
θ = 1/2 is always the best choice, since our analytical calculations showed that it preserves
second order convergence and unconditional stability at the same time. We currently do
not have analytical proofs in the presence of the nonlinear term, but we found that the three
theta values are worth examining, namely θ = 0, 1/2, 1. We exemplify these by presenting
the “zeroth” stage equations as follows.

1. Pseudo-implicit treatment: θ = 0 for the radiation term, which yields:

u1/2
i =

u0
i + A0

i /2− K∆tu0
i /4

1 + ri + K∆t/4 + σ∆t
(
u0

i
)3/2

(13)

2. “Inside” treatment: θ = 1 for the radiation term, which means that it is taken into
account explicitly, which yields

u1/2
i =

u0
i + A0

i /2− K∆tu0
i /4− σ∆t

(
u0

i
)4/2

1 + ri + K∆t/4
(14)

3. Mixed treatment with an equal share of the previous two treatments, that is, θ = 1/2

for the radiation term, which yields

u1/2
i =

u0
i + A0

i /2− K∆tu0
i /4− σ∆t

(
u0

i
)4/4

1 + ri + K∆t/4 + σ∆t
(
u0

i
)3/4

(15)

2.4. Other Explicit and Stable Methods

One classic example of a scheme that meets both of the criteria of explicitness and
unconditional stability is the one of Dufort and Frankel (DF) [46] (p. 313). As this algorithm
does not start itself, u1

i has to be derived from u0
i using some other approach. Here, we use

the UPFD calculation method [43] for this purpose:

u1
i = u0

i + A0
i /1 + ri + ∆tK + ∆tσ

(
u0

i

)3
(16)

After this first step, the procedure is described by a simple formula for heat conduction,
but the terms of convection and radiation can be handled in several ways. We present here
only the most promising treatments.

4. DF-D: the only place the Sigma and K terms appear is in the denominator:
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un+1
i =

(1− ri)un−1
i + 2Ai

1 + ri + 2∆tK + 2∆tσ
(
un

i
)3 (17)

5. DF-M: the Sigma and K terms in a mixed way:

un+1
i =

(1− ri)un−1
i + 2Ai − ∆tKun

i − ∆tσ
(
un

i
)4

1 + ri + ∆tK + ∆tσ
(
un

i
)3 (18)

6. DF-KD: the K term appears only in the denominator, and the Sigma term in a mixed
way:

un+1
i =

(1− ri)un−1
i + 2Ai − ∆tσ

(
un

i
)4

1 + ri + 2∆tK + ∆tσ
(
un

i
)3 (19)

7. DF-SD: the Sigma term appears only in the denominator, and the K term in a mixed
way:

un+1
i =

(1− ri)un−1
i + 2Ai − ∆tKun

i

1 + ri + ∆tK + 2∆tσ
(
un

i
)3 (20)

8. Over half a century has passed since the discovery of the original odd–even hopscotch
(OOEH) algorithm [47]. Its temporal and spatial organization has been described
in [45]. After the first step by the FTCS formula (which is based on explicit Euler
time discretization, so θ = 1) for the odd cells, the BTCS formula (which is based on
implicit Euler time discretization) is used for the even cells. The labels odd and even
are interchanged after each time step. We modify this method here to include the
convection component, which is always considered at the new time level for enhanced
stability. The radiation term is handled first explicitly and then implicitly [29]. These
are the equations that are being used:

First stage : un+1
i =

(1− ri)un
i + Ai − ∆tσ

(
un

i
)4

1 + ∆tK
(21)

Second stage : un+1
i =

un
i + Ai

new

1 + ri + ∆tK + ∆tσ
(
+un

i
)3 . (22)

9. NS-OOEH algorithm:

In addition, we try to alter the first (Explicit Euler) stage of the OOEH to make the
terms for convection and radiation appear in the denominator to improve stability. The
first stage, instead of (21), is as follows:

un+1
i =

(1− ri)un
i + Ai

1 + ∆tK + ∆tσ(un
i )

3

The second stage is the same as in Equation (22).

2.5. Professional Solvers Used for Comparison Purposes

We compare our results with the direct, iterative, and programmable solvers available
in student version of ANSYS 2023 R1 Academic software based on the finite element
method (FEM).

(1) The direct solver gives the exact solution to the system of equations defining the FE

model. For the system represented by the equation [K] ·→x =
→
b , the exact solution is



Energies 2023, 16, 4604 9 of 27

→
x = [K]−1 ·

→
b , where [K]−1 is the inverse of the matrix [K]. The high computational

cost of finding the inverse of a matrix means that direct solvers do not usually calculate
the inverse, but use LU decomposition to solve the equation;

(2) To provide an approximate solution within a certain convergence tolerance, iterative
solvers assume an initial solution and iterate until they converge. Therefore, if the
convergence tolerance is 0.01%, the solver will repeat until the difference between the
current and past estimates of the solution is less than 0.01%.

The direct solutions tend to be more robust for complex systems and low-quality grids
but require a relatively lot of memory. Iterative solvers are generally more efficient, because
they use much less memory. Sometimes, however, they fail to converge even for a well-built
model. Therefore, the requirements and capabilities should guide the choice of solver type.
It is preferable to use an iterative solver to solve the model because that is ideal. The use of
a direct solver is recommended if there is trouble with convergence. If the size of the model
is quite large and the computer has limited RAM, it will need to use an iterative solution.

(3) The programmable solver is controlled by a program and employes a mixture of direct
and iterative solvers.

MATLAB solvers have been used for comparison purposes, namely ode15s, ode23t,
ode23tb, ode23, ode45, and ode113. While implicit solutions are used for the other odes,
it is known that odes 45, 23, and 113 employ explicit methods. Since the time step sizes
cannot be calculated explicitly for the MATLAB solvers, we instead define the tolerances,
beginning with a large value, such as Tol =10−1 until an extremely small minimum value,
which is Tol =10−12. We note that an additional solver, namely ode23s, is also available in
MATLAB, but in our previous work [40,48], it is proved to be really slow for these problems;
thus, we omitted it.

All the running times are measured on a desktop computer with an Intel Core i7-
11700F (16 CPUs), and 64 GB RAM is used, whereas the program we used is MATLAB
R2020b. The built-in tic-toc timer of that program is used to keep track of how long the
algorithms have been running. We present a list of the names and a short description of the
methods used in Table 1.

Table 1. Names and short descriptions of the methods used.

Abbreviation Name/Description of the Method

DF-D Dufort–Frankel, where the Sigma and K terms are only in
the denominator

DF-M Dufort–Frankel, where the Sigma and K terms are present in a mixed way

DF-KD Dufort–Frankel, where the K term turns up only in the denominator, and
the Sigma term is present in a mixed way

DF-SD Dufort–Frankel, where the Sigma term turns up only in the denominator,
and the K term is present in a mixed way

OOEH Original odd–even hopscotch

NS-OEH OOEH with the non-standard treatment of convection and radiation

LH Pseudo-Imp Leapfrog–hopscotch scheme with pseudo-implicit treatment of the
Sigma term

LH Inside LH with inside treatment of the Sigma term (it appears in the numerator)

LH Mixed LH with a combination of the pseudo-implicit and inside treatment

ANSYS-M Mixed solver (controlled by ANSYS)

ANSYS-D Direct solver

ANSYS-I Iterative solver
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Table 1. Cont.

Abbreviation Name/Description of the Method

ode15s A 1 to 5-order numerical differentiation formula with variable-step and
variable order (VSVO), that was designed for stiff problems

ode23t Applies the trapezoidal rule with a free interpolant

ode23tb Uses trapezoidal rule in the first stage and a backward differentiation
formula in the second one

ode23 Second (third) order Runge–Kutta–Bogacki–Shampine method

ode45 A fourth (fifth) order Runge–Kutta–Dormand–Prince solver

ode113 1-13 order VSVO Adams–Bashforth–Moulton solver

3. Numerical Simulation
3.1. Geometry and Material Properties

A piece of wall is considered with dimensions 1 m in the x and z directions and 0.02 m
in the y direction, as can be seen in Figure 2. Two geometries are taken into consideration:

(a) One-layer of brick is examined only for verification case;
(b) Two-layers consisting of brick and rigid polyurethane foam insulation with a straight

thermal bridge steel beam for running time measurements.
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Figure 2. (A) One-layer wall. (B) Two-layer wall with brick-insulator and a thermal bridge.

In the current work, the real material properties listed in Table 2 are taken into account.
Note that these coefficients are constants inside a material, that is, they do not change with
time, space, or temperature, but they have a discontinuity at the border of the materials.

Table 2. The properties of the materials used.

ρ
(
kgm−3) c

(
Jkg−1K−1) k

(
Wm−1K−1)

Brick 1900 840 0.73
Rigid Polyurethane

Foam 320 1400 0.023

Steel Beam 7800 840 16.2

3.2. Mesh Construction

We considered a dimension of wall 1 m × 1 m × 0.02 m in the calculations of Section 4.
The y-direction is orthogonal to the surface of Figure 2A,B, and we use the approxima-
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tion where no physical quantities change in that y-direction; as a result, this dimension
from the mathematical point of view is irrelevant. In mathematical terms, this means
that we only need to handle a two-dimensional problem (the cross-section) and can use
∆yi = 0.02 m. So, we have constructed three versions of meshes of size 1 m2, which means
(x, z) ∈ [0, 1]× [0, 1]. The cells have a square or rectangular shape as shown in Figure 3.
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Figure 3. Visualization and Arrangement of the generalized variables.

We apply an equidistant grid to discretize the space variables in all cases. The compu-
tations were performed for three different uniform grids, namely, coarse = 40 × 40 = 1600,
medium = 80 × 80 = 6400, and fine = 120 × 120 = 14,400. We have to note that the tempera-
ture is calculated at the nodes to be comparable to the ANSYS program, which is based on
the finite element method, thus, we have a grid with these three grids.

The heat capacity of the cells around the nodes that are not at the boundary may be
expressed in the case of a homogeneous material as Ci = ciρi∆xi∆zi∆yi. If the material
properties are different, we can write it as follows Ci = ciρi

∆x∆z∆y
2 + ci+1ρi+1

∆x∆z∆y
2 . It is

calculated at the upper, lower, left, and right borders by multiplying the heat capacity by a
factor of 1/2 and at the corners by multiplying it by a factor of 1/4 .

While the thermal resistance in the x-direction between two nodes has the approximate
equation Rxi ≈ ∆x

kiSxi
, where Sxi is the surface element orthogonal to x, which can be given

as Sx = ∆y∆z if the nodes are not at the boundary. The horizontal and vertical resistances
can be calculated in the case of a homogeneous material as

Rx ≈ ∆x
k∆z∆y

and Rz ≈ ∆z
k∆x∆y

,

but it is calculated at the upper, lower, left, and right borders as

Rx ≈ ∆x
k(∆z/2)∆y

and Rz ≈ ∆z
k(∆x/2)∆y

,

respectively. If the material properties are different, we can write for the resistance between
two nodes i and i + 1 that

Rxi, i+1 ≈
∆x(

ki+ki+1
2

)
∆z∆y

,

and since the node i + Nx is below the node i, we have

Rzi, i+Nx ≈
∆z(

ki+ki+Nx
2

)
∆x∆y

,
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for the vertical resistance.
Also, it is calculated at the borders as

Rxi, i+1 ≈
∆x(

ki+ki+1
2

)
∆z
2 ∆y

and Rzi, i+Nx ≈
∆z(

ki+ki+Nx
2

)
∆x
2 ∆y

3.3. The Initial and the Boundary Conditions

For running time measurements, zero Neumann boundary conditions have been
applied to all borders, preventing the passage of conductive heat at the boundaries. To do
this, we set zero for the matrix components describing heat conduction across the border
by setting the relevant resistances to infinity.

On the left and right sides of the wall, convective and radiative heat transfer have been
assumed. The interior components cannot lose or absorb heat via radiation or convection,
and there is no heat source in those elements. Table 3 shows that elements on the left and
right sides may transfer heat through radiation and convection in the x direction. The final
time tfin = 20,000 s indicates the end of the time interval that is examined; additionally, the
time step size is specified in seconds.

Table 3. The convection, radiation, and heat source parameters on both sides of the wall components
in the case of the two-layer wall.

hc

[
W

m2K

]
ε σ*

[
W

m2K4×10−8
]

q* [W/m2]
Right Elements 22 0.8 4.5 435.39
Left Elements 9 0.9 5.1 360.95

As can be seen in Table 3, we have used numbers from publication [42] for the convec-
tion heat transfer coefficient hc. The Stefan–Boltzmann constant is a universal constant for
radiation: 5.67 · 10−8 W

m2K4 . Since the surface is not a perfect black body, we have to multiply
the Stefan-Boltzmann constant by an emissivity constant in order to get results that are
more in line with realistic values for σ∗. The value of q∗ is estimated for the definition of
“heat source”, which includes solar radiation in the table below. It is assumed that the
ambient air temperature on the left side is 17 ◦C ≈ 290 K.

Because of the nonzero temperature of the air ua, the term q also includes heat gain
from convection; this allows us to calculate the value of q as follows. The values of the
coefficients in our Equations (2) and (3) are calculated using the values we obtain:

K =
hc

cρ ∆x
2

, σ =
σ∗

cρ ∆x
2

, q =
q∗

cρ ∆x
2

+
hc

cρ ∆x
2

ua

We assumed that the left and right elements have the following heat sources as follows:

In terms of the left− hand side : q =
1

cρ ∆x
2
× 360.95

W
m2 +

hc

cρ ∆x
2
× 290 K

In terms of the left− hand side : q =
1

cρ ∆x
2
× 435.39

W
m2 +

hc

cρ ∆x
2
× 313 K

∂2Ω
∂u∂v

.

The constant initial temperature is prescribed: u(x, z, t = 0) = 290 K.

3.4. Verification Using Analytical Solutions

For verification, we used three different cases. In the first one, we considered a
one-layer wall made of homogeneous material (see Figure 2A) and applied a sinusoidal
initial condition with a zero Dirichlet boundary condition to examine the conduction term
only. Then in the second and third cases, we considered spatially homogeneous initial
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temperature to exclude conduction, which means we have only one temperature in the
system, that is, the behavior can be described by an ODE. In the second case, we took
into account only convection, which is perpendicular to the surface and happens in the y
direction, and in the third case, we considered only radiation perpendicular to that surface.
After that, we compared our results in MATLAB and ANSYS with the analytical solution.

• First verification (for conduction):

1. Two sine functions are multiplied to provide the initial condition:

u(x, z, t = 0) = sin(kxπx) sin(kzπz)

2. Zero Dirichlet boundary conditions are used:

u(x = 0, z, t) = u(x = 1, z, t) = u(x, z = 0, t) = u(x, z = 1, t) = 0

3. One can quickly verify that the problem’s analytical solution is

u(x, z, t) = sin(kxπx) sin(kzπy)e−α(kx
2+kz

2)π2t (23)

where the wave numbers are fixed to kx = 1, kz = 1, and substituting the physical
properties of the brick, we obtained α. We used the analytical solution Equation (23) at
tfin = 2000(s) as the reference solution.

• Second verification (for convection and heat generation)

Since the temperature is spatially homogeneous, we have the simple ODE, valid for
each node:

du
dt

= −K · u + Q

Its analytical solution is:

u(x, z, t) =
(

Q
K

)
+

[
u0 −

Q
K

]
· e−Kt

where the initial condition here is a constant temperature that equals to 290 K.

• Third verification (for radiation)

We have the ODE:
du
dt

= −σ · u4

with the analytical solution:

u(x, z, t) =
(

u0
−3 + 3σT

)− 1
3

The error is defined as the largest difference in absolute terms between the reference
temperature uref

i , which is the analytical solution and the temperature unum
i obtained by

the studied numerical method at tfin = 2000 s:

MaxError = max
1≤i≤N

∣∣∣uref
i (tfin)− unum

i (tfin)
∣∣∣. (24)

For all systems, the obtained results in the case of MATLAB and ANSYS are very
similar to the analytical solution, and the error is below 10−5. This means that the MATLAB
code using the ode15s solver, as well as the ANSYS solver, has been verified. The tempera-
ture contour is presented in the Supplementary Materials (see Figure S1) as a function of
the x- and z-coordinates in the case of ANSYS and the analytical solution. The temperature
as a function of the x-coordinate for z = 0.5 m was plotted in the case of ode15s, ANSYS,
and the analytical solution for the coarse grid. These lines are so close to one another that
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they are indistinguishable by the naked eye, (see Figure S2 in the Supplementary Materials).
For other system sizes, the same behaviour is experienced. In the case of the second and
third verification, the maximum error is around 10−9 between ode15s and the analytical
solution, but it is slightly larger than 10−5 between ANSYS and the analytical solution, as
shown in Table 4. Since the MATLAB ode15s solver is proven to be more accurate in all
cases, we choose this as a reference solution when we measure and compare the running
times in the next section.

Table 4. The comparison between MATLAB and ANSYS at different mesh sizes and boundary
conditions.

The Type of Boundary
Condition Grid Type

The Maximum Error between Analytical
Solution

MATLAB ANSYS

Zero Dirichlet
coarse 9.114× 10−6 3.577× 10−5

medium 2.279× 10−6 2.097× 10−5

fine 1.013× 10−6 1.863× 10−5

Only convection on the surface medium 1.24× 10−10 8.49× 10−5

Only radiation on the surface medium 4.04× 10−9 6.344× 10−5

4. Results: Comparison of Performances by Measuring the Running Times
4.1. Comparison with MATLAB Methods and ANSYS Solvers for the Coarse Mesh System

The two-layer wall (brick + insulation) with the straight thermal bridge (see Figure 2B)
is simulated using the coarse mesh and the conditions in Section 3.3, and values from
Table 2. The maximum errors are shown in Figure 4 as a function of the time step size.
The comparison of the running times of the tested methods and three solvers of ANSYS
are shown in Figure 5, and the temperature distributions are shown in Figure 6. We can
see that for the coarse mesh, the LH pseudo-implicit treatment of radiation was the most
accurate, but two of the DF versions and the three solvers of ANSYS are not really accurate.
Regarding speed, we can say that the explicit and stable schemes are clearly faster than
ANSYS, but they are more efficient than the MATLAB routines only if small or moderate
accuracy is required.
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4.2. Comparison with MATLAB Methods and ANSYS Solvers for the Moderate Mesh System

Now a moderately fine resolution mesh is applied, and the same conditions and values
are used as for the previous coarse grid. Most of the proposed methods, especially the
LH-PI is again better than ANSYS solvers and MATLAB routines for both accuracy and
speed. Figure 7 compares the running times of the three ANSYS solvers with the tested
methods in MATLAB. (We note that the errors as a function of the time step size can be
seen in Figure S3 in the Supplementary Materials).
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Figure 7. The maximum errors as a function of the running time for the tested methods in the case of
the medium mesh.

4.3. Comparison with MATLAB Methods and ANSYS Solvers for the Fine Mesh System

For the fine mesh, the errors are plotted in Figure 8 as a function of the running
time and in Figure S4 (Supplementary Materials) as a function of the time step size. We
notice that the accuracy of the ANSYS solvers is positively affected by the smoothing of
the mesh, the errors are decreasing with the time step size. In spite of this, some of the
proposed explicit methods coded in MATLAB remain the best in both accuracy and speed.
The solvers of ANSYS are very slow if we have a big system, but the built-in routines
of MATLAB are getting slower at a larger rate with increasing system size, so we think
that for even finer mesh, they would be the slowest. The leapfrog–hopscotch with the
pseudo-implicit treatment of the radiation term (LH-PseudoImp) and the Dufort–Frankel
schemes with the pseudo-implicit treatment of both the convection and the radiation term
(DF-D) are the two best methods. Their advantages are in fact, increasing with increasing
system size. That is why, in the next section, we choose these two methods to make a
long-term simulation.

For mesh-independence, a horizontal line is considered in the middle of the thermal
bridge (z = 0.225 m), and along this line, the temperature of the LH pseudo-Imp method is
plotted for all three meshes. The result is presented in the Supplementary Materials (see
Figure S5). As one can see, the values of the medium mesh are close to those of the fine
mesh, where the maximum difference was quite small 0.097 in Kelvin units, so to reduce
the computational cost, we can adapt the medium mesh in long-term calculations.

We also compared three of the solvers, the iterative ANSYS, the LH-PseudoImp, and
ode15s using the medium mesh. The maximum difference between LH-PseudoImp and
ode15s is equal to 7.3 × 10−7 in Kelvin units, but ANSYS has a little noticeable difference
from them, which is equal to 0.2 K. The figure is presented in the Supplementary Materials
(see Figure S6).
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Finally, we examined how the running times depend on the system size. We obtained
that the running time of our methods increases linearly with the number of nodes, but it
increases faster than linearly for other solvers. Figure S7 in the Supplementary Materials
shows the concrete data for one of our best methods with one of the MATLAB routines
ode23t, and ANSYS solvers.

Nevertheless, we absolutely do not intend to suggest that ANSYS and similar solvers
are redundant since there are faster numerical algorithms than those they employ. This
simulation software automatically generates the mesh and presents graphically the results,
whereas if someone chooses to write their own code, it is tedious work, especially in the
case of complicated geometries. Moreover, the explicit and stable methods have not been
applied to cases involving the simulation of the motion of the air, for example, for the
problem of air leakage in building components, whereas the simulation software routinely
handles these problems. However, we think that in the already well-established cases,
such as those types studied in this paper, the simulation software could incorporate the
proposed algorithms as an option can be chosen by the users or by an artificial intelligence.

5. Long-Term Simulations
5.1. Geometry and Mesh

The simulations were performed for a standard residential wall in Miskolc, Hungary,
and the outdoor temperature, convection coefficient, and solar radiation values for Miskolc
were used in the simulations where the data was taken from the website every 3 h. Then
we used linear interpolation to calculate the values for every 100 s.

The month of January is the coldest. The highest temperature measured in January
2022 was 11 ◦C, whereas the lowest was −6 ◦C. Depending on the topography, the pre-
dominant wind might blow in various different directions. The maximum measured wind
speed was 10.8 m/s [49].

We applied the best methods, namely, the LH-PI and DF-D, to calculate temperatures
and heat losses across the wall, with a fixed time step size of ∆t = 100 s, where the total
time was T = 31 · 24 · 3600 = 2, 678, 400 s. We chose this time step size because from
Figure 4, it can be seen that the error of the best methods is around 0.01 ◦C, so sufficient
accuracy is reached. We stress again that the CFL limit for explicit Runge-Kutta methods is
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orders of magnitude smaller than this time step size. The difference between the DF-D and
LH-pseudoImp was continuously monitored during the simulation and found to be very
small, so the presented results are for the LH-pseudoImp method. The running times for
long-time simulation was 145.5 s for the case of two-layers with the straight thermal bridge
case on the same computer which was used in the previous section.

Figure 9 illustrates the different models of the wall. First, one layer has been used,
which is only brick; the dimension of the wall height, width, and thickness is (0.45, 1, 1 m)
as shown in Figure 9A. In the second model, there are two layers: the brick wall has the
same dimension as in the first model, and in addition to it, there is an insulation layer with
a thickness of 0.15 m, as shown in Figure 9B. The third model is the same as the second
one with a straight thermal bridge. The width of the thermal bridge is the same as that
of the insulator, as shown in Figure 9C. The horizontal position of the thermal bridge is
between x = 0.45 m and x = 0.6 m. The vertical position of the top of the thermal bridge is
z = 0.75 m (25 cm from the bottom of the wall), and the thickness of the bridge is 5 cm in
the z direction.
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Figure 9. (A) One-layer wall, (B) Two-layers wall with brick-insulator, (C) Two-layers with straight
thermal bridge, (D) Two-layers with bent thermal bridge.

The fourth model contains the same two layers as the second one, but the bar thermal
bridge has a curved shape. The thermal bridge is made up of three straight bars, two
horizontal and one vertical. The first horizontal bar is connected from the outside at the
same vertical position as the straight bridge above. It goes horizontally with a length
0.05 m. It is connected to the vertical bar, which has a length 0.3375 m in the z-direction.
It then connects to the other horizontal bar, which has the same dimensions as the first
horizontal bar, whereas the vertical position of the bottom of this piece is 0.5125 m as shown
in Figure 9D. The medium mesh is applied for all cases, but in the first case, it means
∆x = 0.0057, whereas in the other cases, the widths of the cells are larger, ∆x = 0.0076,
since the wall is thicker.

We are going to examine which thermal bridge yields a higher rate of heat transfer and
more extra heating cost. It is a nontrivial question since, in the case of the straight bridge,
the way of heat is shorter, but in the case of the bent bridge, the average conductivity of the
wall is higher.

5.2. Initial and Boundary Conditions

Zero Neumann boundary conditions have been applied to all borders and wall cases,
and convective as well as radiative heat transfer are assumed on the right and left sides. As
in Section 4, the interior parts cannot lose or absorb heat via convection, radiation, and heat
source. As it is indicated in Table 5, elements on the right and left sides can transfer heat
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through convection and radiation in the x direction. The left elements have constant values
for the convection, radiation, and heat source parameters, whereas the right elements have
changing values depending on the external conditions. In this part, the final time is tfin =
2,678,400 s, which indicates the simulation of a full winter month.

Table 5. The convection, radiation, and heat source parameters are on both sides of the wall for all
the previously mentioned wall types [42].

hc·
[

W
m2K4

]
ε σ*·

[
W

m2K4×10−8
]

Right Elements 0.6–22.45 0.9 5.1
Left Elements 9 0.7 3.97

We obtain the values of the coefficients in our equations as follows: [42],

K =
hc

cρ ∆x
, σ =

σ∗

cρ ∆x
, q =

q∗

cρ ∆x
+

hc

cρ · ∆x
· ua

We also supposed that the left and right elements have the heat sources as follows:

For the interior side elements : ql =
1
cρ
× q∗l +

hcl
cρ · ∆x

× 295 K

For the external side elements : qr(t) =
1
cρ
× q∗r (t) +

hcr(t)
cρ · ∆x

× ur(t)

And K(t) =
hcr(t)
cρ ∆x

, σ =
σr
∗

cρ ∆x
, q(t) =

qr
∗(t)

cρ ∆x
+

hcr(t)
cρ · ∆x

· ur(t)

where q∗l = ε lσl(295)4 and q∗r (t) = αsunGcr(t) + αLowεrσr[ur(t)]
4 [50].

The convection heat transfer coefficient for outside elements as a function of air velocity
is estimated as follows [51]:

hcr(t) = 0.6 + 6.64
√

v(t)

v(t): The air velocity is taken for each 100 s in January [m/s].
ur(t): The outside air temperature for each 100 s in January month [◦C].
ul : The inside air temperature [◦C] on the left side.
Gcr(t): The solar radiation was taken for each 100 s in January [W/m2].
αsun: The absorptivity of brick surface to solar radiation.
αLow: The absorptivity of brick surface to low-temperature thermal radiation.
The environment air temperature is taken to be 22 ◦C ≈ 295 K inside, and changing

depending on weather conditions outside.
We calculated the initial temperature inside the wall using the assumption that before

the simulation time, a stationary heat flow with constant flux evolved between the given
boundary values of the internal and external air temperatures. In the case of one-layer, it
yields a linear function of the x variable for the initial condition:

u(x, z, t = 0) = (ur,initial − ul)x/Lx + ul

where ur,initial = 278 K.
For the remaining three cases, the assumption of stationary heat conduction with the

initial values at the boundaries implies that we have to use two linear functions of the x
variable for the initial condition:

For the brick part: u(x, z, t = 0) = (umid − ul) · x/Lb + ul
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For the insulator part:

u(x, z, t = 0) = ((ur,initial − umid)x/Lins)− ((ur,initial − umid) · Lb/Lins) + umid
where umid = ul − (qfluxLb/kb)

and qflux = (ul − ur,initial)/((Lb/kb) + (Lins/kins))

5.3. Result for the Simulation of the Wall

The results will be displayed for specific points depicted in Figure 10, and the subfig-
ures contain the following information.
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Figure 10. Illustration of the points and grid arrangements that present the results for the differ-
ent cases.

(A) There are 3 points denoted for the one-layer wall: on the interior surface, at the middle
of the wall, and on the exterior surface;

(B) Two-layer wall (brick + insulator) with five points on the interior surface, the middle
of the brick, the border of the two layers, the middle of the insulation, and the exterior
surface;

(C) Two-layers with a straight thermal bridge with 6 points: on the interior surface, the
middle of the brick, the border of the two layers, the exterior surface of the straight
thermal bridge, the middle of the insulation, and the exterior surface of the insulation;

(D) Two-layers with the bent thermal bridge with six points: on the interior surface,
middle of the brick, the border of the two layers with bent thermal bridge, the exterior
surface of the bent thermal bridge, the middle of the insulation, and the exterior
surface of the insulation.

5.3.1. One Layer (Brick)

The temperatures as a function of the time are presented in Figure 11. Note that
without the presence of the insulator, the temperature of the inner surface of the wall is
initially equal to the temperature of the internal air (22 ◦C), then decreases because of the
cooling effect of the wall and the outside cold weather. As for the temperature of the middle
of the wall, it is low at first, and then it rises due to heat transfer by conduction from the
inside. The external surface temperature is greater than the external air temperature due to
the heat flowing to the surface through conduction.
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Figure 11. The temperature distribution in Celsius units as a function of time in days for the long-term
simulation of the one-layer wall.

5.3.2. Two Layers (Brick and Insulation) without Thermal Bridge

The temperature-time functions are presented in Figure 12. The temperature in the
brick part is changing very slowly, but in the insulator part it is changing very sharply. We
note that in the presence of an insulator, the temperature of any point of the brick follows
the temperature of external air only very slightly. As for the temperature of the middle of
the insulator, it rises and falls due to the effects of external conditions, and the minimum
values of the outer surface temperatures of the wall are slightly less than the inside air
temperature because the insulator limits the flow of heat from inside to outside; for higher
values, it is greater owing to the effects of solar radiation. The comparison between the
one-layer and two-layer wall cases in terms of the final temperature is presented in the
Supplementary Materials (see Figure S8).
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5.3.3. Two Layers with Straight Thermal Bridging

Figure 13 clearly shows that the temperature of the middle of the wall and the temperature
of the interior surface of the insulator decreased slightly compared to the previous case due to
the heat loss caused by the straight thermal bridge. Moreover, the external temperature of the
thermal bridge is higher than the temperature of the exterior surface of the insulator due to the
flow of heat from inside to outside as well as the physical properties of the material.
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Figure 13. The temperature distribution in Celsius as a function of time in days for the long-term
simulation of the wall with straight thermal bridging.

5.3.4. Two Layers with Bent Thermal Bridging

In this case, which includes the thermal bridge created by the bent thermal bridge, the
mid-insulator temperature rises (see Figure S9 in the Supplementary Materials). Figure 14
shows the contours of both types of thermal bridge cases, where we note the way of the
heat in the bent bridge is longer than in the straight bridge.
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end of the last day.
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In Figure 15, we compared the temperatures of the external points of the two thermal
bridges with the external points of the one- and two-layer cases. We concluded that the
straight thermal bridge allows the heat to flow faster than the bent thermal bridge because
the passage of heat in the bent bridge is longer than in the straight one.
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Figure 15. The temperature distribution in Celsius units with days for the long-term wall simulation
in case of exterior points of thermal bridging (straight and bent) compared with one-layer and
two-layer cases.

Figure 16 shows a comparison between the losses in energy. One can see the largest thermal
loss in the case of a one-layer wall, and these losses are less with the presence of the insulator.
When a thermal bridge is present, these losses are larger than without a thermal bridge, and the
losses are slightly larger in the case of a straight thermal bridge than for the bent bar.
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5.3.5. Calculation of Heat Loss

The total energy requirement Q in kWh units was calculated from Equation (25)

Q =
Time

∑
t=1

(
∆t

N

∑
i=1

Qcell,i(t)

)
, (25)

where Qcell = q∗cell · S and q∗ is the current density of the heat loss, which can be calculated
as q∗cell =

((Ti+1−Ti)Kcond)
∆x .

∆t is the time step size, and S is the area of the wall in the direction of heat loss.
Now we can calculate the cost of the energy used to make up the energy loss by the

multiplication of the current price of electricity (per kWh) used by the amount of heat
losses. Table 6 below shows the heat loss and costs of energy consumption.

Table 6. Heat loss through the 1 m2 piece of wall, and the energy cost in HUF and USD.

One
Layer

Two
Layers

Two Layers with a
Straight Bridge

Two Layers with
Bent Bridge

Heat loss (full month, kWh) 19.14 1.99 5.29 5.01
The cost in HUF 717.19 74.63 198.24 187.8
The cost in USD 1.9 0.2 0.53 0.5

5.4. Simulation of the Coldest Day of the Month

For the design of the heating load, we adopt the hardest weather conditions, and the design
is based on them. Therefore, we will review the coldest day of the month, which is 25 January,
where the lowest recorded temperature is−6 ◦C. We also applied the previous best methods to
calculate temperatures and heat losses across the wall, but with a new time step size of ∆t = 60
s in this simulation, to track and record the temperature change every minute because the total
simulation time here is short, only T = 24× 3600 = 86,400 s. The temperature as a function of the
hours of the day for the exterior points in all cases of the wall, and a comparison between the
losses in energy on the coldest day of the month are presented in the Supplementary Materials
(see Figures S10 and S11). One can see the largest losses in the case of one layer, and Table 7
contains the cost of energy consumption on this day.

Table 7. Heat loss through the wall and energy cost in HUF and USD for the coldest day.

One
Layer

Two
Layers

Two Layers with a
Straight Bridge

Two Layers with
Bent Bridge

Heat loss (one day, kWh) 0.713 0.076 0.213 0.2
The cost in HUF 26.7 2.85 7.96 7.56
The cost in USD 0.071 0.0076 0.022 0.02

6. Conclusions

The purpose of this article was to develop and test a simulation methodology based on
fundamental physical principles and laws to study transient heat transfer in the wall. First,
we numerically investigated transient heat transfer in a two-dimensional wall without
an insulator, with an insulator, and two types of thermal bridges. For our purposes, we
applied and tested nine explicit algorithms coded by us in MATLAB and three solvers
included in the commercial software called ANSYS. Then the running time was measured
for our methods and compared with the ANSYS solvers and six built-in MATLAB routines.
We used three mesh sizes: 40 × 40, 80 × 80, and 120 × 120, which we applied to walls
with 1600, 6400, and 14,400 cells, respectively. Three simple analytical solutions of the heat
equation were used with an equidistant mesh for verification in the case of homogeneous
material properties (one brick layer). All the methods used and the ANSYS solvers are
confirmed to be convergent. These experiments suggest that our methods are better than
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all ANSYS solvers and MATLAB routines, whereas ANSYS was less accurate and slower,
and it was observed that the best performance was achieved by the leapfrog–hopscotch
and the Dufort–Frankel algorithms with the pseudo-implicit treatment of the nonlinear
radiation term. Therefore, these two methods were applied to real problems, and a long-
term simulation of four cases was performed. The temperature distribution and total heat
losses of all cases were calculated. We found the straight thermal bridge to be energetically
worse than others, and the total heat loss during the month (one-layer, two-layer, two-layer
with a straight thermal bridge, and two-layer with a bent thermal bridge) was, respectively,
19.14, 1.99, 5.29, and 5.01 kWh for a 1 m2 wall surface.

We can conclude that the numerical simulation methodology is established in this
paper. In our next works, we will use these solvers and approaches to study real problems
like real thermal bridges in blocks of flats, and we will use physical experiments as well as
standards such as ISO 10211:2017 and ISO 14683:2017 to validate them.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/en16124604/s1, Figure S1: The temperature distribution contour for the
sinusoidal initial temperature (left) for ANSYS and analytical solution on (right) in Kelvin units;
Figure S2: The temperature comparison for the sinusoidal initial temperature in the case of the coarse
mesh; Figure S3: The maximum errors as a function of the time step size for the tested methods in
the case of the medium mesh; Figure S4: The maximum errors as a function of the time step size for
the tested methods in the case of the fine mesh; Figure S5: Comparison between three types of mesh
for the LH-PseudoImp method temperature; Figure S6: Comparison between three solvers for the
medium mesh; Figure S7: Running time as a function of the total number of cells for the examined
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ode23t solver of MATLAB and ANSYS; Figure S8: The temperature in Celsius units for the long-term
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Nomenclature

Symbols Greek Symbols
c Specific heat [J/(kgK)] α Thermal diffusivity [m2/s]
∆t Time step size [s] ∆ Difference
hc Heat transfer coefficient [W/(m2K)] P Mass density [kg/m3]
K Convection coefficient [1/s] Σ Coefficient of the radiation term [s−1K−3]
k Thermal conductivity [W/(m·K)] σ∗ realistic values of the non-black body [W/(m2·K4)]
Q Heat transfer rate [W] Subscripts
q∗ heat generation [W/m2] A Ambient air
q Heat source rate [K/s] L Left side
t time [s] R Right side
u Temperature [K] b, ins Brick and Insulation
L Thickness [m] c convection
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