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Abstract: This paper presents ocean wave energy control using the Aquila optimization (AO) tech-
nique. An oscillating water column (OWC)-type wave energy converter has been considered that
is fitted with a Wells turbine and doubly fed induction generator (DFIG). To achieve maximum
power point tracking (MPPT), the rotor speed of the DFIG must be controlled as per the MPPT law.
The MPPT law is designed in such a way that the Wells turbine flow coefficient remains within
the threshold limit. It avoids the turbine from stalling which generates the maximum power. The
MPPT law provides the reference rotor speed which is followed by the actual rotor speed. For this, a
backstepping controller (BSC)-based rotational speed control strategy has been designed using the
Lyapunov stability theory. The BSC has unknown control parameters which should be selected such
that tracking errors are minimum. Hence, the objective of this work is to find the unknown control
parameters using an optimization approach. The optimization approach of selecting BSC control
parameters for an OWC plant has not been explored yet. To achieve this, an integral square error
(ISE)-type fitness function has been defined and minimized using the AO technique. The results
achieved using the AO technique have been compared with particle swarm optimization (PSO) and a
genetic algorithm (GA), validating its superior performance. The rotor speed error maximum peak
overshoot is least for AO-BSC as compared to PSO-BSC and GA-BSC. The fitness function value for
AO comes out to be least among all the optimization methods applied. However, all tested methods
provide satisfactory results in terms of turbine flow coefficient, rotor speed and output power. The
approach paves the way for future research on ocean wave energy control.

Keywords: aquila optimizer; backstepping control; maximum power point tracking; oscillating water
column; particle swarm optimization

1. Introduction

Renewable energy research is gaining popularity due to the increasing concerns
over depleting natural resources and greenhouse emissions. There are several forms of
renewable energy such as solar [1], wind [2], tidal [3], hydro [4], ocean wave [5,6], etc. Solar
energy is a renewable energy source that can be used indefinitely without depleting natural
resources but the amount of energy that solar panels can generate is dependent on the
weather and can vary from day to day or season to season. Like solar energy, wind energy is
a renewable energy source that does not deplete natural resources. However, the amount of
energy that wind turbines can generate is dependent on the weather. Similarly, tidal energy

Energies 2023, 16, 4495. https://doi.org/10.3390/en16114495 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16114495
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-7768-1236
https://orcid.org/0000-0002-1056-5617
https://orcid.org/0000-0002-0878-7405
https://orcid.org/0000-0001-9311-7598
https://orcid.org/0000-0002-1453-4236
https://orcid.org/0000-0002-7012-5912
https://doi.org/10.3390/en16114495
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16114495?type=check_update&version=1


Energies 2023, 16, 4495 2 of 21

can only be harnessed in locations with significant tidal ranges, which limits its availability
as a power source. Ocean wave energy is an excellent source of renewable energy that can
be tapped into by the proper design of energy converters and their controllers. Furthermore,
ocean waves are present year-round, persisting both during the daytime and nighttime.
An oscillating water column (OWC) is a technology used to convert the energy of ocean
waves into electricity [7]. An OWC system consists of a chamber that is open to the ocean,
and as waves enter the chamber, they compress the air inside, which drives a turbine to
generate electricity. The torque coefficient and flow behavior of the turbine plays a key
role in converting mechanical energy into electrical energy efficiently [8]. To ensure the
efficiency and stability of an OWC system, it is necessary to have a control system that
monitors and adjusts the system’s performance.

The control of an OWC system involves several key aspects. One of the most important
is the control of the air pressure inside the chamber. The pressure inside the chamber needs
to be maintained at a certain level to ensure that the turbine is operating at the optimal
speed. The control system can adjust the air pressure by controlling the amount of air that is
allowed to enter or leave the chamber. Another important aspect of the control of an OWC
system is the control of the turbine’s speed. The speed of the turbine needs to be adjusted to
match the frequency of the incoming waves to ensure that the maximum amount of energy
is extracted from the waves. The control system can adjust the speed of the turbine by
adjusting the pitch of the turbine blades or by adjusting the amount of torque applied to the
generator. The control of an OWC system is critical to ensure that the system is operating
efficiently and generating electricity at its maximum potential. The control system needs
to monitor and adjust the air pressure, turbine speed and other operating parameters to
ensure that the system is operating within its optimal range. Nonlinear control strategies
have gained popularity due to their ability to handle the complex dynamics of the OWC
system. In this literature review, we will examine some of the recent developments in the
nonlinear rotational speed control of OWCs.

A comprehensive review of wave power system controllers, including those for os-
cillating water column (OWC) devices, was conducted in [9]. The integration of local
grid storage with OWC systems was proposed in [10], while [11] employed a rotor speed
optimization technique for achieving maximum power point tracking (MPPT) in OWCs.
An innovative latching control strategy for MPPT in floating OWC wave power con-
verters was presented in [12]. In [13], a peak-power control scheme was developed for
grid-connected OWCs, and its effectiveness was validated through large-scale testing. A
fuzzy-backstepping-based speed controller was developed in [14], and three Lyapunov-
based nonlinear controllers were introduced in [15] for regulating the DC link voltage, rotor
speed and grid-side converter of the doubly fed induction generators (DFIGs) employed
in OWCs. Regarding Wells turbines, a flow controller was devised in [16] to optimize
the extraction of wave power. An event-triggered controller for OWC energy plants was
described in [17] with a focus on reducing the frequency of control updates between the
controller and plant. The authors of [18] presented an enhanced variant of the conventional
airflow controller, employing fuzzy gain scheduling and a PI-type controller for OWCs.
Several AI-based airflow controller approaches have been proposed recently [19–21]. The
harmony search algorithm was employed in four different implementations to optimize the
proportional–integral–derivative (PID) controller within the airflow control system [19].
Another method for airflow control, based on breaking symmetry, was introduced in [20].
Furthermore, an artificial neural network-based airflow controller utilizing surface eleva-
tion measurements was developed [21], considering the power generated by the NEREIDA
wave power plant and actual wave input data. For additional insights into OWC plant
control, refer to [22]. In [23], a comprehensive analysis of the dynamics and control of air tur-
bines and electrical generators in OWCs was conducted using data from the Mutriku wave
power plant. The study compared Wells turbines with bi-radial turbines, demonstrating
the superiority of the bi-radial turbine design over the Wells turbine configuration.
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In reference [24], a centralized airflow management technique is presented for a
complex ocean energy system with the aim of reducing output power variance. The
paper in [25] provides a straightforward methodology for developing a PID controller that
effectively manages the turbine velocity of an ocean wave converter (OWC) system. The
primary objective of the PID controller is to optimize the extraction of wave energy from
the OWC system. In [26], a unique approach called a fuzzy gain scheduled-sliding mode
controller (FGS-SMC) is employed to simulate an OWC system and achieve the precise
control of the rotating velocity, ensuring stable operation without stalling. The effectiveness
of the FGS-SMC technique in enhancing the operational efficiency of the OWC system is
demonstrated. Additionally, [27] introduces a fuzzy logic controller (FLC) and an airflow
reference generator, which are designed and validated in a simulation environment to
showcase how the precise control of the turbine speed can increase the overall efficiency of
an OWC system. These control mechanisms offer promising avenues for optimizing the
performance of OWC systems. In [28], a nonlinear model predictive controller (NMPC) is
developed to maintain the efficacy of a self-rectifying turbine coupled with an OWC system,
while simultaneously maximizing the generation of electro-mechanical power. The NMPC
approach proves to be effective in controlling the OWC system and maximizing power
generation. Moreover, [29] presents a state-space modeling approach to capture the array of
OWC wave energy converters (WECs) and address their nonlinear dynamics. To maintain
a reference turbine angular speed and generate a smooth torque signal for the generator, a
second-order sliding mode controller (SMC) is designed. This control mechanism enhances
the stability and performance of the OWC system. The control strategies for a small-scale
WEC utilizing a permanent magnet synchronous generator (PMSG) are investigated in [30].
The paper assesses the effectiveness of two control strategies, namely robust adaptive
control (RAC) and conventional field-oriented control (FOC), in optimizing the performance
of the WEC. In [31], the modeling and control of OWC was presented where linear and
nonlinear controllers were described. In [32], many control techniques were reviewed for
wave energy converters. In the study presented in [33], deep learning techniques were
employed to predict the rotational speed of the turbine generator in an oscillating water
column wave energy converter (OWC-WEC).

Reference [34] presents a comprehensive wave-to-wire model specifically designed to
assess the energy conversion process from wave resources to the electrical grid in wave
energy converters (WECs) based on the oscillating water column (OWC) principle. The
model offers an integrated solution that encompasses the primary converter (chamber), the
secondary converter (air turbine) and the tertiary converter (electric generator). This holistic
approach allows for a thorough evaluation of the entire energy conversion chain, providing
valuable insights into the performance and efficiency of OWC-based WEC systems. In [35],
the operation of a Wells turbine for OWC systems was analyzed with an analytical model
and computational fluid dynamics models. Analytical and numerical models were applied
to determine the operating curves of a laboratory-scale turbine. In [36], an intelligent control
algorithm was proposed to enhance the robustness of the permanent magnet synchronous
generator (PMSG)-based oscillating water column (OWC) system. This algorithm generates
precise signals to the PMSG, enabling better control of the power system and achieving a
superior dynamic response compared to other intelligent control algorithms. The study
presented in [37] highlights that the existing power conversion technology for wave energy
converters (WECs) is still influenced by wind systems, indicating the need for further
optimization to meet the specific requirements of WECs. In [38], an inverse model for
the OWC system at the Mutriku power plant was derived using fuzzy modeling and
optimized through genetic algorithms. The proposed strategy demonstrated significant
annual improvements, with an average increase of over 9% in generator power. A novel
peak shaving control strategy was introduced in [39] to reduce the energy costs of OWC-
based WECs. This algorithm was tested in real sea conditions at the Mutriku wave power
plant, showcasing its effectiveness in optimizing energy generation and consumption.
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Nonlinear control strategies have shown promise in improving the performance of
OWC wave energy converters by regulating the rotational speed of the turbine. The studies
reviewed in this literature review demonstrate the effectiveness of different nonlinear
control methods. Further research is needed to explore the applicability of these methods
in practical OWC systems and to optimize their performance.

The Aquila optimization technique is a relatively new meta-heuristic optimization
algorithm that is inspired by the hunting behavior of the eagle. This optimization tech-
nique was proposed in 2019 and has been used to solve various optimization problems
in engineering, economics and other fields [40]. One of the main advantages of Aquila
optimization is its ability to find the global optimum of a given problem with high accu-
racy and efficiency. This is because the algorithm uses a combination of exploration and
exploitation strategies, which allows it to effectively search the solution space for the best
possible solution. Another advantage of Aquila optimization is its simplicity and ease of
implementation. The algorithm only requires a few parameters to be set, and it does not
require any special mathematical or computational skills to use.

In this paper, the backstepping control (BSC) has been designed to control the rotational
speed of the OWC plant. The BSC algorithm has some tunable parameters which should
be chosen optimally to achieve the best possible outcome from the controller. Although
BSC was designed in [14,17,24], the BSC parameters were chosen manually using a trial-
and-error approach. To choose the BSC parameters optimally, there is need to define a
fitness function depending on the error function of the controller. This fitness function
must be minimized using a suitable optimization algorithm. One of the recent algorithms
is the Aquila optimizer (AO) which has a better performance than already-established
optimization techniques. The proposed work has the following novel contributions:

• This study proposes the optimization approach for tuning the BSC control parameters
to achieve the optimum control of an OWC plant. In recent past studies, there was man-
ual tuning of the BSC control parameters which might lead to the poor performance of
an OWC plant.

• An integral square error (ISE)-type fitness function has been defined. The AO tech-
nique has been applied to minimize the ISE and to obtain the optimized BSC control
parameters. This approach has not been applied yet on an OWC plant.

• Additionally, the particle swarm optimization (PSO) and genetic algorithm (GA)
technique are also applied which are widely used optimizers. The details about PSO
and GA can be found in [41–44]. The AO has been compared with the PSO and GA
techniques in terms of rotor speed error and fitness function.

The remaining portion of the paper has the following: Section 2 gives an overview of
the OWC ocean wave energy plant. In Section 3, the MPPT algorithm and BSC scheme
has been designed. In addition, the optimization problem is stated. In Section 4, the AO
technique has been discussed. Section 5 discusses the simulation results followed by the
conclusion in Section 6.

2. Description of OWC and Control Problem Statement

The OWC consists of a partially submerged chamber that is open to the ocean (Figure 1).
As waves pass by, the water level in the chamber rises and falls, causing air to be forced in
and out of the chamber through a small opening. The moving air drives a turbine, which
generates electricity. The motion of the OWC is typically controlled using a control system
that adjusts the opening size to maintain the desired air pressure and maximize the energy
conversion efficiency.
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Figure 1. Schematic representation of OWC plant.

2.1. Wave Modeling and Chamber Dynamics

The JONSWAP model is a well-established theoretical model utilized for the prediction
of ocean wave characteristics, taking into account parameters such as wind speed, direction
and duration. Developed collaboratively by a group of researchers from multiple European
countries in the 1970s, its primary objective was to enhance offshore engineering designs by
providing accurate wave predictions. In this study, the effectiveness of the proposed control
systems was assessed using the JONSWAP model, a widely accepted simulation tool in
wave research. Figure 2 showcases the JONSWAP wave band, exhibiting a prominent
frequency peak of approximately 0.5 rad/s.
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The OWC comprises a hermetically sealed chamber featuring top and bottom aper-
tures, along with four surrounding side walls (refer to Figure 1). Positioned in the water,
the bottom of the chamber is partially submerged and experiences the impact of incoming
waves. The variation in sea level, manifested as the wave height, induces a bidirectional
airflow within the chamber. The mathematical representation of the air velocity is defined
by the equation provided in [24].

Vair =

(
Ao

Ad

)
.
∂hw(t)

∂t
(1)

where Ao is the cross-section area of the OWC
(
m2), Ad is the cross-section area of turbine

duct
(
m2), hw(t) is the wave height (m) and Vair is air velocity (m/s). The representation

for air velocity as presented in (1), provides the input to the Wells turbine.
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2.2. Wells Turbine Dynamics

Self-rectifying turbines, such as the Wells turbine, are employed in wave energy conver-
sion systems. These turbines facilitate bidirectional airflow while maintaining a consistent
rotational direction. However, one of the drawbacks associated with Wells turbines is their
susceptibility to stalling behavior, which can adversely impact their performance. The
torque of the turbine, Ttur, is presented as [24]:

Ttur = f (φtur)·V2
air (2)

where f (φtur), a function of turbine flow coefficient, φtur, can be stated as:

f (φtur) = Ctur·ktur·r·
(

1 + φ−1
tur

)
(3)

Ctur characterizes the Wells turbine characteristics. Ctur varies with φtur as shown in
Figure 3. The turbine flow coefficient, φtur, is provided by:

φtur = Vair·(rωrot)
−1 (4)
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As demonstrated in Figure 3, φtur ≤ φth = 0.3 offers the highest torque coefficient,
which would therefore deliver the most turbine torque and hence the greatest production
power. If flow coefficient remains below the threshold value, i.e., φtur ≤ φth = 0.3,
turbine torque increases and subsequently the output power increases. However, when
φtur > φth = 0.3, the turbine torque decreases and thus, the output power starts decreasing.

The Wells turbine is connected to a doubly fed induction generator (DFIG). Consequently,
the equation governing the turbo–generator relationship can be expressed as follows:

dωrot

dt
=

1
J
(
Ttur − F·ωrot − Tgen

)
(5)

where ωrot is rotor speed; F is frictional coefficient; and Tgen is the electro-magnetic torque
of DFIG.

2.3. DFIG Dynamics

In this study, a dynamic version of the doubly fed induction generator (DFIG) em-
ploying a direct–quadrature (dq) reference frame was considered. The utilization of the dq
model offers the advantage of representing all three phases as direct current (dc) quantities
within a stationary reference frame using a synchronous rotating frame [24]. The state
equations governing the behavior of the DFIG are presented as follows:

dλds
dt

= −RsLr

Q
λds + ωeλqs +

RsLm

Q
λdr + vds (6)
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dλqs

dt
= −ωeλds −

RsLr

Q
λqs +

RsLm

Q
λqr + vqs (7)

dλdr
dt

=
RrLm

Q
λds −

RrLs

Q
λdr − (ωrot −ωe)λqr + vdr (8)

dλqr

dt
=

RrLm

Q
λqs + (ωrot −ωe)λdr + vqr (9)

where Q = LsLr − L2
m. λds, λqs, λdr and λqr are dq flux quantities. Rs and Rr are DFIG

resistances whereas Ls, Lr and Lm are DFIG inductances. ωe is the stator supply frequency,
vds, vqs, vdr and vqr are DFIG voltages. The flux states λds, λqs, λdr and λqr have initial
conditions λds0, λqs0, λdr0 and λqr0, respectively. The electromagnetic torque and output
power expressions are:

Tgen = −M
(
λqsλdr − λdsλqr

)
(10)

Pgen = Tgenωrot (11)

where M = −
( 3

2
)( p

2
)( Lm

Q

)
. p is the number of poles of DFIG.

3. Design of BSC Scheme and MPPT Algorithm
3.1. Design of MPPT Scheme

The MPPT algorithm [17] for obtaining the rotor speed reference, α1d, is presented
next. It is evaluated using Vair as the following:

Step 1: Evaluate Vair from Equation (1).
Step 2: Evaluate the highest values of Vair from the procedure given below:

i f Vair 6= 0 and
.

Vair = 0
Vair−p = Vair

else
Vair−p = 0

end


(12)

Step 3: Obtain the zero-order hold (ZOH) of Vair−p as:

Vair−p = ZOH
(
Vair−p

)
(13)

Step 4: For φth = 0.3, evaluate the ωre f using Equation (4) as:

ωre f = Vair−p (rφth)
−1 (14)

Step 5: Limit ωre f to a minimum and maximum level and obtain ω1d as:

i f ωre f ≤ ωe
ω1d = ωe

else i f ωre f ≥ ωe
ω1d = ωrp

else
ω1d = ωre f

end


(15)

where ωe < ω1d < ωrp.
Step 6: To mitigate sudden changes ω1d, a low pass filter with impulse response h f is

used as:
α1d = h f ⊗ ω1d (16)
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The Laplace representation of h f is as follows:

H f (s) =
1

1 + 0.1s
(17)

Therefore, α1d is the final reference speed from the MPPT algorithm. This will be given
as the input to the BSC.

3.2. Design of BSC Scheme

Equations (5)–(9) are converted to state space in strict feedback form with an aim to
design the BSC. The state equations of THE OWC plant [17] are given as:

.
α1 = k1α1 + k2α2 + Dtur (18)

.
α2 = k3(α1 −ωe) + k4α2 + ur (19)

where k1 = − F
J ; k2 = −M

J ; k3 = Lr
Lm

ψS; k4 = − Rr Ls
Q ; ur = control signal = vqr; Dtur =

Ttur
J ;

α1 = ωrot and α2 = λqr.
Further, simplifying the above equation, we have:

.
α1 = f1(α1, Dtur) + k2α2 (20)

.
α2 = f2(α1, α2) + ur (21)

where f1(α1, Dtur) = k1α1 + Dtur; and f2(α1, α2) = k3(α1 −ωe) + k4α2.
For the BSC, a step-by-step design process is used. The controller for a second-order

system represented by Equations (20) and (21) is designed in two steps. Initially, a virtual
controller, α2d, is to be designed. Then, α2d would be used for designing the final control
law ur.

To design the virtual controller, α2d, the error component is considered as:

α̃1 = α1d − α1 (22)

Next, Equation (22) is differentiated and is given as:

.
α̃1 =

.
α1d −

.
α1 =

.
α1d − f1(α1, Dtur)− k2α2 (23)

Now, we add and subtract the k2α2d term and Equation (23) is expressed as:

.
α̃1 =

.
α1d − f1(α1, Dtur)− k2α2 + k2α2d − k2α2d (24)

The virtual controller α2d is selected as:

α2d = k−1
2
( .
α1d − f1(α1, Dtur) + σ1α̃1

)
(25)

where σ1 > 0.
We next describe the second error component as:

α̃2 = α2d − α2 (26)

Substituting Equations (25) and (26), Equation (24) can be expressed as:

.
α̃1 = −σ1α̃1 + k2α̃2 (27)
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Next, the derivative of Equation (26) is given by:

.
α̃2 =

.
α2d −

.
α2 =

.
α2d − f2(α1, α2)− ur (28)

To design the controller that maintains the closed loop stability of the OWC system,
we choose a Lyapunov function candidate, Vlp f , as:

Vlp f =
1
2

(
α̃2

1 + α̃2
2

)
(29)

Equation (28) is differentiated and is written as:

.
V lp f = α̃1

.
α̃1 + α̃2

.
α̃2 (30)

⇒
.

V lp f = α̃1(−σ1α̃1 + k2α̃2) + α̃2
( .
α2d − f2(α1, α2)− ur

)
(31)

⇒
.

V lp f = −σ1α̃2
1 + α̃2

{ .
α2d − f2(α1, α2) + k2α̃1 − ur

}
(32)

The control law ur:

ur =
.
α2d − f2(α1, α2) + k2α̃1 + σ2α̃2 (33)

gives:
.

V lp f = −σ1α̃2
1 − σ2α̃2

2 ≤ 0 (34)

where σ2 > 0.
Equation (34) is negative semi-definite.

.
V lp f does not have trajectories of error states

α̃1 and α̃2 other than the trivial trajectory α̃1 = α̃2 = 0. Then, the states α̃1 and α̃2 settle
asymptotically to zero. Hence, the system given by Equations (20) and (21) with control
law ur given in Equation (33) is asymptotically stable.

3.3. The Optimization Problem Statement

The BSC law in Equation (33) has two unknown parameters σ1 and σ2 which are
greater than zero for ensuring the asymptotic stability of the system. To obtain the best
possible outcome from BSC, there is a need to choose unknown parameters σ1 and σ2
appropriately. For this to be achieved, a fitness function has been defined which depends
on the values of unknown parameters σ1 and σ2. The fitness function, J f it, is given by:

J f it =
∫ Tsim

0

[
α̃2

1(σ1, σ2) + α̃2
2(σ1, σ2)

]
dt (35)

where Tsim is the simulation run time. Equation (35) is an ISE-type fitness function which
is very widely used for optimization purposes. Here, α̃1 and α̃2 are indirectly dependent
upon the BSC parameters, σ1 and σ2. For minimizing the fitness function, the AO algorithm
has been applied which is discussed in next section. The AO technique has also been
compared to the PSO and GA techniques to validate its performance. Figure 4 shows the
block diagram for the overall optimization scheme. The BSC parameters, σ1 and σ2, are
sent to the BSC block where the state errors α̃1 and α̃2 are calculated. The state errors α̃1
and α̃2 are then sent to fitness function block. The fitness function value, J f it, is calculated
using Equation (35) which works as the input to the AO algorithm. Now, the AO algorithm
provides new values of σ1 and σ2. This process repeats until the maximum number of
iterations is reached. At the end of last iteration, the optimized values of σ1 and σ2 are
obtained which gives a minimized value of fitness function.



Energies 2023, 16, 4495 10 of 21Energies 2023, 15, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 4. Block diagram for optimizing BSC parameters based on AO. 

4. The AO Algorithm 
The AO technique [40] is a metaheuristic optimization algorithm inspired by the 

hunting behavior of the Aquila bird. It is a population-based algorithm that simulates the 
hunting behavior of eagles in the search for prey. The algorithm is based on the four 
different types of hunting strategies used by the Aquila bird to hunt down different prey. 

Expanded Exploration: Expanded exploration is a key feature of the Aquila 
optimization algorithm, which enables the Aquila bird to explore a larger search space for 
the prey. The mathematical model of expanded exploration in the Aquila optimization 
algorithm is: 𝑍௜(𝑡 + 1) = 𝑍௕௘௦௧(𝑡) × ൬1 − 𝑡𝑇௢൰ + (𝑍ெ(𝑡) − 𝑍௕௘௦௧(𝑡) × 𝑟𝑎𝑛𝑑) (36)

where 𝑍௜(𝑡 + 1) is the position of the ith individual at (t + 1) iteration, 𝑍௕௘௦௧(𝑡) is the best 
solution up to the iteration t, ቀ1 − ௧்೚ቁ  controls the search space based on the iteration 
number, 𝑇௢  is the maximum iterations in the algorithm, rand is a random number 
between 0 and 1 and 𝑍ெ(𝑡) is the mean value given as: 

𝑍ெ(𝑡) = 1𝑃 ෍ 𝑍௜(𝑡)   𝑓𝑜𝑟 ∀ 1, 2, 3 … , 𝑁௉
௜ୀଵ  (37)

where P is the population size, and N is the dimension size. 
Narrowed Exploration: After finding the prey using expanded exploration, the 

Aquila encircles the prey, and then attacks. This method is mathematically represented 
as: 𝑍௜(𝑡 + 1) = 𝑍௕௘௦௧(𝑡) × 𝐿𝐹(𝐷) + 𝑍ோ(𝑡) + (𝑦 − 𝑧) × 𝑟𝑎𝑛𝑑 (38)

where 𝑍ோ(𝑡) is a random solution taken between 1 and P, y and z are for representing the 
shape of the spiral search given in Equations (42) and (41), respectively, and LF (D) is the 
Levy function distribution given by: 𝐿𝐹(𝐷) = 𝑠𝑢𝜖|𝑤|ଵ/ఉ (39)

where u and w are random numbers between 0 and 1, and s and β are constants equal to 
0.01 to 1.5, respectively. 

𝜖 =  𝛤(1 + 𝛽) × sin ൬𝜋𝛽2 ൰𝛤 ൬1 + 𝛽2 ൰ × 𝛽 × 2ఉିଵଶ  (40)

Figure 4. Block diagram for optimizing BSC parameters based on AO.

4. The AO Algorithm

The AO technique [40] is a metaheuristic optimization algorithm inspired by the
hunting behavior of the Aquila bird. It is a population-based algorithm that simulates
the hunting behavior of eagles in the search for prey. The algorithm is based on the four
different types of hunting strategies used by the Aquila bird to hunt down different prey.

Expanded Exploration: Expanded exploration is a key feature of the Aquila optimiza-
tion algorithm, which enables the Aquila bird to explore a larger search space for the prey.
The mathematical model of expanded exploration in the Aquila optimization algorithm is:

Zi(t + 1) = Zbest(t)×
(

1− t
To

)
+ (ZM(t)− Zbest(t)× rand) (36)

where Zi(t + 1) is the position of the ith individual at (t + 1) iteration, Zbest(t) is the best
solution up to the iteration t,

(
1− t

To

)
controls the search space based on the iteration

number, To is the maximum iterations in the algorithm, rand is a random number between
0 and 1 and ZM(t) is the mean value given as:

ZM(t) =
1
P

P

∑
i=1

Zi(t) f or ∀ 1, 2, 3 . . . , N (37)

where P is the population size, and N is the dimension size.
Narrowed Exploration: After finding the prey using expanded exploration, the Aquila

encircles the prey, and then attacks. This method is mathematically represented as:

Zi(t + 1) = Zbest(t)× LF(D) + ZR(t) + (y− z)× rand (38)

where ZR(t) is a random solution taken between 1 and P, y and z are for representing the
shape of the spiral search given in Equations (42) and (41), respectively, and LF (D) is the
Levy function distribution given by:

LF(D) =
suε

|w|1/β
(39)

where u and w are random numbers between 0 and 1, and s and β are constants equal to
0.01 to 1.5, respectively.

ε =
Γ(1 + β)× sin

(
πβ
2

)
Γ
(

1+β
2

)
× β× 2

β−1
2

(40)

where Γ is the Gamma function.
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z = l sin(θ) (41)

y = l cos(θ) (42)

l = a + Ub (43)

θ = −0.005b +
3π

2
(44)

where a is a constant between [1,20], b is a random integer in the range [1, D] and U is a
small value fixed in this paper as 0.00565 [40].

Expanded Exploitation: In this step, after identifying the prey using the above two
steps, the Aquila bird descends vertically on to the prey to reach a close proximity, and is
mathematically presented as:

Zi(t + 1) = γ[Zbest(t)− ZM(t)] + δ× [(UB − LB)× rand + LB] (45)

where γ and δ are small numbers fixed in this paper as 0.1 [40], rand is a random number
between 0 and 1, UB is the upper bound and LB is the lower bound.

Narrowband Exploitation: In close proximity of the prey, the Aquila bird attacks the
prey and grabs it by the following model:

Zi(t + 1) = S× Zbest(t)− Zi(t)× A× rand− B× LF(D) + rand× A (46)

where S = t
2×rand−1
(1−To)2 is the quality function, rand is a random number between 0 and 1,

A = 2× rand− 1 and B = 2×
(

1− t
To

)
.

5. Simulation Results

Simulations have been performed in this section using MATLAB/SIMULINK. First,
MPPT and BSC are implemented and then unknown parameters of BSC have been tuned us-
ing the AO technique as well as the PSO and GA techniques. The numerical parameters [24]
taken for the simulation are given in Table 1.

Table 1. OWC plant parameters.

Chamber:
Ao = 7.5 m2; Ad = 1.18 m2

DFIG:
p = 4; Rs = 0.0181; Rr = 0.0334; Ls = 7.543;
Lr = 7.573; Lm = 7.413; Vs = 390/

√
3 V;

ωe = 100π rad/s; F = 0.02; J = 50;
Pgen-rated = 100.0 kW

Wells Turbine:
ktur = 0.7079; r = 0.3643 m

Initial Conditions:
ωr0 = 100 rad/s; ψds0 = ψs = Vs/ωe = 0.7167 Wb; ψqs0 = ψdr0 = ψqr0 = 0 Wb

Initially, a random wave profile from the JONSWAP irregular wave model has been
generated which works as the input to the OWC chamber. The JONSWAP wave profile
is shown in Figure 5. It is a randomly generated profile. Every time, a different irregular
shape is generated and one of the irregular shapes is picked up. Due to this wave profile,
a bidirectional airflow is generated inside the OWC chamber. However, this airflow can be
considered as unidirectional because the Wells turbine rotates unidirectionally. The air velocity
(unidirectional) is shown in Figure 6 which is given as an input to the Wells turbine.
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5.1. Performance of the Uncontrolled OWC Plant

In this subsection, the performance of the uncontrolled OWC plant is analyzed in
terms of the turbine rotor speed, turbine flow coefficient and electrical output power. As
shown in Figure 7, the rotor speed is around 157 rad/s due to the stall of the Wells turbine.
It is also evident in the waveform of the flow coefficient in Figure 8 that the flow coefficient
crosses the 0.3 threshold value and in those instances turbine stalling occurs. This produces
less turbine torque resulting in a reduced output power. The output power at 20 s in
Figure 9 suddenly reduces due to the stalling of the turbine and remains below 50 kW.
The stalling can be avoided by keeping the flow coefficient below 0.3. For this, the MPPT
algorithm and controller is required which is discussed in the next subsections.
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Figure 8. Turbine flow coefficient of uncontrolled OWC plant.
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Figure 9. Output power of uncontrolled OWC plant.

5.2. Performance of the PSO-BSC controlled OWC Plant

The PSO [41,42] is a widely used optimization algorithm and used in this study for
comparing its performance with the AO algorithm. The PSO technique minimizes the
fitness function, J f it, and generates the suitable values of BSC unknown parameters, σ1 and
σ2 with a range of σ1 and σ2 as 0 < σ1, σ2 < 50. The total number of iterations taken was
50 and other PSO parameters were taken from [43]. The values of the BSC parameters are:
σ1 = 7.6309 and σ2 = 6.9962.

Next, the rotor reference speed (red colored line) as shown in Figure 10 is generated
from the MPPT algorithm. The reference rotor speed depends on the air velocity inside the
turbine duct. The air velocity is given to the MPPT algorithm which generates the reference
rotor speed. The reference rotor speed varies according to changes in the peak air velocity.
The actual rotor speed (blue dashed line) as shown in Figure 10a is generated due to the
BSC scheme. The actual rotor speed very closely follows the reference speed as shown
in Figure 10b. Due to variations in the actual rotor speed according to the reference, the
turbine flow coefficient (in Figure 11) is restricted below the 0.3 value and thus, turbine
stalling is blocked. Therefore, the output power (in Figure 12) gets maximized and reaches
a peak value of 72 kW. It was limited to 50 kW in an uncontrolled OWC plant.
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Figure 10. Rotor speed of the PSO-BSC controlled OWC plant. (a) Rotor speed versus time. (b) Zoomed
version of (a).
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Figure 11. Turbine flow coefficient of PSO-BSC controlled OWC plant.
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Figure 12. Output power of PSO-BSC controlled OWC plant.

5.3. Performance of the AO-BSC Controlled OWC Plant

The AO technique is a population-based optimization approach inspired by the
Aquila’s behaviors in nature during the process of catching prey. The AO technique
again minimizes the fitness function, J f it, and generates the suitable values of the BSC
unknown parameters, σ1 and σ2. The AO technique also uses 50 iterations with a range of
σ1 and σ2 as 0 < σ1, σ2 < 50. The values of the optimization parameters of AO technique
were taken from [40]. After optimization with AO, the σ1 and σ2 are obtained as σ1 = 5.4581
and σ2 = 45.8453.

The performance of the OWC plant with AO-BSC is shown in Figures 13–15. Figure 13a
presents the rotor speed performance wherein the actual rotor very closely follows the
reference rotor speed. The zoomed version of Figure 13a, as shown in Figure 13b, also
shows very close tracking of the reference by actual rotor speed. The turbine stall problem
is avoided as the flow coefficient is below the threshold value as shown in Figure 14.
Because of this, the output power (in Figure 15) peaks at 72 kW as compared to 50 kW in
the uncontrolled case.
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version of (a).
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5.4. Performance of the GA-BSC Controlled OWC Plant

The GA, which depends on the process of natural selection, the mechanism that propels
biological evolution, is a technique for resolving both constrained as well as unconstrained
optimization issues. A population of unique solutions is repeatedly modified by the GA [44].
The GA minimizes the fitness function, J f it, and generates the optimized values of BSC
parameters, σ1 and σ2. The GA technique uses 50 iterations with a range of σ1 and σ2 as
0 < σ1, σ2 < 50. After optimization with the GA, the σ1 and σ2 are obtained as σ1 = 8.377
and σ2 = 27.04.

Figure 16a represents the performance rotor speed for a GA-BSC controlled OWC
plant. Very satisfactory tracking can be observed in Figure 16a which is a zoomed version
of Figure 16a. The flow coefficient also remains below the permissible limit (Figure 17)
which prevents turbine stalling and in turn, the maximum power is extracted from sea
waves (Figure 18).
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5.5. Performance Comparison of the AO, PSO and GA OWC Plant

For the uncontrolled OWC plant, the peak electrical power generated is below 50 kW
whereas for the AO-BSC, PSO-BSC or GA-BSC controlled OWC plant, the peak electrical
power generation reaches up to 72 kW as shown in Figures 12, 15 and 18, respectively.
It shows an increase of 44% as compared to the uncontrolled OWC plant. Although the
performance of all techniques is appropriate for choosing the BSC parameters, the AO
technique has the advantage as compared to PSO and GA. The rotor speed error (α̃1 in
Equation (22)) performance is shown in Figure 19. It is observed that the error waveform
for AO-BSC has the least maximum peak overshoot as compared to PSO-BSC and GA-BSC.
As shown in Figure 20, the values of J f it are 55.8455, 56.4184 and 58.2377 for AO, PSO and
GA, respectively, after completion of the 50 iterations. The AO technique has a lower fitness
value as compared to the PSO and GA techniques. Therefore, it can be concluded that the
AO technique seems more suitable as compared to the PSO and GA techniques.

Energies 2023, 15, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 18. Output power of GA-BSC controlled OWC plant. 

5.5. Performance Comparison of the AO, PSO and GA OWC Plant 
For the uncontrolled OWC plant, the peak electrical power generated is below 50 kW 

whereas for the AO-BSC, PSO-BSC or GA-BSC controlled OWC plant, the peak electrical 
power generation reaches up to 72 kW as shown in Figures 12, 15 and 18, respectively. It 
shows an increase of 44% as compared to the uncontrolled OWC plant. Although the 
performance of all techniques is appropriate for choosing the BSC parameters, the AO 
technique has the advantage as compared to PSO and GA. The rotor speed error (𝛼෤ଵ in 
Equation (22)) performance is shown in Figure 19. It is observed that the error waveform 
for AO-BSC has the least maximum peak overshoot as compared to PSO-BSC and GA-
BSC. As shown in Figure 20, the values of 𝐽௙௜௧ are 55.8455, 56.4184 and 58.2377 for AO, 
PSO and GA, respectively, after completion of the 50 iterations. The AO technique has a 
lower fitness value as compared to the PSO and GA techniques. Therefore, it can be 
concluded that the AO technique seems more suitable as compared to the PSO and GA 
techniques. 

 
Figure 19. Rotor speed error performance of AO, PSO and GA. 

0 10 20 30 40 50
-10

-5

0

5
x 10

4

Time (s)

O
ut

pu
t p

ow
er

 (W
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-15

-10

-5

0

5

10

15

Time (s)

R
ot

or
 sp

ee
d 

er
ro

r (
ra

d/
s)

 

 
AO
PSO
GA

Figure 19. Rotor speed error performance of AO, PSO and GA.

Energies 2023, 15, x FOR PEER REVIEW 19 of 21 
 

 

 
Figure 20. Iteration wise performance of AO, PSO and GA. 

6. Conclusions and Future Scope 
This paper proposed ocean wave energy control using the AO technique. An OWC 

with a Wells turbine and DFIG was chosen for the ocean wave energy conversion. For 
achieving the maximum power, an MPPT algorithm was designed which provided a 
suitable rotor speed reference to the controller. Then, a nonlinear controller called BSC 
was designed using the Lyapunov stability theory which helped the actual rotor speed to 
track the reference speed generated by the MPPT algorithm. The main problem of this 
study was to choose BSC unknown parameters using optimization methods. For this, an 
ISE-type fitness function was defined which indirectly depended on BSC parameters. As 
an objective to minimize the fitness function, the AO technique was employed which 
resulted in suitable BSC parameters with minimized ISE. The AO result was also 
compared with the PSO and GA results, where AO outperformed PSO and GA in terms 
of fitness function value and rotor speed error performance for 50 iterations. The value of 
the fitness function is 55.8455, 56.4184 and 58.2377 for AO, PSO and GA, respectively, after 
completion of the 50 iterations. The AO has a minimum fitness function value. Some 
important OWC plant parameters such as rotor speed, flow coefficient and output power 
have also been analyzed for an uncontrolled OWC, PSO-BSC, GA-BSC and AO-BSC 
controlled OWC plant. All optimization techniques perform well in rotor speed tracking, 
maintaining a flow coefficient below the threshold level, and maximizing output power. 

This study employed the AO technique and its comparison with the PSO and GA 
technique, but many optimization techniques have been developed recently which might 
be the subject of future research. The parameters of control techniques other than BSC can 
be optimized using AO and many other optimization methods in future works. The 
seasonal variations in sea waves could be considered for location specific future studies. 

Author Contributions: Conceptualization, S.K.M. and B.A.; methodology, S.K.M. and A.V.J.; 
software, S.K.M.; validation, B.A., N.B. and A.V.J.; formal analysis, P.T. and P.M.; investigation, 
S.K.M.; resources, N.B. and P.T.; data curation, P.M., N.B. and P.T.; writing—original draft 
preparation, S.K.M.; writing—review and editing, B.A., A.V.J., N.B., P.M. and P.T.; visualization, 
A.V.J., P.M., N.B. and P.T.; supervision, N.B.; project administration, B.A.; funding acquisition, P.M. 
and P.T. All authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported in part by the Framework Agreement between the University 
of Pitesti (Romania) and King Mongkut’s University of Technology North Bangkok (Thailand), in 
part by an International Research Partnership “Electrical Engineering–Thai French Research Center 
(EE-TFRC)” under the project framework Lorraine Université d’Excellence (LUE) in cooperation 
with Université de Lorraine and King Mongkut’s University of Technology North Bangkok and in 
part by the National Research Council of Thailand (NRCT) under the Senior Research Scholar 
Program, Grant No. N42A640328, and in part by King Mongkut’s University of Technology North 
Bangkok under Grant no. KMUTNB-64-KNOW-20. 

Data Availability Statement: Not applicable. 

10 20 30 40 50

55.5

56.0

56.5

57

57.5

Iteration

Be
st

 fi
tn

es
s 

fu
nc

tio
n

 

 
AO PSO GA

Figure 20. Iteration wise performance of AO, PSO and GA.



Energies 2023, 16, 4495 19 of 21

6. Conclusions and Future Scope

This paper proposed ocean wave energy control using the AO technique. An OWC
with a Wells turbine and DFIG was chosen for the ocean wave energy conversion. For
achieving the maximum power, an MPPT algorithm was designed which provided a
suitable rotor speed reference to the controller. Then, a nonlinear controller called BSC
was designed using the Lyapunov stability theory which helped the actual rotor speed
to track the reference speed generated by the MPPT algorithm. The main problem of this
study was to choose BSC unknown parameters using optimization methods. For this,
an ISE-type fitness function was defined which indirectly depended on BSC parameters.
As an objective to minimize the fitness function, the AO technique was employed which
resulted in suitable BSC parameters with minimized ISE. The AO result was also compared
with the PSO and GA results, where AO outperformed PSO and GA in terms of fitness
function value and rotor speed error performance for 50 iterations. The value of the fitness
function is 55.8455, 56.4184 and 58.2377 for AO, PSO and GA, respectively, after completion
of the 50 iterations. The AO has a minimum fitness function value. Some important OWC
plant parameters such as rotor speed, flow coefficient and output power have also been
analyzed for an uncontrolled OWC, PSO-BSC, GA-BSC and AO-BSC controlled OWC
plant. All optimization techniques perform well in rotor speed tracking, maintaining a flow
coefficient below the threshold level, and maximizing output power.

This study employed the AO technique and its comparison with the PSO and GA
technique, but many optimization techniques have been developed recently which might
be the subject of future research. The parameters of control techniques other than BSC
can be optimized using AO and many other optimization methods in future works. The
seasonal variations in sea waves could be considered for location specific future studies.
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