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Abstract: This paper compares the performance of different control techniques applied to a high-
performance brushless DC (BLDC) motor. The first controller is a classical proportional integral (PI)
controller. In contrast, the second one is based on adaptive neuro-fuzzy inference systems (propor-
tional integral-adaptive neuro-fuzzy inference system (PI-ANFIS) and particle swarm optimization-
proportional integral-adaptive neuro-fuzzy inference system (PSO-PI-ANFIS)). The control objective
is to regulate the rotor speed to its desired reference value in the presence of load torque disturbance
and parameter variations. The proposed controller uses a dSPACE platform (MicroLabBox controller
board). The experimental prototype comprises a PEMFC system (the Nexa Ballard FC power genera-
tor: 1.2 kW, 52 A) and a brushless DC motor BLDC of 1 kW 1000 rpm. The PSO-PI-ANFIS controller
presents better performance than the PI-ANFIS and classical PI controllers due to its ability to opti-
mize the PI-ANFIS controller’s parameters using the particle swarm optimization (PSO) algorithm.
This optimization results in improved tracking accuracy and reduced overshoot and settling time.

Keywords: PEM fuel cell; brushless DC (BLDC) motor; proportional integral controller (PI); adaptive
neuro-fuzzy inference system (ANFIS); particle swarm optimization (PSO); speed control; dSPACE
DS1202 real-time control (RTC) card; experimental validation

1. Introduction

In view of the recent disturbances in the air due to pollution, as well as the depletion of
and the costs of extracting fossil fuels, which are increasing with time [1], scientific research
is accelerating to find alternatives to replace fossil fuels with the aim to cease using them
altogether; among these alternatives, for example, fuel cells [2–4] have recently begun to be
considered along with batteries and supercapacitors, and many car companies have started
to design, develop, and implement fuel cell systems into the motors of electric cars [5,6].
For fuel cells, we find brushless DC motors that combine the features of both DC motors
as well as induction motors. It is expected that, by 2030, BLDC motors will become the
dominant power transmission method in various industries, replacing traditional induction
motors [7].

Developing independent energy sources, especially clean and economically viable
sources, is one of the significant technological challenges currently being faced. The use
of an electric motor, with high energy efficiency and silent and non-polluting operation,
seems to be the ideal solution, and many studies have been carried out to study the effect
of the load change on a brushless DC motor [8–10], while limited studies have investigated
the speed regulation of a motor powered by a fuel cell [11–13].

To drive a light motorcycle, Kim et al. (2009) built an experimental prototype of a fuel
cell-powered motor/generator and controlled the motor via a classic PI controller, but the
results they obtained showed that the motor speed exceeded the reference speed [13].
While Tsotoulidis et al. (2013) proposed controllers called MRPID, which is a method
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that improves control dynamics and system stability, and compared it with a classic PI
controller, but after looking at the results, which show the superiority of the latter [14].
Feyzi et al. (2011) controlled the speed by regulating a parameter of the PID unit by
exploiting an algorithm called particle swarm optimisation (PSO) to achieve a better
dynamic response [15]. Then comes Yigit et al. (2020) by building the system comprising a
fuel cell, electrolyzer, and brushless DC motor on MATLAB software and using a closed-
loop FOPI controller whose parameters are optimised by an algorithm called Moth Swarm
(MSA). However, the results show that the motor speed exceeds the reference speed on the
one hand, and on the other hand the fluctuations in the speed reached about 17 revolutions
per minute [11].

Recently, with the complexity of systems and their non-linear nature, in addition to the
difficulty of finding parameter values for the PI controller, and thanks to the development
of microcontrollers and the increase in their computational speeds, researchers began to rely
on algorithms as tuning techniques for adjusting the parameters of the controllers, easy to
use and easy to program, and many of them applied these algorithms to regulate the speed
of motors, including brushless DC motors used in many applications, including electric
vehicles, in general, the optimization can be summarized as the best solution in terms of
motor response time, fluctuations in speed, energy consumed by the motor, and effort
applied to the fuel cell [16–18].

To date, very few studies have been able to implement a combination of classical PI
controllers, Adaptive Fuzzy Inference System (ANFIS), and Particle Swarm Optimization
(PSO), which is one of the most famous optimization algorithms applied in various fields,
in order to improve the dynamic response of the motor, as well as maintain the life of the
fuel cell, by reducing the peak current that the cell is subjected to when a sudden change
in load occurs. Younus et al. (2023) performed a hybrid optimization of a gray wolf and
a proportionally integrated controller. They compared it with a PID controller, a PSO-PI
controller and an ANFIS controller to control the speed of a brushless DC motor. For the
load and speed conditions of two variables, one fixed and the other variable, the simulation
results showed that the controllers based on Hybrid GWO-PI are reliable compared to the
control units under study [19]. However, these studies remain just simulations far from
real systems, so we decided to test these controllers on a real platform, then design and
build them inside the laboratory to remove confusion and confirm or deny the results
obtained in the literature that was then listed. Among these controllers tested on the
mentioned platform, we cite the PI controller, the PI-ANFIS controller, and the PSO-PI-
ANFIS controller. The experimental results showed the superiority of controllers with
optimization algorithms, including the PSO-PI-ANFIS controller.

The Purpose of This Article

The purpose of this research is to present the principles of the initial design of a BLDC
control system that works on fuel cell energy and as an environmentally friendly source
that has recently begun to be used in electric vehicles by relying on components, then
designing and manufacturing them in the laboratory, and others and then purchasing them,
to conduct laboratory tests of advanced algorithms. On a real platform that gives readers a
clear idea, as well as an idea of the design, it can be created in any country to try all kinds
of algorithms, including advanced and classic ones. Design, simulation, and experimental
study of a 1 kW brushless DC motor used in electric vehicles have been achieved.

2. System Overview

Tested on a small scale in the laboratory, the new topology of an electric vehicle
powered by a clean energy source, which is the fuel cell (FC), is illustrated in Figure 1.
This energy source converts hydrogen supplied through tanks into electric current by
chemical reactions between hydrogen and air. It needs two DC/DC converters connected
to a standard DC traction bus. It is, therefore, through them that the fuel cell’s power
will pass to the traction motor, which is a brushless direct current motor (BLDC) driven
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by a DC-to-AC converter. In addition, the system consists of an auxiliary services unit,
sensors for measuring voltage, current, torque, and speed, and three hall effect sensors
used to detect the position of the rotor, and, finally, the MicroLabBox controller board
(dSPACE DS 1202 platform). These devices have been selected from commercially available
components. The FC is the primary energy source of the electric vehicle. It is connected
to a buck-boost-type unidirectional DC/DC converter that stabilizes the unregulated fuel
cell voltage of the Nexa® 1200 fuel cell module to 24 Volt direct current. It also protects
the system against reverse currents. In addition, the DC/DC converter is connected to a
boost-type bidirectional DC/DC converter which raises the low DC voltage delivered by
the FC converter, which is 24 V, to the traction standard DC bus, which is 48 V. The three-
phase BLDC motor is easy to spin. The control is based on the conversion of direct current
into alternating current. For this, a three-phase inverter is required. The inverter comprises
power switches, such as MOSFETs or IGBTs, chosen according to the required power and
efficiency. The DC to AC inverter is selected to fit with the motor used to switch. This
driver is controlled according to the signals from the Hall effect sensors and using the
Pulse Width Modulation (PWM) control strategy. Motor voltage, current, and speed are
controlled by changing the duty cycle (D) of the PWM signal. Hall effect sensors are placed
on the stator, and their signals vary from a high state to a low state during the rotation of
the motor (the low/high state is output when a North/South magnetic pole is detected).
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• Pin 5: pedal analogue input.
• Pin 11: Hall phase C.
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• C → phase C.

Figure 1. Schematic diagram of the BLDC control system in an FCEV application.

3. System Modelling
3.1. Fuel Cell Modeling

Due to factors such as the low operating temperature, high-power density, efficiency,
and relative ability to quickly adapt to traction motor demands in terms of changes in power,
PEM FC can be considered a suitable option for public transport applications. A Nexa®

1200, a fully integrated fuel cell power module based on the FCgen™ 1020 ACS stack from
Ballard’s, has been selected in this work, which presents a rated power of 1.2 kW–24 V.

In this work, we consider the static (current-voltage) characteristic of the PEMFC,
as shown in Figure 2. This non-linear characteristic [20] depends on the thermodynamically
predicted fuel cell voltage output and three major losses, activation losses (due to electro-
chemical reaction), ohmic losses (due to ionic electronic condition), and concentration losses
(due to mass transport). A reduced model represents the behavior of this FC to consider
the FC dynamics. This equivalent electric circuit, illustrated in Figure 3, is used [21,22].
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Figure 2. Fuel cell V–I characteristics and output power curve.

R0

Rac Cfc vc

ifc

vfc

E0

Figure 3. Equivalent electric RC circuit of a fuel cell stack.

Then, the FC voltage is governed by the following equations,

v f c = E0 − R0i f c − vc (1)

dvc

dt
= − 1

τf c
vc +

1
C f c

i f c (2)

where E0 is the open circuit voltage, R0 is the ohmic resistance, C f c is the equivalent electri-
cal capacitance, τf c = C f cRac is the fuel cell electrical time constant, and Rac represents the
equivalent series resistance of the activation and concentration resistances [23].

3.2. Mathematical Model of the BLDC (Brush Less Direct Current Motor)

Regarding the BLDC motor, different analytical models could be considered. In this
work, BLDC motor modelling is based on phase variables (abc) as an easy-to-design tool for
developing BLDC motor controls. Three phase BLDC motor is usually modelled as a series
connection of stator winding resistance, inductance and back–emf as shown in Figure 4.
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Figure 4. Equivalent circuit of the BLDC motor.

For simplification purposes, the model will be based on the following assumptions.
The air gap is uniform; the magnetic circuit is unsaturated and does not take into account
losses by eddy currents or by hysteresis; the three phases of the stator are symmetrical and
identical. Therefore, Equation (3) presents the BLDC motor voltages.Va

Vb
Vc

=
ra 0 0

0 rb 0
0 0 rc

ia
ib
ic

+ d
dt

 La Mab Mac
Mba Lb Mbc
Mca Mcb Lc

ia
ib
ic

+
ea

eb
ec

 (3)

where Va, Vb and Vc are phase voltages; ra, rb, and rc are stator winding resistances; La,
Lb, and Lc are the self-inductances of the stator winding; Mab, Mac, and Mcb are mutual
inductances; ia, ib, and ic are the phase currents; and ea, eb, and ec are the back emf forces.

From the assumptions mentioned above, it can be deduced that La = Lb = Lc = L,
ra = rb = rc = r, and Mab = Mac = Mcb = M.

In addition, the three-phase winding is connected in a star, which makes it possible to
mention the following simplification:

ia + ib + ic = 0 =⇒ ib + ic = −ia (4)

Equation (3) is thus derived as follows:

Lia + Mib + Mic = Lia + M(−ia) = (L−M)ia (5)

Therefore, after repeating the same calculation steps for the other two phases, Equation (3)
becomes Va

Vb
Vc

 =

r 0 0
0 r 0
0 0 r

ia
ib
ic

+
d
dt

Ls 0 0
0 Ls 0
0 0 Ls

ia
ib
ic

+

ea
eb
ec

 (6)

where Ls = L−M is the equivalent phase inductance.
Regarding the speed of the motor, it is necessary first to present the mechanical

equations of the motor. The electromagnetic torque and the speed derivative are expressed
as follows,

Te = TL + J
dΩ
dt

+ BΩ (7)

Te =
iaea + ibeb + icec

Ω
(8)

where Ω is the mechanical speed of the motor (rad/s), J is the moment of inertia, B is the
coefficient of friction, and TL is the resistive torque.



Energies 2023, 16, 4395 6 of 23

4. Drive Operation and BLDC Motor Controller Description
4.1. Drive Operation

When using the full-bridge inverter for BLDC motor control, two phases of the three-
phase winding system are supplied from the input voltage to maintain the angle between
the flux of the stator and the rotor at nearly 90◦. For this purpose, switching is triggered
after every 60◦ electrical degree. Figure 5. illustrates a schematic of a three-phase full-
bridge inverter, and Figure 6 describes the waveform of the phase currents and those of the
trapezoidal emf forces as well as the variations of the signals of the Hall effect sensors as a
function of the electrical degree (each electrical degree of 60° is considered as an interval).

n
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Figure 5. Full bridge three-phase BLDC motor control scheme.
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Figure 6. Ideal back –emfs, phase currents, and position sensor signal as a function of electrical degree.

Figure 6 depicts the Hall effect sensor signals (Ha, Hb, Hc) in relation to the back-
electromotive forces (back-emfs) (ea, eb, ec) of the stator windings, as shown in Figure 5.
These sensor signals are closely related to the phase currents (ia, ib, ic) in the motor. The
states of the MOSFETs (Q1, Q2, Q3, Q4, Q5, Q6) change after every 60◦ electrical degree,
coinciding with a change of state of a Hall effect sensor (Ha, Hb, Hc) . These sensors are
placed on the stator with a well-defined position and a distance of 2π

3p between every two
successive sensors (p is the number of pole pairs). Table 1 presents the state of the MOSFETs
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of the inverter, the signals of the Hall effect sensors and the sign of the current on each
phase of the stator to turn the motor.

Table 1. Combination of Hall sensors and phase signals.

Switching
Interval (◦)

Seq.
Number

Pos. Sensors Switch
Closed

Phase Current

Ha Hb Hc A B C

0◦–60◦ 1 1 0 0 Q1 Q4 +Idc −Idc off
60◦–120◦ 2 1 1 0 Q1 Q2 +Idc off −Idc
120◦–180◦ 3 0 1 0 Q3 Q2 off +Idc −Idc
180◦–240◦ 4 0 1 1 Q3 Q6 −Idc +Idc off
240◦–300◦ 5 0 0 1 Q5 Q6 −Idc off +Idc
300◦–360◦ 6 1 0 1 Q5 Q4 off −Idc +Idc

4.2. BLDC Motor Controller Description

Five metal strips and an aviation plug (J2) provide a grounding environment for the
battery, motor, and controller signals. As shown in Figure 7.

• B+: battery positive.
• B−: battery negative pole.
• A: Output U/1/A phase, connected to the thick red wire of the motor.
• B: Output V/2/B phase, connected to the thick yellow wire of the motor.
• C: Output W/3/C phase, connected to the thick blue wire of the motor.

J2 pin definition:

• Pin 1: PWR: Control power supply.
• Pin 2: GND: signal ground or power ground.
• Pin 3: GND: Signal ground.
• Pin 4: 12 V high-level brake and motor temperature sensor signal input.
• Pin 5: pedal analogue input, 0–5 V.
• Pin 6: Brake analogue input, 0–5 V.
• Pin 7: 5 V: 5 V power output, 40 mA
• Pin 8: pedal safety switch input.
• Pin 9: Reversing switch input.
• Pin 10: Brake switch input.
• Pin 11: Hall phase C, connected to the motor’s thin green Hall signal wire.
• Pin 12: Hall phase B, connected to the motor’s thin blue Hall signal wire.
• Pin 13: Hall phase A, connected to the motor’s thin yellow Hall signal wire.
• Pin 14: GND, signal ground.

Notes:

• All GND pins (pin 2, pin 3, pin 14) are internally connected. GND is internally
connected to B−.

B

J2

RS232

B−B+
A

C

(a)

110
11

12
13

14

2

3

4

5
6

7

8

9

(b)
Figure 7. brushless DC motor controller: (a) metal strips. (b) J2 pin.
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5. Control Design for BLDC Motor

Recently, researchers have been using fuzzy logic in hybrid control to improve the
efficiency of conventional controllers and enhance the performance characteristics of the
control. Indeed, the most common hybrid control, including fuzzy logic control, is the
fuzzy PID control strategy. In this intelligent hybrid technique, the fuzzy controller is often
used to adjust the PID controller parameters. Combining fuzzy logic control technology
with traditional PID controllers is intended to achieve enhanced controller behavior and a
better control system [24].

However, the design of the fuzzy controller is considered a complicated task despite
the wide use of the fuzzy logic system in control engineering. Indeed, to define the fuzzy
rules of the fuzzy controller, we need a minimum knowledge of the system’s functioning.
This implies that we should determine the membership function type and degree. Therefore,
the most common hybrid architecture that combines the fuzzy logic and the neural network,
the Adaptive Neuro-Fuzzy Inference System (ANFIS), was proposed to adjust the gains of
the PI controller online to stabilize the electric vehicle system in speed control [25].

5.1. Adaptive Neuro-Fuzzy Inference System Architecture

Jang first proposed Adaptive Neuro-Fuzzy Inference Systems (ANFIS) in 1993 [26].
The learning process by neural networks automatically adapts the membership functions
(MF) and the fuzzy inference system (FIS) parameters using the training input–output
dataset. For simplicity, two inputs and a single output are used in the ANFIS architec-
ture. Figure 8 shows the ANFIS architecture for a Sugeno–Fuzzy model with nine rules.
In particular, it is shown that the unique output ys (corresponding to the PI controller
gains) is calculated directly by weighting the two inputs x1 and x2 (corresponding to error
signal e and

∫
e dt its integral action) according to the fuzzy rules of three membership

functions (A1
1,2,3 and A2

1,2,3) through five layers. Each layer in the ANFIS architecture con-
tributes to the learning process of the FIS. The ANFIS structure is described layer by layer
below [27,28].

�

�

N

N

x1

f
w1

Layer 2 Layer 3

Layer 4

Layer 5

Layer 1

A1A1

A2A1

A2A2

A1A2

w2

w1 w
1 f

w1 f
w2

x2

x1 x2

�

x1

x2

—
—

—
—

Figure 8. The architecture of the ANFIS model.

Layer 1 (Fuzzification layer): Each node corresponds to a function parameter. The out-
put from each node is determined by the membership function degree of each input x1 and
x2 as follows, O1

i,1 = µA1
i
(x1)

O1
i,2 = µA2

i
(x2)

(9)
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where i corresponds to the membership function number (i = 1, 2, 3) and A1
i and A2

i are
the linguistic label associated with the node function i.

Layer 2 (Rule layer): Each node in this layer is a fixed node, and the circular node is
labelled as π. The output node is the product result of the incoming node signals. A current
node receives inputs from the respective nodes of the layer to generate a firing strength for
each rule as follows,

O2
k = wk = µA1

i
(x1)µA2

i
(x2) (10)

where k = {1, . . . , 9} denotes the Sugeno–Fuzzy rules and the output wk is the firing
strength of each rule.

Layer 3 (Normalization layer): Each node in this layer is a fixed node, and the circular
node is labelled as N. Thus, in this layer, each node receives inputs from all the second
layer nodes to compute the normalized firing strength of a given rule: the i− th rule firing
strength is divided by the sum of the firing of all rules to determine the value of each node.

O3
k = wk =

wk

∑9
j=1 wj

(11)

Layer 4 (Defuzzification layer): The fourth layer includes an adaptive node that
produces a weighted output of each rule. Thus, each node is directly attached to the
corresponding normalization node with initial inputs (x1, x2) to give a weighted value of
each rule, defined by

O4
k = wk fk = wk(pkx1 + qkx2 + rk) (12)

where wk is the normalized firing strength provided by the third layer and the node
parameters {pk, qk, rk} are also denoted as consequent parameters.

Layer 5 (Output layer): The unique node is a fixed node, and the circular node is
labelled as ∑. This node is the result of the sum of all incoming inputs and provides an
overall output defined by:

O5
1 =

9

∑
k=1

wk fk (13)

5.2. PI-ANFIS Controller for BLDC Motor

In this work, the control of the Brushless DC motor is based on a PI-ANFIS controller,
which was developed by combining the conventional PI control strategy with the ANFIS
controller. Figure 9 and Table 2 show the structure of the PI-ANFIS controllers, which is
applied to the system’s transfer function.

−

Reference
speed

Actual
speed

Figure 9. Structure of closed-loop ANFIS Controller.
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Table 2. Parameters for the PI-ANFIS.

GKpe GKpie GKie GKiie GKpu GKiu

1 1 1 1 1 1

In this work, two PI-ANFIS controllers ANFISKp and ANFISKi, are used for the kp
and ki gains of the PI controller, respectively. For clarity, Algorithm 1 gives the main steps
of the controller design process. Then a description of this algorithm is given below.

Algorithm 1 Main steps of the PI-ANFIS controller design
Begin
Collect initial dataset
Select training dataset
Set ANFIS parameters
Generate the two PI-ANFIS controllers

End

Step 1: The first step in the ANFIS controller design is collecting the training datasets.
In this work, we use the PI control strategy [29], to collect the required dataset to design
the two PI-ANFIS controllers for the BLDC motor system.

Then, to receive the necessary training data for the PI-ANFIS controllers, the response
from the PI controller is collected. Significantly, the training dataset also consists of two-
dimensional input vectors (the error e and

∫
e dt its integral action) and a one-dimensional

output vector y, the kp or ki PI controller gains.
Roughly two steps are involved in designing the ANFIS controller, the training and the

testing process. In addition, the initial training data are arbitrarily separated into training
data Vtrain (70% of the initial data) and the testing data Vtest (30% of the initial data).

Step 2: The Fuzzy Inference System (FIS) approximation from the initial dataset
requires defining the type and degree of the input-output membership functions (MFs).
This work selects Gaussian input MFs for ANFISKp and ANFISKi. In addition, it is
assumed that linear output MFs generate the FIS structure of the two PI-ANFIS controllers.
However, it is noteworthy that the degree of the membership functions significantly affects
the computing time required for the controller design. A small MFs degree is particularly
advantageous for the controller’s computing time. In the proposed PI-ANFIS controllers,
only three input MFs, are configured to implement each fuzzy inference system (FIS) of the
controller. Table 3 also summarizes the other inference parameters.

Table 3. Inference system parameters.

Fuzzy Type Defuzzification Method Inference Engine

Takagi-Sugeno weighted average (wtaver) prod-max

Step 3: We generate the two PI-ANFIS controllers using many parameters, such as a
vector of the training dataset Vtrain, the number of training epoch nepoch, the training error
Etrain, and the optimization method. In practice, we have used the PI-ANFIS parameters
given in Table 4.

Table 4. PI-ANFIS algorithm parameters.

Training Epoch Number
nepoch

Training Error Goal
Etrain

Optimization Method

20 0 Last-squares and back-
propagation gradient descent

At the end of this step, two ANFIS controllers are generated.
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5.3. PI-ANFIS Scaling Gains Tuning

To improve the performance characteristics of the resulting control system, we use
the particle swarm optimization algorithm (PSO), as shown in Figure 10, to tune the PI-
ANFIS controllers scaling gains [27,30]. The three scaling gains (GKpe,GKpie and GKpu)
for the ANFISKp controller and (GKie, GKiie and GKiu) for ANFISKi controller should
be fine-tuned.

−

Reference
speed

Actual
speed

PSO algorithm

Figure 10. Tuning of ANFIS scaling gains with PSO algorithm.

Then, we start the optimization process by selecting the PSO parameters, such as
population number (n), tune dimension (m), the maximum number of iterations (Niter),
and search space SS. The PSO parameters for tuning the PI-ANFIS scaling gains are
summarized in Table 5.

Table 5. PSO parameters for the PI-ANFIS scaling gain tuning.

Gains n m Niter S

GKpe, GKpie, GKie, GKiie 200 3 5 [0.01, 1.5]
GKpu 500 3 5 [0.5, 1]
GKiu 500 3 5 [0.1, 1]

In this work, we use the well-known ITAE objective function criterion defined in
Equation (14) to evaluate the tuning of the PI-ANFIS scaling gains. After reaching the opti-
mization process, the PSO algorithm delivers the appropriate six scaling gains, representing
an essential element for designing an optimal PI-ANFIS controllers.

ITAE =
∫ ∞

0
t|e(t)| dt (14)

6. Experimental Results and Discussion
6.1. Experimental Bench Description

Indeed, this experimental device makes it possible to develop and implement the various
control algorithms, of course the speed or position control techniques of a brushless DC
motor, as shown in Figure 11, the structure’s overall electric motor drive is made up of several
parts. Each of the details will be described below and with their electrical specifications.
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Figure 11. Diagram of the experimental device of the test bench.

dSpace board-based devices allow designers of electrical machinery control systems
to significantly reduce development costs and time and increase control quality and perfor-
mance. Figure 12 presents the entire test bench based on dSpace DS1202 implemented to
develop an experimental device within our ISA laboratory at ENSA University Ibn Tofail
dedicated to the control with the mechanical sensor of the BLDC.

Figure 12. Laboratory prototype used for experimental validation.

In general, the entire test bench is composed of four groups, which are:

1. The energy source is the fuel cell of the PEM (proton exchange membrane) type.
The Nexa® 1200 is a fully integrated fuel cell power module based on the FCgen™
1020 ACS stack and DC/DC converter stabilizing the unregulated fuel cell voltage of
the Nexa® 1200 fuel cell module to 24 Volt direct current from Ballard, its electrical
data are presented, showing Table 6 and Table 7, respectively.
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Table 6. Parameters of the Fuel Cell Power Module.

Parameter Value

Rated power 1200 W
Rated current 52 A
Rated voltage 24 V

Output voltage (unregulated) 20. . . 36 V
Operational temperature 5. . . 40 °C

Table 7. Parameters of Fuel DC/DC Converter.

Parameter Value

Output power 1200 W
Output current max. 55 A

Nominal voltage 24 V
Output voltage 0. . . 32 V
Input voltage 16. . . 45 V

Operational temperature −10. . . 55 °C
Efficiency >96%

2. The DC brushless motor coupled to the powder brake presented in the power part of
Figure 12 can provide an electromagnetic torque on the shaft of a maximum value
equal to 10 Nm and a nominal mechanical power of 1.0 KW. The stator phases
are star-coupled from Jiangsu Wheatstone Electrical Technology Co., Ltd. (Xueyan
Town, Wujin, China). Motor specifications are shown in Table 8. The mechanical
load comprises a powder brake fixed to the BLDC by a rigid coupling. The latter is
intended to generate a resistive torque in both directions of machine rotation. It is
controlled by the Metrix AX 502 Module, which we have configured in external mode.

Table 8. Parameters of the brushless DC motor.

Parameter Value

Rated power 1000 W
Rated current 25.7 A
Rated voltage 48 V
Rated speed 1000 r/min
Rated torque 10 Nm

3. The DC–AC converter consists of a three-phase voltage inverter from Jiangsu Wheat-
stone Electromechanical Technology Co., Ltd. (Xueyan Town, Wujin, China) It is
used to power the motor stator phases. Its characteristics are presented in Table 9.
The adaptation of the control signal provided by the dSpace DS1202 card to the control
input (pin 5) of the power module is ensured by an operational amplifier (TL 082).
This component provides insulation between the power part and the control part. It
protects so as not to exceed the current supplied by the Dspace card, as shown in
Figure 11.

Table 9. Parameters of brushless DC motor driver.

Parameter Value

Rated power 2000 W
Rated voltage 48 V

Continuous current 60 A
Peak current 150 A

Working frequency 16.6 KHz
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4. Since the DC bus voltage is 24 V, the input voltage required for the motor driver to
operate is 48 V. We have used a step-up DC to DC converter to adapt the voltage level.
Its characteristics are presented in Table 10.

Table 10. Parameters of the DC/DC converter.

Parameter Value

Output power 2016 W
Output current max. 42 A
Output voltage 48 V
Input voltage 24 V

6.2. Results for No Load Case

Experimental results illustrated the performances of the proposed controller. The phase
current waveforms are less ideal than those shown in Figure 6; the BLDC motor suffers
from current ripples (see Figures 13–15). Current ripples are considered one of the sig-
nificant drawbacks of the BLDC motor. Current ripple usually occurs when switching
MOSFETs [31].

Referring to the control source, switching the current from one phase to another
generates a current ripple phenomenon. The phase currents to be activated and deactivated
are not established or cancelled instantaneously in a phase. This is due to the effect of
inductance and the rise and fall times of the MOSFETs. The difference between the variation
of the phase current establishment slope activated and that of the phase current cancellation
deactivated is related to the speed of the motor

Comparing the obtained results shown in Figures 13–15 for the various controllers
used in this paper, it is clear that the PSO-PI-ANFIS controller contributed to improving
current ripples compared with the rest of the controllers (PI-ANFIS and PI).

The analysis of Figure 16 reveals that the line voltage exhibits a gradual slope owing
to the presence of the trapezoidal back-EMF effect. Additionally, the voltage waveform
displays narrow pulses. These pulses occur as a consequence of voltage fluctuations
resulting from the conduction of the freewheeling diode during the commutation period.
The width of these narrow pulses corresponds precisely to the duration of the commutation
period, which, in turn, relies on factors such as the electromagnetic time constant and the
operating condition of the motor.
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Figure 13. Experimental results of phase currents for speed profile, with the conventional PI controller.
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Figure 14. Experimental results of phase currents for speed profile, with the PI-ANFIS controller.
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Figure 15. Experimental results of phase currents for speed profile, with the PSO-PI-ANFIS controller.

The experimental results depicted in Figure 17 illustrate the motor speed response for
various control modes using the same speed profile. The figure also exhibits the controllers’
performance regarding the motor response speed at the reference speed, the amount of
overshoot, and the steady-state error. A comparison between the different controllers’
results demonstrates that the PSO-PI-ANFIS controller was the most effective in forcing the
motor speed to follow the reference speed without overshooting and with no steady-state
error. This result indicates the superior control performance of the PSO-PI-ANFIS controller
compared to other control units tested in the experiment. The reference speed is the desired
speed profile that the motor should follow, while overshoot is an undesirable behavior
in which the motor speed exceeds the reference speed before stabilizing. The absence
of steady-state error means that the motor’s actual speed approaches and remains at the
reference speed, indicating the high accuracy and precision of the PSO-PI-ANFIS controller.
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Figure 16. Line voltage of BLDC motor: (a) using dSPACE Card. (b) using oscilloscope.

The experiment involved measuring the electromagnetic torque values of a BLDC
motor that were controlled by different control units while following the same reference
speed profile. Figure 18 shows that ripples occurred in the torque waveforms due to
changes in the phase currents of the BLDC motor, as seen in Figures 13–15. While the
ripples remained acceptable for this type of motor, it was observed that the PSO-PI-ANFIS
controller caused minimal ripples compared to the other controllers. This indicates that the
PSO-PI-ANFIS controller can achieve smoother and more precise control of the motor’s
electromagnetic torque.

The experimental results presented in Figure 19 indicate that as the speed of the
BLDC motor increases at no load, the fuel cell voltage decreases. This phenomenon can
be explained by the fact that an increase in motor speed causes an increase in the load on
the fuel cell, which increases the ohmic losses or internal resistance of the fuel cell. Ohmic
losses occur due to the resistance of the fuel cell’s components, including the electrodes,
electrolyte, and interconnects. The increase in ohmic losses leads to a voltage drop across
the fuel cell’s internal resistance, which causes the fuel cell voltage to decrease.



Energies 2023, 16, 4395 17 of 23

0 10 20 30 40 50 60 70 80 90 100
time (s)

0

100

200

300

400

500

600

700

800

900

1000
Actual Speed !(tr:min!1)

Reference Speed
PI
PI-ANFIS
PI-ANFIS-Optim

10 10.5 11 11.5 12 12.5 13
0

50

100

150

200

69 70 71 72 73

500

600

700

49 49.5 50 50.5 51 51.5 52 52.5 53
400

500

600

700

800
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Figure 18. The relationship of electromagnetic torque with time (Tm).

Other factors that can cause a decrease in fuel cell voltage include an increase in load,
fuel depletion, and temperature. Conversely, as the speed of the BLDC motor decreases at
no load, the load on the fuel cell decreases, reducing the ohmic losses and causing the fuel
cell voltage to increase.

The results also indicate that the PSO-PI-ANFIS controller provides better control
over the fuel cell voltage compared to the PI-ANFIS controller and the classic PI controller.
The PSO-PI-ANFIS controller can optimize the PI gain and parameters of the ANFIS
structure using the Particle Swarm Optimization (PSO) algorithm, resulting in improved
control performance. The improved control performance is essential in maintaining a stable
voltage output from the fuel cell, which is critical for the proper functioning of the system.

The experimental results, as shown in Figure 20, indicate that the fuel cell current
changes with respect to the motor speed and load variations. This behavior can be explained
by the fact that the fuel cell output power is directly proportional to the load applied to it.
Therefore, as the load on the motor increases, the fuel cell has to supply more power, which
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results in an increase in fuel cell current. Similarly, as the motor speed increases, the fuel
cell output power also increases, leading to a rise in fuel cell current. On the other hand,
as the load or motor speed decreases, the fuel cell output power decreases, which, in turn,
results in a decrease in fuel cell current.
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Figure 19. Fuel cell voltage Vf c.

Moreover, the internal resistance of the fuel cell also contributes to the change in fuel
cell current. As the load on the fuel cell increases, the current flowing through the fuel cell
increases, leading to an increase in the voltage drop across the fuel cell’s internal resistance.
This voltage drop is commonly known as Ohmic losses and can lead to a reduction in fuel
cell voltage, causing the fuel cell current to increase to maintain the output power [32].
Similarly, as the motor speed increases, the fuel cell voltage drops due to Ohmic losses,
leading to a rise in fuel cell current to maintain the output power.

The results also indicate that the PSO-PI-ANFIS controller provides superior control
over the fuel cell current in comparison to the PI-ANFIS and classic PI controllers. Ad-
ditionally, the DC/DC converter plays a crucial role in regulating the output voltage of
the fuel cell to the desired level. The DC/DC converter adjusts the voltage levels of the
input and output to maintain a stable voltage and current output. The PSO-PI-ANFIS con-
troller optimizes the gain and parameters of the ANFIS structure using the PSO algorithm
to achieve better control performance, resulting in improved current regulation. These
findings highlight the importance of utilizing advanced control strategies and appropriate
power electronics converters to achieve efficient and stable operation of the fuel cell system.

The experimental results presented in Figure 21 demonstrate the behavior of the DC
bus voltage as the motor speed changes under various controllers. The converter used to
match the voltage level was successful in maintaining the DC bus voltage around 48 V,
despite slight fluctuations observed during the test.

It is noteworthy that the PSO-PI-ANFIS controller showed superior performance in
reducing voltage oscillations and sudden changes compared to the other controllers tested.
This observation confirms the robustness and effectiveness of the PSO-PI-ANFIS controller
in regulating motor speed and maintaining stable voltage levels, even under challenging
operating conditions.

These findings suggest that the PSO-PI-ANFIS controller is a promising candidate
for applications that require precise and stable motor speed regulation, such as electric
vehicles, industrial machinery, and robotics.
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6.3. Results for Varying Load Conditions

The purpose of this section is to assess the performance of different controllers by
evaluating their ability to maintain the motor speed at a constant level equal to the reference
speed. This is achieved by subjecting the motor to sudden changes in the load, both over
time and across different levels. The aim is to measure the effectiveness of each controller in
responding to these changes and maintaining stable motor performance under challenging
operating conditions.

The electric vehicle motors are constantly subjected to different loading situations
caused by various factors, including road curves, grades, and vehicle speed. In order to
evaluate and compare different motor control units, a motor can be subjected to a variable
load. One method of creating this variable load is by using a combination of a powder brake
powered by a power supply and three resistors in series. The resistors can be disconnected
and connected in order to change the voltage level and achieve the desired load profile
shown in Figure 22. In this section, the speed is set at 500 rpm under many loading
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conditions. For example, in the first case, the speed is set at 500 revolutions per minute,
and the load is changed in stages, starting from zero to an average value, by removing
one of the resistors by connecting its two ends with a wire, reaching the maximum (9 nm)
by removing the second resistance in a period it lasted 55 s. In the second case, the load
is reduced starting from the maximum state (9 nm) through three stations down to the
no-load state (0 nm) in 25 s while the speed of the BLDC motor remains constant at 500 rpm.
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Figure 22. Load torque profile applied by means of powder brake.

The experimental results presented in Figure 23 illustrate the response of the motor
speed under various controllers in the presence of a sudden change in load across different
values. It is observed that all of the controllers performed well in maintaining the motor
speed at a constant level and following the reference speed with high efficiency during the
load fluctuation period.
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Figure 23. Brushless DC motor speed response under load torque profile applied by means of
powder brake.
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Comparing the results obtained from different controllers, it can be seen that the
PSO-PI-ANFIS controller stands out for its exceptional performance in speed regulation.
In addition to maintaining stable motor speed, this controller was also able to reduce motor
oscillations, resulting in even better performance under challenging operating conditions.

These results highlight the effectiveness of the PSO-PI-ANFIS controller in controlling
motor speed under varying load conditions. This controller can be particularly useful in
applications that require precise motor speed regulation and performance optimization,
such as electric vehicles, industrial machinery, and robotics.

7. Conclusions and Future Work

The PI algorithm has proven to be a simple and commonly used control method.
However, it does not provide perfect control due to the nature of the non-linear systems
applied to it. This paper presents for the first time a way to improve the performance of
the PI controller by providing gain scheduling by using ANFIS network. Two PI-ANFIS-
based architectures have been proposed to control the speed of a brushless DC motor
used in electric vehicles that is fed from a pure electric source and an environmentally
friendly fuel cell. The hybrid ANFIS method is based on the combination of PSO as
the optimization approach and ANFIS. The experimental PI-ANFIS and PSO-PI-ANFIS
methods were compared with each other. Comparison results performed on a real platform
designed and built in the laboratory show that both approaches presented by PI-ANFIS
and PSO-PI-ANFIS force the motor speed to follow its reference precisely. Furthermore,
the PSO-PI-ANFIS models with less complex structures are more accurate than the PI-
ANFIS models, which is evident from the experimental results obtained above. The main
advantages of these methods are their high accuracy and very fast computational speed for
prediction and tuning of the parameters of the classical PI controller. Note that the high
level of accuracy found in the output results of this controller, especially for the test dataset,
indicates that the new proposed PSO-PI-ANFIS approach is reliable. Therefore, from all the
previously submitted models, PSO-PI-ANFIS can provide a way to solve the technological
problems that we will address after this paper, which are the energy management of the
electric vehicle and the reduction in hydrogen consumption.
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