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Abstract: A self-supplied circuit that is able to significantly increase the power delivered to a bridge
rectifier by a Resonant Piezoelectric Vibration Energy Harvester (RPVEH) is presented and discussed.
The proposed circuit, called the Energy Harvester Power Optimizer (EHPO), is implemented by
means of a switch-mode converter that emulates a negative capacitance. Unlike switch-mode
impedance emulators, based on sophisticated tracking algorithms requiring lossy microcontrollers,
EHPO exploits a very light control circuit based on a hysteresis comparator. The EHPO is self-
supplied since it does not need an external supply, but it draws the energy for its operation directly
from the RPVEH. Moreover, it is developed without the assumption of purely sinusoidal vibrations.
Experimental results show that the EHPO can significantly increase the power delivered to a rectifier,
both in the case of sinusoidal vibrations (percent gain of the net extracted power up to about 190%)
and non-sinusoidal vibrations (percent gain of the net extracted power up to about 245%), regardless
of the shape of the forcing acceleration and regardless of the RPVEH resonance frequency.

Keywords: piezoelectric vibration energy harvesters; non-sinusoidal vibrations; power optimization

1. Introduction

Most wireless sensor networks are fed by standard primary batteries or rechargeable
batteries [1–3]. Batteries have many drawbacks, such as their high cost, limited reliability,
need for frequent maintenance (recharge or replacement), and risk to the environment due
to hazardous chemical materials. Energy harvesting offers an alternative to battery replace-
ment or, at least, an increase in their lifetime [4–6]. The last few years have seen increasing
attention devoted to Resonant Piezoelectric Vibration Energy Harvesters (RPVEHs). Recent
developments have concerned both the harvester electronic interfaces, aimed at increasing
the extracted power [7,8], and the piezoelectric material properties, which contribute to the
harvesting performance [9,10]. Significant attention has also been devoted to magnetically
activated piezoelectric composites for their promising potential in IoT applications [11,12].

In the presence of sinusoidal vibrations with an angular frequency ω, the load
impedance ZOPT(jω) that maximizes the average power transferred from a harvester
to a linear load must be equal to the complex conjugate of the equivalent RPVEH inter-
nal impedance Zeq(jω) [13]. However, in practical applications, the output voltage of an
RPVEH needs to be rectified using an AC/DC converter that should be able to emulate
ZOPT(jω) [7]. Since ω (and hence also ZOPT) can vary over time, it is also necessary to
carry out a tracking process to dynamically emulate the optimal impedance in any possible
operating condition. Several single or double-stage active AC/DC converters have been
proposed in the literature aimed at the emulation of ZOPT [8–17]. However, they cannot
be self-supplied due to the complexity of their power stage and their control techniques,
usually implemented through lossy microcontrollers. This is the main reason why, in most
cases, a passive bridge rectifier is employed for the rectification of the RPVEH output
voltage. To the best of the authors’ knowledge, nearly all of the commercial power elec-
tronics boards, available on the market for piezoelectric energy-harvesting applications,
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are equipped with a passive bridge rectifier [18–21]. Unfortunately, in many cases, passive
bridge rectifiers cannot extract the maximum power from RPVEHs, since they are not able
to emulate ZOPT [7]. Therefore, the performance of RPVEHs connected to passive bridge
rectifiers can be further improved, even if they are equipped with Maximum Power Point
Tracking controllers on their DC side [22]. To achieve that purpose, an inductor could be
added, but the necessary value of the inductance is typically too large and cannot adapt to
the variations of the input vibrations. As an alternative, interesting non-linear approaches,
such as the SSHI [23,24] and the SECE techniques [25,26], have been developed.

In the case of non-sinusoidal vibrations, which are typically encountered in practical
applications, it is not possible to define an optimal impedance ZOPT(jω). Instead, as it
will be detailed in the following section, the time-domain compensation of the current
ic(t) drawn by the RPVEH output capacitance Cpz can have a boost effect on the power
extraction. In this paper, a new approach to compensate the current ic(t) is presented
and discussed for the first time after patent granting [27]. The compensation of ic(t) is
achieved by exploiting a self-supplied switch-mode converter with a light control that,
in the following, will be called the “Energy Harvester Power Optimizer” (EHPO). The
main characteristic of the EHPO is its capability to behave like a negative capacitance
that efficiently operates under arbitrary vibration conditions [28,29]. The EHPO does not
require a complex and lossy microcontroller because it does not implement a sophisticated
control algorithm. The control circuit is as simple as those employed by SSHI and SECE
circuits, and it is specifically designed for non-sinusoidal vibrations. Finally, the EHPO
emulates the desired negative capacitance without using a linear amplifier, unlike the
circuits that have been very effectively employed for the active damping of structures
with piezoelectric transducers [28]. Such circuits provide reactive power to the transducer
at the expense of their power supply and, hence, they are not energetically efficient for
energy-harvesting applications.

The rest of the paper is organized as follows: In Section 2, the operating principle and
the architecture of the EHPO are presented. In Section 3, the actual implementation and the
relationships that are useful for design purposes are discussed. Finally, the experimental
results are reported in Section 4. Our conclusions end the paper.

2. Operating Principle of the EHPO

The most used equivalent electric circuit of an RPVEH in a cantilever configuration
is shown in Figure 1. m denotes the vibrating mass, k the equivalent stiffness of the
piezoelectric cantilever, c the viscous damping coefficient, and θ the force factor describing
the piezoelectric effect. Moreover,

..
y(t) is the clamp acceleration and

.
x(t) is the speed of

the cantilever tip. As shown in Figure 1, Cpz is the output capacitance of the piezo layers
and ipz(t) = θ· .x(t) is the current generated by the piezoelectric effect, which is not only a
function of time but also of the piezo output voltage, vAB(t).
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to all those techniques requiring tuning at a specific frequency [7]. 

c
m

1/k

Cpzm∙ӱ(t)

ẋ(t)

+
-θ·vAB(t) vAB(t)

θ·ẋ(t)
+
-

+

-
V0

+

-
C0 R0

Mechanical stage Electrical stage

iAB(t)ipz(t)

Mechanical Subsystem Electrical Subsystem 

− − 
− − 

Figure 1. Equivalent electric circuit of an RPVEH loaded by a diode bridge rectifier.

The capacitance Cpz in the electrical subsystem of an RPVEH plays a negative effect
on the extraction of power, significantly reducing the maximum power that the rectifier
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can extract from the harvester. Let us clarify such an aspect by assuming, for the sake of
simplicity, negligible voltage drops across the diodes of the bridge rectifier in Figure 1 and
C0 � Cpz.

According to the typical current and voltage waveforms shown in Figure 2, when
ipz(t) > 0 (ipz(t) < 0) and vAB(t) = V0 (vAB = −V0), it is iAB(t) = ipz(t) leading to a
power transfer, through the bridge rectifier, to the DC load. When ipz(t) > 0 (ipz(t) < 0)
and |vAB(t)| < V0, it is iAB(t) = 0, since ipz(t) flows inside Cpz. Hence, no instantaneous
power can be transferred to the DC load. The capacitance Cpz draws the piezoelectric
output current during the transitions of vAB(t) between the voltage limits −V0 and +V0
(from −V0 to +V0 and vice versa). The bigger Cpz, the longer the transitions delay. In order
to maximize the power transferred to the load, it is necessary to minimize the time intervals
when |vAB(t)| < V0 (and hence iAB(t) = 0), that is, the rising and falling times of vAB(t)
between −V0 and +V0.
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Figure 2. Typical current and voltage waveforms for a piezoelectric harvester loaded by a bridge
rectifier, as shown in Figure 1.

In this paper, a self-supplied circuit to be connected in parallel to the bridge rectifier,
EHPO, is proposed, as shown in Figure 3a. The target of the EHPO is to cancel the negative
effect of Cpz by drawing a current iEHPO(t) equal to−ic(t), where ic(t) is the current drawn
by Cpz. Thereby, the time intervals when |vAB(t)| < V0 are minimized and the power
extraction is maximized. It should be highlighted that the EHPO is able to emulate the
negative capacitance −Cpz regardless of the shape of vAB(t) and without requiring an
external supply. The EHPO is intended to draw −ic(t) whatever the working frequency
and whatever the shape of the vibration waveform (sinusoidal or not). Such a property
makes it incredibly more attractive from a practical point of view, with respect to all those
techniques requiring tuning at a specific frequency [7].

The EHPO architecture is based on a switch-mode power converter whose input
current is controlled as desired. As shown in the EHPO block diagram of Figure 3b, the
input current is controlled by a feedback loop that ensures that iEHPO(t) follows the desired
reference current ire f (t) = −ic(t). Such a reference current, obtained by sensing the input
voltage vAB(t), is the current that would be drawn by the desired negative capacitance
−Cpz. Finally, the current control is implemented through a hysteretic controller, instead of
the usual PWM controller, to obtain a faster response in non-sinusoidal reference tracking
and to reduce the switching losses. Indeed, the hysteretic controller ensures the lowest
switching frequency for a given tracking error.
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Figure 3. (a) Connection of EHPO in parallel between an RPVEH and a passive rectifier. (b) Block
diagram of EHPO.

3. Design and Implementation of the EHPO

In this section, the circuit that implements the EHPO is presented, and its main
characteristics are analyzed. Since the EHPO should emulate a negative capacitance, it
must allow a bidirectional energy flow. Thus, as shown in Figure 4, it exploits an AC-DC
boost converter based on a half-bridge topology, which allows a four-quadrant operation.
The implementation of the feedback control loop is described in detail in the following
section, and its simplicity, which avoids the adoption of an energy-hungry microcontroller,
is shown. Next, the expected duty cycle and the switching frequency are evaluated as a
function of the circuit parameters, as needed in the design phase.
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3.1. The Feedback Control Loop

The negative capacitance block and the difference node, shown in the feedback loop
of Figure 3b, are implemented by means of an operational amplifier circuit, as shown in
Figure 4. Moreover, for the implementation of the hysteretic current control, a hysteresis
comparator and two delay networks are used. The expression of the comparator input i.e.,
the voltage ve, can be calculated by applying the Kirchhoff’s current law to the op-amp
inverting node. Under the assumption of Ry � Rm, it results in

ve = −
s·R f Cx

1 + s·RxCx
·vAB −

R f Rm

Ry
·iEHPO, (1)

which can be rewritten as

ve =
R f Rm

Ry

(
ire f − iEHPO

)
, (2)

where

ire f = −
s·RyCx

Rm

1
1 + s·RxCx

·vAB. (3)

It should be highlighted that the pole in Equation (3), due to the presence of Rx, is
deliberately introduced to limit the op-amp gain at high frequencies and, thus, to prevent
possible instability problems. However, if 1/(RxCx) is sufficiently higher than the angular
frequency band ω of the input voltage vAB i.e., ω � 1/(RxCx), Equation (3) can be
simplified as

ire f = −
s·RyCx

Rm
·vAB. (4)

Equations (2) and (4) confirm that the operational amplifier implements the difference
block shown in Figure 3b and that the reference current is proportional to the opposite of
the derivative of the input voltage vAB.

The negative feedback loop keeps the comparator input ve within a hysteresis band
∆VH around zero. If the hysteresis band is sufficiently small, it is ve ∼= 0 and, according to
Equations (2) and (4), it results in

iEHPO = −s·
CxRy

Rm
·vAB. (5)

Equation (5) proves that, under current control, the EHPO draws a current that is
proportional to the opposite of the time derivative of vAB(t), that is, the EHPO emulates a
negative capacitance. The emulated negative capacitance is just equal to−Cpz provided that
CxRy/Rm = Cpz. Therefore, the values of the resistances Ry and Rm and of the capacitance
Cx should be chosen according to the value of the internal capacitance Cpz of the specific
piezoelectric harvester to be compensated. However, such values are independent of the
shape of the input vibrations and the possible mechanical tuning of the cantilever structure
of the RPVEH, which regulates its resonance frequency [5].

Note that, a dead time is introduced in the control signals (Sp and Sn) of the upper and
lower MOS switches of the converter leg, by means of the two delay networks made up
by Rdt, Cdt, and Ddt at the output of the hysteresis comparator. This is enacted to prevent
the simultaneous conduction of the two MOS in correspondence with the commutation
times. In this way, the turn-on of a MOS is delayed by the RdtCdt network and the turn-
off of the other MOS is sped up by the action of diode Ddt. Moreover, the presence of
the two networks composed by Cb and Db ensures that none of the two MOS switches
remain blocked in the ON state at the system start-up, when the capacitors CDC are not
still charged. In particular, the capacitor Cb is large enough to behave like a short circuit
in normal operations, whereas, to avoid the MOS remaining blocked in the ON state, it
disconnects its gate from the relative control signal after a sufficiently long stationary time.
In this way, the reverse current of the diode Db turns off the MOS.
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It is worth noting that, with reference to the hysteretic controller, the amplitude of
the hysteresis band of the comparator determines the acceptable error on the voltage
tracking. Such an error, as will be investigated in the next section, is also affected by the
delay introduced by the comparator. Due to the low power constraints of the considered
application, the chosen comparator should have a very low power consumption, which
unavoidably leads to a delay that needs to be properly considered.

Further, note that the EHPO is self-supplied since it does not need an external supply,
but it draws the energy for its operation directly from the RPVEH. As shown in Figure 4,
the op-amp and the comparator are supplied by the capacitors CDC. They are charged
at the voltage levels Vp and Vn, with the energy drawn directly from the RPVEH, by the
diodes that are in parallel to the MOS switches. The voltage levels Vp and Vn are nearly
equal to the peak values of the input voltage vAB, so that the difference Vp −Vn is nearly
equal to the peak-to-peak amplitude of vAB(t). In the experimental tests that are shown
in Section 4, the average power PEHPO that is drawn by the EHPO during its operation is
reported for different operating conditions.

Finally, let us underline that the feedback loop implemented by the EHPO is stable
as the initial start-up transient, reported in Figure 5, shows. In Figure 5, simulated wave-
forms are reported for an EHPO connected between a piezoelectric harvester driven by a
sinusoidal acceleration and a bridge rectifier.

Table 1. Parameters of EHPO under test.

Component Value Component Value

L 100 mH Rdt 30 kΩ
CDC 100 µF Cdt 10 pF
Rm 20 Ω NMOS ZVN4424A
Cx 1 nF PMOS ZVP4424A
Rx 180 kΩ Diodes 1N4148
Ry 15 kΩ OP-AMP MCP6241
R f 100 kΩ Comparator LTC1440
Cb 100 nF ∆VH 20 mV
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Figure 5. Simulated waveforms of EHPO (implemented with the parameters in Table 1) during the
start-up transient. (a) Voltage waveforms; (b) Current waveform.

3.2. The Duty Cycle and the Switching Frequency

Differently from a PWM control, in a hysteretic control, both the duty cycle and the
switching frequency change, during the circuit operation, as a function of the input voltage
vAB. For a proper design of the circuit, the dependence of the duty cycle and the switching
frequency on vAB and the circuit parameters is discussed in this section.
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By imposing the quasi-stationary condition on the inductor current in Figure 4, it
is possible to obtain the expression of the duty cycle δ(t). When iEHPO > 0, the quasi-
stationary condition leads to ∆iNMOS_ON

EHPO = −∆iNMOS_OFF
EHPO , that is

TNMOS_ON ·(vAB −Vn) = −TNMOS_OFF·
(
vAB −Vp

)
, (6)

and, hence

δiEHPO>0 =
TNMOS_ON

TNMOS_ON + TNMOS_OFF
=

Vp − vAB

Vp −Vn
. (7)

On the other hand, when iEHPO < 0, the quasi-stationary condition leads to
∆iPMOS_ON

EHPO = −∆iPMOS_OFF
EHPO , that is

TPMOS_ON ·
(
vAB −Vp

)
= −TPMOS_OFF·(vAB −Vn), (8)

and, hence

δiEHPO<0 =
TPMOS_OFF

TPMOS_ON + TPMOS_OFF
=

Vp − vAB

Vp −Vn
. (9)

Expressions (7) and (9) state that, under the quasi-stationary condition, the expression
of the duty cycle is the same for iEHPO > 0 and iEHPO < 0. Therefore, under the reasonable
assumption of zero mean input voltage i.e., Vn = −Vp, it is

δ(t) =
1
2
·
[

1− vAB(t)
Vp

]
. (10)

To calculate the expression of the switching frequency fsw(t), let us consider the
time evolutions of the reference current signal ire f (t) and of the EHPO input current
iEHPO(t), shown in Figure 6. Since the comparator input ve is kept within a hysteresis band
∆VH around zero, according to Equation (2), the input current iEHPO(t) is kept within a
hysteresis bandwidth ∆IH equal to Ry·∆VH/

(
R f ·Rm

)
around the reference current iREF(t).

According to the schematic in Figure 4, when iEHPO(t) > 0 and the NMOS control signal
Sn is on, the time needed by the current iEHPO(t) to cross, during its rise, the entire current
hysteresis bandwidth ∆IH is given by

tN =
L·∆IH

vAB −Vn
=

L·Ry·∆VH

R f ·Rm·(vAB −Vn)
. (11)

Instead, when the NMOS is off, such a time is

tP =
L·∆IH

Vp − vAB
=

L·Ry·∆VH

R f ·Rm·
(
Vp − vAB

) . (12)

Moreover, it should be considered that the turn-on of the NMOS device is delayed,
with respect to the end of the previous time interval tP, by a time ton = tcd due to the
comparator delay. During ton, the falling current iEHPO goes out of the current hysteresis
bandwidth ∆IH of a quantity ∆iout1 equal to

∆iout1 =
ton·
(
Vp − vAB

)
L

. (13)



Energies 2023, 16, 4368 8 of 20

Energies 2023, 16, 4368 8 of 21 
 

 

𝛿(𝑡) =
1

2
∙ 1 −

𝑣 (𝑡)

𝑉
. (10)

To calculate the expression of the switching frequency 𝑓 (𝑡), let us consider the time 
evolutions of the reference current signal 𝑖 (𝑡) and of the EHPO input current 𝑖 (𝑡), 
shown in Figure 6. Since the comparator input 𝑣  is kept within a hysteresis band ∆𝑉  
around zero, according to Equation (2), the input current 𝑖 (𝑡) is kept within a hyste-
resis bandwidth ∆𝐼  equal to 𝑅 ∙ ∆𝑉 𝑅 ∙ 𝑅⁄  around the reference current 𝑖 (𝑡). 
According to the schematic in Figure 4, when 𝑖 (𝑡) > 0 and the NMOS control signal 
𝑆  is on, the time needed by the current 𝑖 (𝑡) to cross, during its rise, the entire cur-
rent hysteresis bandwidth ∆𝐼  is given by 

𝑡 =
𝐿 ∙ ∆𝐼

𝑣 − 𝑉
=

𝐿 ∙ 𝑅 ∙ ∆𝑉

𝑅 ∙ 𝑅 ∙ (𝑣 − 𝑉 )
. (11)

Instead, when the NMOS is off, such a time is 

𝑡 =
𝐿 ∙ ∆𝐼

𝑉 − 𝑣
=

𝐿 ∙ 𝑅 ∙ ∆𝑉

𝑅 ∙ 𝑅 ∙ 𝑉 − 𝑣
. (12)

Moreover, it should be considered that the turn-on of the NMOS device is delayed, 
with respect to the end of the previous time interval 𝑡 , by a time 𝑡 = 𝑡  due to the 
comparator delay. During 𝑡 , the falling current 𝑖  goes out of the current hysteresis 
bandwidth ∆𝐼  of a quantity ∆𝑖  equal to 

∆𝑖 =
𝑡 ∙ 𝑉 − 𝑣

𝐿
. (13)

 
Figure 6. Typical waveforms of the MOS control signals 𝑆  and 𝑆  and of the currents 𝑖  and 
𝑖 . 

This implies that, after the turn-on of the NMOS, 𝑖 (𝑡) requires a supplementary 
time 𝑡  to come back inside the hysteresis bandwidth. 𝑡  is given by 

𝑡 =
𝐿 ∙ ∆𝑖

𝑣 − 𝑉
=

𝑉 − 𝑣

𝑣 − 𝑉
𝑡 . (14)

In a similar way, the turn-off of the NMOS device is delayed with respect to 𝑡  by a 
time 𝑡 = 𝑡 . During 𝑡 , the rising current 𝑖  goes out of the hysteresis band-
width ∆𝐼  of a quantity ∆𝑖  equal to 

∆𝑖 =
𝑡 ∙ (𝑣 − 𝑉 )

𝐿
, (15)

and the supplementary time 𝑡  required to come back inside the hysteresis bandwidth is 
equal to 

Figure 6. Typical waveforms of the MOS control signals Sp and Sn and of the currents ire f and iEHPO.

This implies that, after the turn-on of the NMOS, iEHPO(t) requires a supplementary
time t1 to come back inside the hysteresis bandwidth. t1 is given by

t1 =
L·∆iout1

vAB −Vn
=

Vp − vAB

vAB −Vn
tcd. (14)

In a similar way, the turn-off of the NMOS device is delayed with respect to tN by a
time to f f = tcd. During to f f , the rising current iEHPO goes out of the hysteresis bandwidth
∆IH of a quantity ∆iout2 equal to

∆iout2 =
to f f ·(vAB −Vn)

L
, (15)

and the supplementary time t2 required to come back inside the hysteresis bandwidth is
equal to

t2 =
L·∆iout2

Vp − vAB
=

vAB −Vn

Vp − vAB
tcd. (16)

Taking into account that similar considerations also hold for iEHPO(t) < 0, the to-
tal switching time Tsw can be expressed as the sum of the above partial times given by
Equations (11), (12), (14) and (16) as

Tsw =
L·Ry ·∆VH

R f ·Rm ·(vAB−Vn)
+ tcd +

Vp−vAB
vAB−Vn

tcd+

+
L·Ry ·∆VH

R f ·Rm ·(Vp−vAB)
+ tcd +

vAB−Vn
Vp−vAB

tcd.
(17)

Thus, under the reasonable assumption of zero mean input voltage i.e., Vn = −Vp, the
switching frequency fsw is given by

fsw = T−1
sw =

[
2V2

p

V2
p − v2

AB

(
L·Ry·∆VH

R f ·Rm·Vp
+ 2tcd

)]−1

. (18)

Equations (10) and (18) allow us to predict the time evolution of the duty cycle and
the switching frequency as a function of the input electrical quantities.

In Figure 7, Equations (10) and (18) are compared with the corresponding waveforms
obtained by means of numerical simulations of the circuit in Figure 4 in case of a purely
sinusoidal voltage vAB. It is interesting to observe that the switching frequency varies
between zero and its maximum value, with a frequency double that of vAB. The maximum
switching frequency is reached when the input voltage crosses zero. Moreover, it is



Energies 2023, 16, 4368 9 of 20

interesting to note that when the current crosses zero, the duty cycle assumes a value equal
to 0 or 1. This means that, when the current crosses zero, the switching does not take place.
This behavior is confirmed by the experimental results reported in the following section.

Energies 2023, 16, 4368 9 of 21 
 

 

𝑡 =
𝐿 ∙ ∆𝑖

𝑉 − 𝑣
=

𝑣 − 𝑉

𝑉 − 𝑣
𝑡 . (16)

Taking into account that similar considerations also hold for 𝑖 (𝑡) < 0, the total 
switching time 𝑇  can be expressed as the sum of the above partial times given by Equa-
tions (11), (12), (14) and (16) as 

𝑇 =
𝐿 ∙ 𝑅 ∙ ∆𝑉

𝑅 ∙ 𝑅 ∙ (𝑣 − 𝑉 )
+ 𝑡 +

𝑉 − 𝑣

𝑣 − 𝑉
𝑡 + 

+
𝐿 ∙ 𝑅 ∙ ∆𝑉

𝑅 ∙ 𝑅 ∙ 𝑉 − 𝑣
+ 𝑡 +

𝑣 − 𝑉

𝑉 − 𝑣
𝑡 . 

(17)

Thus, under the reasonable assumption of zero mean input voltage i.e., 𝑉 = −𝑉 , the 
switching frequency 𝑓  is given by 

𝑓 = 𝑇 =
2𝑉

𝑉 − 𝑣

𝐿 ∙ 𝑅 ∙ ∆𝑉

𝑅 ∙ 𝑅 ∙ 𝑉
+ 2𝑡 . (18)

Equations (10) and (18) allow us to predict the time evolution of the duty cycle and 
the switching frequency as a function of the input electrical quantities.  

In Figure 7, Equations (10) and (18) are compared with the corresponding waveforms 
obtained by means of numerical simulations of the circuit in Figure 4 in case of a purely 
sinusoidal voltage 𝑣 . It is interesting to observe that the switching frequency varies be-
tween zero and its maximum value, with a frequency double that of 𝑣 . The maximum 
switching frequency is reached when the input voltage crosses zero. Moreover, it is inter-
esting to note that when the current crosses zero, the duty cycle assumes a value equal to 
0 or 1. This means that, when the current crosses zero, the switching does not take place. 
This behavior is confirmed by the experimental results reported in the following section. 

 
Figure 7. Waveforms as a function of the normalized time. 𝐼  is the maximum of the current 
𝑖  and 𝑇  is the period of 𝑣 . 

From Equation (18), it is possible to predict that the maximum switching frequency 
is 

𝑓 _ =
1

2
∙

𝐿 ∙ 𝑅 ∙ ∆𝑉

𝑅 ∙ 𝑅 ∙ 𝑉
+ 2𝑡 . (19)

i
EHPO

(t)/I
MAX

v
AB

(t)/V
p

(t
)

Numerical
Equation (10)

time/T
AB

f sw
(t

)/
f sw

_M
A

X

Numerical
Equation (18)

Figure 7. Waveforms as a function of the normalized time. IMAX is the maximum of the current
iEHPO and TAB is the period of vAB.

From Equation (18), it is possible to predict that the maximum switching frequency is

fsw_MAX =
1
2
·
(

L·Ry·∆VH

R f ·Rm·Vp
+ 2tcd

)−1

. (19)

Equation (19) provides a useful relationship between the circuit parameters and the
maximum switching frequency. It is worth noting that the maximum switching frequency
must be kept sufficiently low to reduce the switching losses. Therefore, the EHPO parame-
ters should be accurately chosen to guarantee a suitable compromise between the increase
in the extracted power, due to the negative capacitance emulation, and the associated
switching losses.

4. Experimental Results

A prototype of the EHPO, shown in Figure 8a, was implemented with the parameters
in Table 1, which ensure a compromise between negative capacitance emulation and
switching loss minimization. Experimental tests were performed to show the significant
increase in power extraction obtained by inserting the EHPO in parallel with a RPVEH
loaded by a bridge rectifier. The tests were carried out using the architecture shown in
Figure 8b and by applying both sinusoidal and non-sinusoidal vibrations to the harvester.
It is worth noting that the operation of the EHPO is independent of the type of diode
rectifier that is connected to the RPVEH terminals. In the considered architecture, without
any loss of generality, a diode half-bridge rectifier was used, which could be useful for
increasing the output DC voltage. The half-bridge rectifier shown in Figure 8b is made up
of two diodes, 1N5817 by ST Microelectronics, and two 100 µF 50 V aluminum electrolytic
capacitors by Lelon; the value of the resistance R0 at the output of the bridge rectifier was
varied to identify the maximum power extraction condition.
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Figure 8. (a) Photo of the prototype of EHPO. (b) Architecture of the system under test.

The experimental tests were performed using the RPVEH PPA4011 by MIDE mounted
on the two different mechanical configurations shown in Figure 9. The circuit parameters
of the EHPO were not modified during the tests, independently of the shape of the input
vibrations and the RPVEH resonance frequency resulting from its mechanical configuration.
To achieve the desired acceleration, the shaker 50009 by TIRAvib equipped with the power
amplifier BAA 60 was used. The accelerometers used to monitor the acceleration on
the constrained terminal of the cantilever beam were the 355B04 by PCB Piezotronics
(sensitivity 1 V/g and measurement range ±5 g peak) and the 352C33 by PCB Piezotronics
(sensitivity 100 mV/g and measurement range ±50 g peak).
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4.1. Sinusoidal Input Vibrations

The first tests were carried out using the RPVEH mounted on the configuration C1
shown in Figure 9a. The harvester was forced by a sinusoidal vibration with a frequency
equal to the RPVEH open circuit resonance frequency, 232 Hz, and an acceleration am-
plitude equal to 2 g. The results of the tests are reported in Figure 10, and examples of
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the measured waveforms are reported in the oscilloscope screenshots in Figure 11. The
meanings of the symbols are as follows: R0 is the resistance at the output of the bridge
rectifier. PRPVEH_w/EHPO is the average 〈vAB·iRPVEH〉 of the power extracted from the
RPVEH when the EHPO is connected at the harvester terminals (the switch sw of Figure 8b
is closed). PEHPO is the average 〈vAB·iEHPO〉 of the power that is drawn by the EHPO when
it is working. PDBR_w/EHPO is the average 〈vAB·iAB〉 of the power provided to the diode
bridge rectifier (DBR) when the EHPO is connected at the harvester terminals (the switch
sw of Figure 8b is closed). PDBR_w/oEHPO is the average 〈vAB·iRPVEH〉 ≡ 〈vAB·iAB〉 of the
power provided to the bridge rectifier when the EHPO is not connected (the switch sw
of Figure 8b is open). In Figure 10a, the performance of the EHPO circuit is analyzed in
detail by showing the total extracted power PRPVEH_w/EHPO, the dissipated power PEHPO,
and the net extracted power PDBR_w/EHPO. It is worth noting that, the power PEHPO, which
is needed for the operation of the EHPO, is directly drawn from the RPVEH terminals
without any other external supply, making it a self-supplied device. In Figure 10b, the
EHPO is compared with a standard DBR (PDBR_w/oEHPO) by considering both the total
power that can be extracted from the RPVEH (PRPVEH_w/EHPO) and the net extracted power
(PDBR_w/oEHPO). In Figure 10c, the percentage gains of power are shown. In particular,
γRPVEH is the percentage gain of total power at the RPVEH terminals, and it is given by

γRPVEH =
PRPVEH_w/EHPO
PDBR_w/oEHPO

·100%. (20)

γDBR is the percentage gain of net power at the RPVEH terminals, and it is given by

γDBR =
PDBR_w/EHPO
PDBR_w/oEHPO

·100%. (21)

The results in Figure 10 show that, in the presence of the EHPO, a significant increase
in the extracted power can be obtained, with a percentage total power gain (γRPVEH) that
can reach 250% and a percentage net power gain (γDBR) that can reach about 190%.
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DC/DC converter equipped with a Maximum Power Point Tracking (MPPT) controller 

4.7 6.8 10 15 20 27
R

0
 [k ]

0

1

2

3

4

P
o

w
er

 [
m

W
]

P
RPVEH_w/EHPO

P
EHPO

P
DBR_w/EHPO

4.7 6.8 10 15 20 27
R

0
 [k ]

0

1

2

3

4

P
o

w
er

 [
m

W
]

P
RPVEH_w/EHPO

P
DBR_w/EHPO

P
DBR_w/oEHPO

4.7 6.8 10 15 20 27
R

0
 [k ]

0
50

100
150
200
250
300

P
o

w
er

 G
ai

n
 [

%
]

RPVEH DBR

Figure 10. Results of the tests of configuration C1 with a sinusoidal vibration. (a) Performance of the
EHPO circuit; (b) Comparison of the EHPO with a standard DBR; (c) Percentage gains of power. R0

is the resistance at the output of the bridge rectifier. PRPVEH_w/EHPO is the average 〈vAB·iRPVEH〉 of
the power extracted from the RPVEH when the EHPO is connected at the harvester terminals (the
switch sw of Figure 8b is closed). PEHPO is the average 〈vAB·iEHPO〉 of the power that is drawn by
the EHPO when it is working. PDBR_w/EHPO is the average 〈vAB·iAB〉 of the power provided to the
DBR when the EHPO is connected at the harvester terminals (the switch sw of Figure 8b is closed).
PDBR_w/oEHPO is the average 〈vAB·iRPVEH〉 ≡ 〈vAB·iAB〉 of the power provided to the bridge rectifier
when the EHPO is not connected (the switch sw of Figure 8b is open). γRPVEH is the percentage gain
of total power at the RPVEH terminals, and it is given by Equation (20). γDBR is the percentage gain
of net power at the RPVEH terminals, and it is given by Equation (21).
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Figure 11. Waveforms measured when the harvester is tuned at 232 Hz, the acceleration is sinusoidal,
and R0 = 20 kΩ. (a) EHPO is not connected. (b) EHPO is connected.

The difference between γRPVEH and γDBR is due to the losses taking place in the
actual implementation with discrete components of the EHPO circuit. Such losses, which
are shown in detail in Figure 10a, can be reduced if an integrated implementation of
the circuit is considered, leading to an increase in the net power gain (γDBR) that will
approach the total power gain (γRPVEH). It is also interesting to observe that, without
the EHPO, the maximum average power PDBR_w/oEHPO−MAX that the standard diode
bridge rectifier can extract is obtained in correspondence of R0 = 6.8 kΩ and it is equal to
PDBR_w/oEHPO−MAX = 1.73 mW, as shown in Figure 10b. On the other hand, in the
presence of the EHPO, the maximum average net power is extracted in correspondence of
R0 = 20 kΩ and it is equal to PDBR_w/EHPO−MAX = 2.81 mW. This means that, by
employing a DC/DC converter equipped with a Maximum Power Point Tracking (MPPT)
controller [7], connected at the output of the passive bridge rectifier (both with and without EHPO),
the MPPT power gain is γMPPT = 100%·PDBR_w/EHPO−MAX/PDBR_w/oEHPO−MAX = 162.4%.
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Note that the EHPO is self-supplied through the RPVEH terminals. Thus, only if vAB
is greater than a given threshold (related to the minimum supply voltage of the electronic
components) can the EHPO work properly. In the present implementation, the minimum
value needed for the peak-to-peak amplitude of vAB is about 2 V.

A last interesting consideration concerns the impact of the EHPO on the operation and
efficiency of the diode bridge rectifier connected at the RPVEH terminals. The comparison
of the gains of power obtained at the AC side and the DC side of the rectifier as a function
of the load resistance R0 is shown in Figure 12. γDC is the percentage gain of net power at
the DC side of the rectifier, and it is given by

γDC =
PDC_w/EHPO
PDC_w/oEHPO

·100%. (22)
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Figure 12. Results of the tests of configuration C1 with a sinusoidal vibration. R0 is the resistance at
the output of the bridge rectifier. γDBR is the percentage gain of net power at the rectifier AC side,
and it is given by Equation (21). γDC is the percentage gain of net power at the rectifier DC side, and
it is given by Equation (22).

PDC_w/EHPO is the average
〈(

V+
0 −V−0

)
·iDC

〉
of the power provided to the load resis-

tance R0 when the EHPO is connected at the harvester terminals (the switch sw of Figure 8b
is closed). PDC_w/oEHPO is the same average power provided to R0 when the EHPO is not
connected (the switch sw of Figure 8b is open). V+

0 and V−0 , respectively, are the voltage
potentials, with respect to the ground, of the upper and lower terminals of R0, and iDC is
the current flowing into such a resistance. In Figure 13, an example of waveforms at the
AC and DC sides of the rectifier is reported with reference to the case R0 = 20 kΩ. The
results in Figure 12 show that the efficiency of the rectifier is essentially not affected by the
connection of the EHPO, and the significant increase in the extracted power obtained in the
presence of the EHPO is also confirmed at the rectifier DC side.
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Figure 13. Example of waveforms at the AC side (vAB and iAB) and at the DC side (V+
0 , V−0 , and

iDC, being V+
0 −V−0 = V0) of the bridge rectifier (the harvester is tuned at 232 Hz, the acceleration is

sinusoidal, and R0 = 20 kΩ). (a) EHPO is not connected. (b) EHPO is connected.



Energies 2023, 16, 4368 14 of 20

4.2. Non-Sinusoidal Input Vibrations

The second set of tests of the EHPO was carried out under non-sinusoidal vibra-
tions. Firstly, the RPVEH mounted on the configuration C1 shown in Figure 9a was used.
The voltage signal that was applied to the shaker amplifier is a scaled form of the ac-
celeration of the vibration measured on an aircraft (the fuselage side of a flying Boeing
737 [30]) and is reported in Figure 14. It is characterized by a dominant frequency around
232 Hz and produces an acceleration on the constrained terminal of the RPVEH cantilever
beam with an RMS value equal to about 5 g. The results of such tests are reported in
Figure 15, and examples of measured waveforms are reported in the oscilloscope screen-
shots in Figure 16. Figure 15 shows very good performance of the EHPO also under
non-sinusoidal vibrations, with a percent total power gain (γRPVEH) that reaches about
270% and a percent net power gain (γDBR) that reaches about 180%. Moreover, by compar-
ing the maximum net power extracted from the RPVEH when the EHPO is not connected
(PDBR_w/oEHPO−MAX = 1.1 mW) and the maximum net power extracted when the EHPO
is connected (PDBR_w/EHPO−MAX = 1.74 mW), it can be observed that the MPPT power
gain is about γMPPT = 158%.
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Figure 14. (a) Voltage signal applied to the shaker amplifier (scaled form of the acceleration
of the vibration measured on the fuselage side of a flying Boeing 737 [30]). (b) Corresponding
FFT (amplitudes).
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Figure 15. Results of the tests of configuration C1 with a non-sinusoidal vibration (signal of Figure 14).
(a) Performance of the EHPO circuit; (b) Comparison of the EHPO with a standard DBR; (c) Percentage
gains of power. PRPVEH_w/EHPO is the average 〈vAB·iRPVEH〉 of the power extracted from the
RPVEH when the EHPO is connected at the harvester terminals (the switch sw of Figure 8b is
closed). PEHPO is the average 〈vAB·iEHPO〉 of the power that is drawn by the EHPO when it is
working. PDBR_w/EHPO is the average 〈vAB·iAB〉 of the power provided to the DBR when the EHPO
is connected at the harvester terminals (the switch sw of Figure 8b is closed). PDBR_w/oEHPO is the
average 〈vAB·iRPVEH〉 ≡ 〈vAB·iAB〉 of the power provided to the bridge rectifier when the EHPO is
not connected (the switch sw of Figure 8b is open). γRPVEH is the percentage gain of total power at
the RPVEH terminals, and it is given by Equation (20). γDBR is the percentage gain of net power at
the RPVEH terminals, and it is given by Equation (21).
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Figure 16. Waveforms measured when the harvester is tuned at 232 Hz, the acceleration is non-
sinusoidal, and R0 = 20 kΩ. (a) EHPO is not connected. (b) EHPO is connected.

To show the ability of the EHPO to work whatever the RPVEH mechanical configura-
tion, the harvester PPA 4011 was mounted on a different configuration i.e., C2 in Figure 9b.
In such a configuration, it exhibits an open circuit resonance frequency equal to 477 Hz.
Tests of such a new mechanical configuration were carried out by applying a signal to the
shaker amplifier that is a scaled form of the acceleration of the vibration measured on a car
(Ford Focus diesel engine turned on [31]) and reported in Figure 17. Such a vibration is
characterized by a dominant frequency around 477 Hz and an RMS value of the acceleration
measured on the constrained terminal of the RPVEH cantilever equal to about 5 g. It is
worth noting that the same EHPO circuit, used in the previous tests with configuration C1,
was also able to work with the configuration C2 without any modification.
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Figure 17. (a) Voltage signal applied to the shaker amplifier (scaled form of the acceleration
of the vibration measured on a Ford Focus diesel engine turned on [31]). (b) Corresponding
FFT (amplitudes).

The results of such experimental tests are reported in Figure 18, and examples of the
measured waveforms are reported in the oscilloscope screenshots in Figure 19. The results
of Figure 18 show that, also in these different mechanical conditions, the performances of
the EHPO under non-sinusoidal vibrations are very good. The percentage total power gain
(γRPVEH) reaches about 398%, and the percentage net power gain (γDBR) reaches about
245%. Moreover, since the maximum power extracted by the harvester without the EHPO
is PDBR_w/oEHPO−MAX = 0.69 mW and the maximum net power extracted when the EHPO
is connected is PDBR_w/EHPO−MAX = 1.19 mW, in this case it is about γMPPT = 172.5%.
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Figure 18. Results of the tests of configuration C2 with a non-sinusoidal vibration (signal of Figure 17).
(a) Performance of the EHPO circuit; (b) Comparison of the EHPO with a standard DBR; (c) Percentage
gains of power. PRPVEH_w/EHPO is the average 〈vAB·iRPVEH〉 of the power extracted from the
RPVEH when the EHPO is connected at the harvester terminals (the switch sw of Figure 8b is
closed). PEHPO is the average 〈vAB·iEHPO〉 of the power that is drawn by the EHPO when it is
working. PDBR_w/EHPO is the average 〈vAB·iAB〉 of the power provided to the DBR when the EHPO
is connected at the harvester terminals (the switch sw of Figure 8b is closed). PDBR_w/oEHPO is the
average 〈vAB·iRPVEH〉 ≡ 〈vAB·iAB〉 of the power provided to the bridge rectifier when the EHPO is
not connected (the switch sw of Figure 8b is open). γRPVEH is the percentage gain of total power at
the RPVEH terminals, and it is given by Equation (20). γDBR is the percentage gain of net power at
the RPVEH terminals, and it is given by Equation (21).
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Figure 19. Waveforms measured when the harvester is tuned at 477 Hz, the acceleration is non-
sinusoidal, and R0 = 27 kΩ. (a) EHPO is not connected. (b) EHPO is connected.

The experimental results, which have been shown in this section, confirm the ability
of the EHPO to significantly increase the power extracted from an RPVEH. It is possible
to highlight that the EHPO can operate both in the case of sinusoidal and non-sinusoidal
vibrations, regardless of the shape of the input acceleration and the RPVEH resonance
frequency. Moreover, the EHPO does not need an external power supply, but it draws the
power for its operation directly from the RPVEH terminals. Such a power, PEHPO, was
measured in all the different testing conditions and reported in Figures 10a, 15a and 18a.
PEHPO, which is the reason for the difference between γDBR and γRPVEH , can be strongly
reduced with an integrated implementation of the EHPO.

A comparison of the proposed EHPO circuit with the most recent RPVEH optimizer
circuits is reported in Table 2. In the last few years, many self-supplied circuits have been
proposed implementing SSHI, SECE, and Impedance Matching techniques. They are mainly
devoted to increasing the extracted power from RPVEHs by compensating the output piezo
capacitance. The proposed EHPO circuit is designed for the same goal, but it exploits a
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very light control technique aimed at emulating a negative capacitance. Moreover, research
efforts on non-sinusoidal vibrations have mainly focused on circuit optimization for impact
vibrations. Differently, the EHPO, by emulating a negative capacitance, can compensate
the RPVEH output capacitance in every working condition, regardless of the shape of
the non-sinusoidal forcing acceleration. Furthermore, among the circuits implemented
with discrete components, the EHPO is the only one that is tested both in sinusoidal and
non-sinusoidal conditions, and, despite its simplicity, it leads to very high gains of power in
both conditions. Finally, considering that the integrated circuit implementation allows an
increase in overall efficiency, further improvements in power gain will be possible thanks
to an integrated implementation of the EHPO.

Table 2. Comparison of the proposed EHPO with the state of the art.

Publication 2021 [32] 2022 [33] 2021 [34] 2022 [35] 2023 [36] 2021 [37] 2022 [38] This Work

Type of
Circuit IM (2) SSHI (3) and

IM
SSHI and
MPPT (4)

Rectifier-less
SSHI SSHI SSHI SECE (7)

EHPO
(switch-mode
converter for

negative
capacitance
emulation)

Self-supplied Yes Yes Yes Yes (6) Yes Yes Yes Yes

Type of
prototype

Discrete
components

Integrated
chip

Discrete
components

Discrete
components

Discrete
components

Integrated
chip

Discrete
components

Discrete
components

Tested RPVEH Custom piezo
device

PZT S452-
J1FR-1808XB

Custom piezo
device

S452-J1FR-
1808XB

AB4113BLW100-
R by

Murata

MIDE
V22BL

Piezo by
Eleceram

Technology

MIDE
PPA-4011

Sinusoidal
Vibration

Characteristics
N/A N/A 30 Hz, 4 V (5) N/A N/A 208 Hz, 0.13 g N/A 232 Hz, 2 g

Maximum
power under

sinusoidal
vibrations

N/A N/A 237.2 µW N/A N/A 3.84 µW N/A 2.81 mW

Power gain
under

sinusoidal
vibrations (1)

N/A N/A 292% N/A N/A 523% N/A 190%

Non-
sinusoidal
vibration

characteristics

Impact

Impact due to
the rotation of

air blades
under a wind

speed
of 1.46 m/s

N/A Impact

Footsteps
pressure of a

person (59 kg)
walking with

moderate
speed

N/A Impact

Scaled form of
the

vibration on a
Ford Focus

diesel engine
turned on

Maximum
power under

non-sinusoidal
vibrations

1.05 mW 294.2 µW N/A ≈82 µW (6) 3.6 mW N/A 200 µ 1.19 mW

Power gain
under

non-sinusoidal
vibrations (1)

122% 368% N/A 176% (6) N/A N/A ≈ 118% (8) 245%

(1) Percent gain with respect to a passive diode bridge rectifier. (2) IM = Impedance Matching.
(3) SSHI = Synchronized Switching Harvesting on Inductor. (4) MPPT = Maximum Power Point Tracking.
(5) Harvester Open Circuit Voltage. (6) Only simulation results are provided. (7) SECE = Synchronous Elec-
tric Charge Extraction. (8) Estimated from graphs in the paper.

5. Conclusions

In this paper, a new self-supplied circuit, named the EHPO, aimed at the optimization
of the extraction of power from RPVEHs, was presented and discussed. It compensates the
electrical current drawn by the RPVEH output capacitance by exploiting a switch-mode
converter and a very light control circuit based on a hysteresis comparator. By emulating a
negative capacitance, the EHPO can lead to a significant increase in the power provided
by an RPVEH to a passive rectifier. A prototype of the proposed circuit was implemented
using discrete components on a breadboard and tested. The experimental results show
that the EHPO significantly increases the power extracted from a commercial RPVEH,
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both in the case of sinusoidal and non-sinusoidal vibrations, regardless of the shape of the
forcing acceleration and the RPVEH resonance frequency. The EHPO’s performance is very
promising and can be further improved by integrating it on a chip.

6. Patents

In this paper, a new technology is presented and discussed for the first time after
patent granting.

European Patent EP3942686. Title: Electronic device and method for the maximiza-
tion of the average power extracted from a vibration harvester. Inventors: L. Costanzo,
A. Lo Schiavo, M. Vitelli. Applicant: Università degli Studi della Campania Luigi
Vanvitelli. Italian Patent Granting Date: 4 February 2021, European Patent Publication Date:
26 January 2022; Links:

https://register.epo.org/application?number=EP20719490 (accessed on 23 May 2023).
https://patentscope.wipo.int/search/en/detail.jsf?docId=EP348440005 (accessed on

23 May 2023).
https://patents.google.com/patent/EP3942686A1/en (accessed on 23 May 2023).
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