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Abstract: In previous deep learning-based fault diagnosis methods for rotating machinery, the
method of directly feeding one-dimensional data into convolutional neural networks can lead to the
loss of important fault features. To address the problem, a novel rotating machinery fault diagnosis
model based on a rainbow recursive plot (RRP) is proposed. Our main innovation and contributions
are: First, a RRP is proposed to convert the one-dimensional vibration signal from the rotating
machinery into a two-dimensional color image, facilitating the capturing of more significant fault
information. Second, a new CNN based on LeNet-5 is devised, which extracts a feature that describes
substantial fault information from the converted two-dimensional color image, thus performing fault
diagnosis recognition accurately. The public rolling bearing datasets and the online fault diagnosis
platform are adopted to verify proposed method performance. Experiments on public datasets
show that the proposed method can improve the accurate rate of recognition to 97.86%. More
importantly, online experiment on the self-made fault diagnosis platform demonstrates that our
approach achieves the best comprehensive performance in terms of recognition speed and accuracy
compared to mainstream algorithms.

Keywords: fault diagnosis; rainbow recursive plot; convolutional neural network; online;
experiment platform

1. Introduction

In rotary machinery equipment, components that often cause malfunctions include
motor bearings and rotors. Bearing faults mainly include inner ring faults, outer ring faults,
and rolling element faults. During the bearing operation under load, if a component fails
locally, the components collide with each other to generate periodic shock pulse force, which
makes the bearing vibration signal appear non-stationary. In addition, vibration caused
by the fault will arouse the high-frequency natural vibration of the various components of
the bearing, resulting in the modulation of the vibration signal, which makes it difficult to
extract useful fault information from the bearing signal [1]. Rotor faults mainly include
unbalance, misalignment, and shaft bending faults. The rotor of the motor is affected by
factors such as the mass distribution of materials, machining errors, and impacts during
operation, resulting in a certain degree of eccentric torque between the center of mass and
the center of rotation, resulting in unbalanced faults.

Commonly used fault diagnosis methods for the above faults include the current
analysis method, the noise analysis method, and the vibration analysis method. Since
the signal sample source mixes multiple components, manual feature extraction using
the spectrum method and the wavelet packet algorithm requires rich prior knowledge,
signal preprocessing and expert experience as support, processing speed is slow, and online
diagnosis is more difficult to implement [2]. In order to reduce the amount of signal sample
collection, reduce the amount of manual participation, and improve the adaptive extraction
capability of fault characteristic signals, more advanced algorithms are required.
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With the development of machine learning, deep learning (DL) has been able to
automatically learn the abstract representation characteristics of the original signal to
a certain extent, reducing the manual involvement of designers. In [3], a data-driven
model based on a two-dimensional convolutional neural network (CNN) was used to
evaluate the torsional bearing capacity of reinforced concrete (RC) beams and achieved
high performance. In [4], the enhanced chicken swarm algorithm (ECSA) and the CNN
are used for crack diagnosis. By adding ECSA to optimize the meta parameters of the
DCNN model, the generalization capacity of the trained model is improved. Multiple deep
learning methods for one-dimensional vibration signals are the most common application
of motor bearing fault diagnosis. In [5], the idea of using a 1D CNN to detect and classify
stator winding faults in induction motors based on raw stator current data was proposed,
and high fault classification accuracy was achieved. The study in [6] proposes an algorithm
based on the combination of an autoencoder and cloud computing for fault diagnosis of
the electromechanical system, but the autoencoder will appear garbled and there is noise
in the process of generating the model, which will have a certain impact on the result of
fault classification. The study in [7] proposed a wide convolution kernel convolutional
neural network based on a one-dimensional vibration signal for a motor bearing fault
diagnosis system. The study in [8] proposed a self-normalizing neural network algorithm
suitable for one-dimensional signals of rotating machinery. The experimental results on the
benchmark dataset show that it has high accuracy. The study in [9] proposes a method of
transforming the original acoustic signal of the bearing into a two-dimensional frequency
spectrum, and then performing feature extraction and classification. The study in [10]
proposed a waveform signal tool based on recursive quantitative analysis for industrial
monitoring process. The study in [11] proposed a 2D CNN and support vector machine
method for bearing fault diagnosis based on 1D vibration signals. The study in [12]
proposed a method for predicting performance variables based on the rotor slot shape of
three-phase squirrel cage induction motors. This method can predict performance variables
of various shapes with the same accuracy as the simulation results. The study in [13]
proposed to combine a recursive gray-scale plot and a Keras-based CNN for human activity
recognition. However, compared with the 3-channel color image, the single-channel gray
image lacks some feature information. These end-to-end methods reduce the extraction
of artificial features. One-dimensional time series signals are prone to feature loss during
the feature extraction process. The mainstream two-dimensional convolutional neural
network structure is not directly applicable to one-dimensional vibration signals. In order
to suppress overfitting, the one-dimensional convolutional neural network needs to be
deepened or widened to obtain a larger receptive field. As the depth and width increase,
the accuracy rate is limited but the model processing speed drops significantly.

This paper introduces a novel signal preprocessing algorithm. First, the original
one-dimensional vibration time series signal is transformed into a two-dimensional color
image through the RRP algorithm. Next, image processing techniques are used to perform
image preprocessing, such as cropping and thumbnailing of these original images. Then,
an improved convolution neural network is input for feature extraction and fault diagnosis.
Finally, the preprocessed rainbow recursive plots is input to the thin CNN convolutional
neural network for feature extraction and fault diagnosis. Later, the algorithm in this paper
will be named RRP-DCNN (rainbow recursive plot deep convolutional neural network).
The main innovation of this paper is summarized as shown in Figure 1.

The main innovation and contribution of this paper are summarized as the following
three points:

1. We present a fast and effective feature extraction method. The RRP technology is used
to change the one-dimensional vibration signal of bearing to a two-dimensional color
image, which is transmitted to the optimized DCNN for learning and training, so
as to complete the bearing fault diagnosis and recognition. The proposed method
contains five successive steps. First, the one-dimensional vibration signals of bear-
ing under normal and fault conditions are collected. Second, the one-dimensional
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vibration signal of bearing is converted into a two-dimensional color image by the
RRP algorithm. Third, all rainbow recursive plots are preprocessed by appropriate
cutting and abbreviation to improve the processing speed of the model. Fourth, the
RRP dataset of bearing vibration is input to the optimized DCNN model for training.
Fifth, the trained RRP-DCNN model is deployed to identify the bearing fault types.

2. An improved CNN, RRP-DCNN-based bearing fault diagnosis method is proposed,
which can use a little samples to perform a few learning times to obtain a high fault
diagnosis accuracy rate.

3. The data collected from the self-made test bench are input into RRP-DCNN for
training and compared with traditional algorithms, the fault diagnosis method has
been significantly improved.
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Figure 1. The block diagram of the proposed method.

The rest of this paper is organized as follows: A brief introduction of RRPs is provided
in Section 2. The conversion of one-dimensional signals into two-dimensional color recur-
sive plots, image preprocessing, and the specific construction of the convolutional neural
network model will be introduced in Section 3. The experimental design and results are
introduced in Section 4. The conclusions and future outlook is presented in Section 5.

2. A Brief Introduction of RRPs

The vibration signals of most equipment are non-stationary and non-linear. More and
more non-linear information processing technologies are used in the field of fault diagnosis,
such as power spectrum analysis, multivariate time series analysis, and fractal dimension
analysis. A recurrence plot method proposed by Eckmann et al., to reveal the dynamic
characteristics of the system through binary image in 1987 [14,15]. A recursive plot is a good
description method of mainstream shape, which is very suitable for the analysis of the
characteristics of non-stationary fault state signals. The texture information of a recursive
plot represents the relevant information of the system in time domain. From the perspective
of recursive graph as a whole, it is the description of the global topological characteristics.
The recursive plot can be used to describe the steady-state characteristics of the system.
When the system is completely stable, the texture of the recursive plot is uniform. When
the system is non-stationary, the detailed texture of the recursive plot will show relevant
information in the time domain. As the instability increases, the detailed texture becomes
more significant [16]. Recursive graphs can be used to analyze vibration signals under
various equipment operating conditions. The calculation method for reconstruction is as
follows [17]:

Yi =
{

xi, xi+τ , · · · xi+(m−1)τ

}
, i = 1, 2, · · · , T − (m − 1)τ (1)
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Among them, T is the number of points in two-dimensional phase space, Xi,
i = 1, 2 . . . n is time series, m is bedded dimension, τ is delay constant.

The distance formula between the j-th point Yj and the i -th point Yi is as follows [17]:

dist(i, j; m) =

(
∑m−1

k=0

∣∣∣xi+kτ − xj+kτ

∣∣∣)
∑m−1

k=0 xi+kτ

(2)

As shown in Figure 2, draw a square diagram with N points on each side. N represents
the serial number of phase space, R is a recursive matrix, and r is preset radius of the field.
According to the results specified in the calculation [17]:{

Ri,j set this point blank, when dist(i, j; m) > r
Ri,j set this as a solid point, when dist(i, j; m) ≤ r

(3)
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Figure 2. Drawing process of recurrence plot [17].

The drawing process of gray recurrence plot is introduced in detail in [17]. We use
function RecurrencePlot( ) in the pyts.image module to generate rainbow recursive graph
for feature extraction. Rainbow is a type of rainbow color mapping that maps data values
to seven, namely colors violet, indigo, green, yellow, blue, red and orange, making it
possible to display the changes in data more vividly. In function RecurrencePlot( ), rainbow
color mapping is usually used to indicate the similarity between data, with closer points
represented by more similar colors and distant points represented by less similar colors,
making it easier to visualize the repeating patterns in time series data.

3. The Proposed RRP-DCNN Intelligent Diagnosis Method
3.1. Overview of the Proposed RRP-DCNN Model

The architecture of the rotating machinery fault diagnosis method based on RRP-
DCNN proposed in this article is shown in Figure 3.
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With this method, a high accuracy rate in fault diagnosis can be achieved by utilizing
a small number of samples and conducting only a limited number of learning iterations.
This algorithm further improves the generalization ability of the fault diagnosis model, and
is particularly suitable for the identification of fault types of non-stationary signals such as
rotating machinery vibration.

First, the one-dimensional signal of vibration is converted into a two-dimensional color
image through the RRP technology. The rainbow recursive plot has a good characterization
function for non-stationary time series signals. Simple points and lines can show system
dynamics characteristics well, and are very suitable for feature extraction in fault diagnosis
of rotating machinery. In order to use the learning input of the convolutional neural
network model, the recursive plot converted into a two-dimensional color image also needs
to be preprocessed. Details of conversion and preprocessing based on a RRP are explained
in Section 3.2.

In the field of image recognition, in order to increase the accuracy of the convolutional
neural network model, it is generally performed deeper. Owing to the simple representa-
tion of the recursive plot, it is proposed to perform adaptive optimization on the basis of
LeNet-5 [18,19]. The number of fully connected layers is reduced to form a deep convolu-
tional neural network (DCNN) to improve the processing speed of the network model. In
order to make the network model robust and avoid overfitting problems, the activation
function ReLU. In order to further improve the generalization ability of the network model,
the Dropout method is added after the pooling layer. In the classification stage, the softmax
function is used to calculate the multi-objective probability distribution. Details about the
DCNN are explained in Section 3.3.

3.2. RRP Conversion and Pretreatment

Taking the seven samples of all faults in the experimental data in Section 4.1 as
examples, the whole process is shown in Figure 4.
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The rainbow recursive plot acquisition and preprocessing process of the one-dimensional
vibration signal of the rotary machinery based on the RRP-DCNN algorithm is as follows:

1. Acquisition of one-dimensional vibration signals: The sampling frequency of the
original rotary bearing signal is 12 kHz, that is, 12,000 points are collected per second,
and the rotary machinery speed R = 1750 rpm, which is 1750 revolutions per minute.
From this, the minimum number of sampling points Nmin for one revolution of the
bearing is calculated as:

Nmin =
60F
R

(4)

In order to ensure the integrity of the sampling information, the actual number of
sampling points is taken as N ≥ 1.5Nmin, and we set N = 800.



Energies 2023, 16, 4357 6 of 15

2. Draw a rainbow recursive plot: The vibration signals of the bearing under different
working conditions are converted into a rainbow recursive plot using the method de-
scribed in Section 2. The original rainbow recursive plot has a pixel size of 360 × 400.

3. Crop the rainbow recursive plot: The pixels of the original rainbow recursive plot are
large and odd, which is not conducive to the application of subsequent image recogni-
tion algorithms. The original rainbow recursive plot is cropped under the premise of
ensuring the integrity of the information. Pixels of the cut rainbow recursive plot are
320 × 320.

4. Abbreviate the recursive plot: The cut rainbow recursive plot can already be used for
subsequent model training, but in the course of the experiment, the training speed is
found to be very slow. After many experimental verifications, under the premise of
ensuring a certain training effect, the cut rainbow recursive plot is further reduced to
a 32 × 32 image by the function thumbnail ( ) in the PIL library.

5. Mark the label: The preprocessed recursive thumbnails are labeled with the type of
working conditions for subsequent learning and identification verification.

3.3. Design of a DCNN

Common CNNs in the field of image classification are: GoogleNet, VGG, AlexNet,
LeNET-5, etc. These models are mainly for images with large samples and multiple
categories. The number of convolutional layers that constitute a convolutional neural
network is larger and deeper. The deeper the CNN is, the stronger the learning ability
is. As the network becomes more complex, overfitting is easy to occur, and the training
time will be longer. LeNet-5 is a classic convolutional neural network, which owns the
advantages of shallow depth, fast training speed, and certain guarantee of accuracy [20].
It has been effectively applied in the industry. LeNet-5 contains a total of seven layers of
structure—three convolutional layers, two max-pooling layers, one fully connected layer
and one output layer [21,22]. For objects such as bearing fault diagnosis that pursues
fewer samples and high fault recognition efficiency, CNNs need to balance the relationship
between processing time and recognition accuracy when designing. This paper has made
adaptive improvements on the basis of LeNet-5. Adding a Batch Normalization (BN) layer
between convolutional and pooling layers can improve training efficiency. The structure
is named a DCNN (Deep CNN). The specific structure of the DCNN is shown in Table 1
adapted from [17].

Table 1. DCNN structure parameters [17].

Number Layer Type Kernel Size Step Number
of Kernels Output Size

1 Conv 3 × 3 1 16 32 × 32 × 16
2 BatchNorm2d 32 × 32 × 16
3 MaxPool2d 2 × 2 2 16 16 × 16 × 16
4 Conv2d 3 × 3 1 32 16 × 16 × 32
5 BatchNorm2d 16 × 16 × 32
6 MaxPool2d 2 × 2 2 32 8 × 8 × 16
7 Fully connected 2048 1 2048 × 1
8 Fully connected 256 1 256 × 1
9 Softmax 7 1 7

3.4. Training of the DCNN

The cross entropy loss function used to evaluate the CNN objective function is shown
in Formula (5).

L = − 1
m ∑m

k=1 ∑j pj
k log qj

k (5)

Assuming the actual Softmax value of the CNN is q. The target distribution p is an one-
hot type vector, when the target category is j, pj = 1, otherwise pj = 0. Among them,
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m represents the size of the input mini-batch, qj
k represents the probability that the k-th

sample is calculated as the j-th class, pj
k is one-hot vector of the target domain sample tag.

The DCNN model uses the BP algorithm in the training process. Details of calculation
process are explained in Section 3.3. In the process of training the DCNN model by choosing
Stochastic Gradient Descent (SGD) in the BP algorithm, if the hyperparameters are not
well selected, it is easy to fall into the local optimum during training. In addition, if
the learning rate is not properly chosen, it will also fall into a local optimum. In order
to solve the global optimum weight and minimize the value of the objective function,
an optimization algorithm is required. Frequently used optimization algorithms include
SGD with a fixed learning rate, the Adagrad algorithm with automatic learning rate
change, the RMSprop algorithm with momentum, and adaptive moment estimation (Adam)
optimization algorithm. After the experimental comparison in Section 4.3, this article
chooses Adam as the model training optimization algorithm. In order to reduce the
computational burden, dropout is added during the training phase. Due to prevent the
occurrence of overfitting, regularization is used [23].

3.5. The RRP-DCNN Fault Diagnosis Process

The flow of the rotary machinery fault diagnosis method based on RRP-DCNN pro-
vided in this article is shown in Figure 5.
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Figure 5. Fault diagnosis process based on RRP-DCNN.

This method can adaptively extract the fault features from the one-dimensional vi-
bration signal rainbow recursive plot. This method not only eases the burden of neural
network model training, but also ensures the effective identification of faults. The algorithm
is implemented as follows:

1. Collect one-dimensional vibration signals of bearing under various working condi-
tions such as normal and fault.

2. Convert the one-dimensional vibration signal of the bearing into a two-dimensional
rainbow recursive plots.
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3. Properly crop and abbreviate all rainbow recursive plots.
4. Annotate fault classification labels and divide them into a training set and a test set

with a ratio of 2:1.
5. Input the training set to the built DCNN model, and perform iterative training to

optimize network parameters until the trained model converges.
6. Save and deploy the DCNN model.
7. Collect the one-dimensional vibration signal of the rotary machinery under the new

working condition. After processing according to steps (2) and (3), input to the DCNN
model trained in step (6) to classify and identify the rotary machinery faults.

4. Experimental Results and Analysis

The target device is generally operating normally, and obtaining fault data is diffi-
cult. Comparing third-party standard databases with mainstream algorithms is a widely
recognized and effective method.

4.1. Standard Dataset Validation

At present, the dataset of Case Western Reserve University (CWRU) Bearing Data Center
utilized for motor bearing fault identification is the most widely used [24]. The vibration
signal of the CURW dataset is collected by a 16-channel DAT recorder and processed into
mat format by MATLAB. The sampling frequency of the data we chose is 12 kHz. There are
four different speed states in this dataset, namely 1730 rpm, 1750 rpm, 1772 rpm, 1790 rpm,
respectively. In each speed state, there are three kinds of faults: rolling fault (BA), inner ring
fault (IF), outer ring fault (OF) and one normal condition (NO). Each type of failure has four
different damage sizes, which are 0.18 mm, 0.36 mm, 0.53 mm and 0.71 mm. The position
angle of the outer ring fault includes 0◦, 90◦ and 180◦. In this experiment, the rotating speed
is 1750 rpm, the sampling frequency is 12 kHz. The vibration signal data of the drive end
bearing are applied as the motor bearing fault set. The data composition is given in Table 2.

Table 2. Description of rolling element bearing datasets.

Label Fault Location Damaged Degree/mm Data Name Train Test

0 Normal - 99.mat 40 20
1 Inner Race 0.1778 107.mat 40 20
2 Outer Race 0.1778 159.mat 40 20
3 Outer Race 0.3556 199.mat 40 20
4 Inner Race 0.5334 211.mat 40 20
5 Outer Race 0.5334 260.mat 40 20
6 Ball 0.7112 3007.mat 40 20

4.2. Parameters of the Proposed Model

In Section 2, the accuracy of using a recursive plot to describe system dynamics
information mainly depends on the selection of phase space composition parameters:
embedded dimension m and delay time τ. For the embedded dimension m, if m is too
large, the amount of calculation will be increased and the influence of noise will be enlarged;
if m is too small, the phase points of the phase space will cross in a certain area, resulting in
the intersection area containing points in different parts of the phase space. For the delay
time τ, if τ is too small, and the distance between x(i) and x(i + τ) is as well close, the
phase points are concentrated on the diagonal and it is difficult to distinguish. If τ is too
large, x(i) and x(i + τ) will be uncorrelated, and the phase points in the phase space will
be distributed in two uncorrelated directions, which cannot truly reflect the law of system
dynamics. In this paper, choosing m = 1, τ = 1 can achieve better experimental results. For
other settings, please refer to Section 3.2.

In feature extraction and fault identification of the rotary machinery vibration signal
using DCNN, the main parameters affecting the performance of the model are: CNN
structure design, epoch, optimizer selection, learning rate and dropout. The structure of
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the DCNN has been introduced in Section 3.3. In the training stage, the upper limit of
training times epoch is set to 60, the learning rate is set to 0.001, dropout is used in the full
connection layer to suppress over fitting, and the dropout rate is set to 0.25. In the test
phase, the dropout rate is set to 0 to ensure the diagnosis effect. The Adam algorithm is
selected as the optimizer.

4.3. Fault Diagnosis Accuracy Assessment

Data of seven different bearing operating conditions with labels of 0–6 are selected
to train the RRP-DCNN model. The number of training samples selected for each bearing
operating condition is 40, and a total of 280 samples are used for model training. In addition,
the number of verification samples selected for each bearing working condition is 20, and
a total of 140 samples are used for model verification. In the model training stage, in order
to select the best optimization algorithm, four algorithms of SGD, RMSprop, Adamax and
Adam are used for experimental comparison. The comparison chart of the model training
accuracy is shown in Figure 6. The training curves of SGD is the slowest. The convergence
rate of RMSprop is faster, but it always fluctuates. The training curve of Adam is faster
than that of Adamax, and the accuracy rate can be stabilized to 100%. Therefore, the Adam
algorithm is selected as the optimizer.
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Figure 6. Comparison chart of the accuracy of four optimization algorithms.

In order to better observe the effect of the training process, the clustering effect
visualization method is used for analysis. Figure 7 shows the clustering effect diagram
of the training samples after the features of each layer of the CNN model are reduced to
two dimensions.

The seven different colored dots in Figure 7 different working conditions. The first
line of sub-figures 1 to 5 is the PCA dimensionality reduction method, and the second
line of sub-figures 6 to 10 is the t-SNE method [25,26]. According to the observation of
clustering results in Figure 7, the t-SNE dimensionality reduction method is clearer to
view the effect of the training process than the PCA method. The t-SNE method in the
second row of Figure 7 shows that as the number of network layers increases, samples
gradually gather and become easier to divide, which makes it easier for the classifier to
diagnose fault categories. Accordingly, the RRP-DCNN model has good adaptive fault
feature extraction ability. As shown in Figure 8, the validation test accuracy approaches
100% after 20 iterations.
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Figure 7. Feature visualization of training samples: (a) PCA-origin; (b) PCA-conv_1; (c) PCA-
maxplooing_1; (d) PCA-conv_2; (e) PCA-maxplooing_2; (f) T-SNE-origin; (g) T-SNE -conv_1; (h) T-
SNE-maxplooing_1; (i) T-SNE -conv_2; (j) T-SNE -maxplooing_2.
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Figure 8. Procedures of the RRP-DCNN training and validation.

In order to verify the effectiveness of the method, input the verification sample data
into the trained RRP-DCNN model. The result of diagnosis and recognition is automatically
generated in the form of a confusion matrix, as shown in Figure 9. The horizontal axis
represents actual operating conditions, and the vertical axis represents predicted operating
conditions. The dark part of the diagonal line is the maximum probability value that the
actual working condition is predicted to be correct. The other part is the probability value
of the prediction error for other conditions. The predicted probability values from 0 to 100%
correspond to the color map on the right. This type of classification result can be directly
and clearly read out the classification accuracy rate of each working condition in the form of
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percentage from the graph. Due to the similarity in fault characteristics between fault 2 and
fault 5, the recognition accuracy is relatively low. The recognition accuracy of fault 4 is 95%,
while fault 2 has a lower recognition accuracy of 90%. This is in line with the intersection
of the two fault clustering results in Figure 7. The accuracy of other fault identification
is 100%. Overall, the fault diagnosis method based on RRP-DCNN is effective, achieving
an average fault recognition accuracy of 97.86%.
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Figure 9. Confusion matrix of RRP-DCNN fault recognition.

4.4. Self-Made Test Bench Verification

In order to further verify that the algorithm not only has good performance in the
standard dataset, but also has good real-time and accuracy in engineering application, it
is verified on-line. As shown in Figure 10, the experiment was conducted using the same
platform as [27].

Energies 2023, 16, x FOR PEER REVIEW 12 of 16 
 

 

 

Figure 9. Confusion matrix of RRP-DCNN fault recognition. 

4.4. Self-Made Test Bench Verification 

In order to further verify that the algorithm not only has good performance in the 

standard dataset, but also has good real-time and accuracy in engineering application, it 

is verified on-line. As shown in Figure 10, the experiment was conducted using the same 

platform as [27]. 

 

Figure 10. Fault diagnosis test bench. (1) Upper computer. (2) Shaft. (3) Loading disk. (4) 

Acceleration sensor. (5) Bearing. (6) Motor. (7) Motor driver. (8) Speed adjustment bu�on. (9) Speed 

display. (10) Data acquisition board. (11) Serial communication [27]. 

A fully functional self-made online fault diagnosis experimental platform is used to 

verify the effectiveness of the RRP-DCNN model. The ADXL335 vibration acceleration 

sensor with the sampling rate up to 1.6 kHz is selected for the experimental platform. The 

vibration acceleration sensor is installed on the bracket near the loading disk side, and the 

motor running speed is set to 500 rpm. 

The center of gravity position of each loading disk is set differently, and the different 

center of gravity position can directly affect the imbalance state of the motor rotor. To 

simulate the operating conditions of the motor rotor, it can be achieved by switching 

different loading plates. Vibration signals of motor rotor faults under seven different 

working conditions are acquired as a self-dataset. The number of sampling points N = 220 

is calculated according to Formula 10, and the subsequent data preprocessing is the same 

as that in Section 4.2. The data composition and division are shown in Table 3. 

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0.9 0 0 0.1 0

0 0 0 1 0 0 0

0 0.05 0 0 0.95 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Predict label

T
ur

e 
la

be
l

0.000

0.2000

0.4000

0.6000

0.8000

1.000

Figure 10. Fault diagnosis test bench. (1) Upper computer. (2) Shaft. (3) Loading disk. (4) Acceleration
sensor. (5) Bearing. (6) Motor. (7) Motor driver. (8) Speed adjustment button. (9) Speed display.
(10) Data acquisition board. (11) Serial communication [27].

A fully functional self-made online fault diagnosis experimental platform is used to
verify the effectiveness of the RRP-DCNN model. The ADXL335 vibration acceleration
sensor with the sampling rate up to 1.6 kHz is selected for the experimental platform. The
vibration acceleration sensor is installed on the bracket near the loading disk side, and the
motor running speed is set to 500 rpm.

The center of gravity position of each loading disk is set differently, and the different
center of gravity position can directly affect the imbalance state of the motor rotor. To
simulate the operating conditions of the motor rotor, it can be achieved by switching
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different loading plates. Vibration signals of motor rotor faults under seven different
working conditions are acquired as a self-dataset. The number of sampling points N = 220 is
calculated according to Formula 10, and the subsequent data preprocessing is the same as
that in Section 4.2. The data composition and division are shown in Table 3.

Table 3. Description of self-data.

Label Fault Type Eccentric Wheels Specifications Train Test

0 Imbalance 1 Disk 1 70 30
1 Imbalance 2 Disk 2 70 30
2 Imbalance 3 Disk 3 70 30
3 Imbalance 4 Disk 4 70 30
4 Imbalance 5 Disk 5 70 30
5 Imbalance 6 Disk 6 70 30
6 Imbalance 7 Disk 7 70 30

4.5. Method Comparison

In order to evaluate the recognition effect of the RRP-DCNN model, different algo-
rithms are selected from the combination of the one-dimensional vibration signal pre-
processing algorithm and the CNN model classifier for comparative experiments. The
preprocessing algorithm includes FFT and the RRP algorithm in this paper. The deep
learning model includes a CNN, AlexNet [28], LeNet-5 and a DCNN in this paper. The
learning rate, epoch and other training parameters of the four deep learning models are
consistent. Algorithms involved in comparative experiments include Orgin-CNN [29],
FFT-AlexNet, FFT-LeNet-5, FFT-DCNN, RRP-AlexNet, RRP-LeNet-5, and RRP-DCNN.
The algorithm Orgin-CNN directly uses the self-data original one-dimensional vibration
signal as input. The input of this CNN is modified to adapt to the one-dimensional signal,
and the others are consistent with the DCNN. FFT-AlexNet, FFT-LeNet-5, FFT-DCNN use
self-data to convert the original one-dimensional vibration signal into a two-dimensional
spectrogram as input [30]. RRP-AlexNet, RRP-LeNet-5 and RRP-DCNN use the prepro-
cessing algorithm of this paper to transform the rainbow recursive plot as input. Figure 11
shows the test accuracy convergence curve in the process of training using the above seven
algorithm models. First, compare and observe the four curves of Orgin-CNN, FFT-AlexNet,
FFT-LeNet-5, and FFT-DCNN. The fastest convergence rate is FFT-DCNN, followed by
FFT-LeNet-5. The origin CNN curve is slowly rising, while the FFT-AlexNet curve is still
not obviously rising after 150 times of training. Therefore, the DCNN performs better
when using the same FFT preprocessing algorithm. Then, RRP-AlexNet, RRP-LeNet-5 and
RRP-DCNN were observed and compared. The fastest convergence rate is RRP-DCNN,
followed by RRP-LeNet-5. The accuracy rate of RRP-DCNN is 100% after 50 times of
training, RRP-LeNet-5 is 100% after 125 times of training, and RRP-AlexNet curve begins
to rise obviously after 25 times of training, but it is still not stable after 150 times of training.
Therefore, it is again confirmed that the DCNN model performs better. Compared with
FFT-AlexNet and RRP-AlexNet curves, the RRP algorithm has more advantages in feature
extraction. Compared with the FFT-DCNN and RRP-DCNN curves, the DCNN algorithm
has more advantages in feature extraction speed and recognition accuracy. Overall, RRP-
DCNN is higher than other algorithms in terms of convergence speed and accuracy after
150 times of training, which shows that the method in this paper is efficient in motor rotor
fault diagnosis.

The self-data training set is input into the model of various algorithms for 150 iterations
training, and the training time is recorded. In the self-data test set, 45 data samples are
randomly selected for classification and recognition in each type of working condition,
and the recognition accuracy of each algorithm model and the average recognition time of
a single sample are recorded, as shown in Table 4.
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Table 4. Experiment results.

Condition Label Results

Algorithm 0 1 2 3 4 5 6 Training Time (s) Identification
Time (s)

Average
Accuracy (%)

Orgin-CNN 46.7 26.7 93.3 60.0 93.3 33.3 93.3 3.2588186 0.0003233 63.81
FFT-AlexNet 0.0 0.0 100.0 0.0 0.0 0.0 0.0 135.9444344 0.0023147 14.29
FFT-LeNet-5 100.0 93.3 100.0 100.0 100.0 73.3 100.0 27.3925648 0.0006411 95.24
FFT-DCNN 86.7 93.3 100.0 100.0 100.0 86.7 100.0 23.1145761 0.0005811 95.24

RRP-AlexNet 91.1 100.0 55.6 44.4 93.3 82.2 88.9 179.5841630 0.0019357 79.37
RRP-LeNet-5 100.0 100.0 97.8 88.9 97.8 100.0 88.9 35.3096957 0.0006984 96.19
RRP-DCNN 100.0 97.8 97.8 100.0 100.0 100.0 88.9 30.0779228 0.0006553 97.78

It can be seen from Table 4 that RRP-AlexNet has the greatest training time and
recognition time, followed by FFT-AlexNet. This is caused by the deeper number of layers
in the AlexNet network. Origin-CNN has the shortest time and recognition time, but the
average diagnostic accuracy is only 63.81%. This shows that the ability to directly use the
original signal for feature extraction is insufficient. The training time and recognition time
of FFT-LeNet-5 is slightly longer than that of FFT-DCNN. This is due to the fact that the
LeNet-5 network has more layers than the DCNN. Since the DCNN and LeNet-5 models
are relatively close, their recognition accuracy is also 95.24% when the number of training
times is sufficient.

Compared with FFT-LeNet-5 and FFT-DCNN, RRP-LeNet-5 has slightly less train-
ing time and recognition time, but the recognition accuracy rate is improved to 96.19%.
This shows that the RRP is more advantageous than FFT in feature extraction efficiency.
Compared with RRP-LeNet-5, RRP-DCNN has less training and recognition time, and
the average correct rate of fault diagnosis can reach 97.78%. From the comprehensive
performance of the experiment, RRP-DCNN has the highest efficiency, which is more in
line with the actual needs of engineering.

5. Conclusions

In this study, a fast and effective feature extraction method was proposed. The
recursive plot technology was used to convert the one-dimensional vibration signal of rotary
machinery into a two-dimensional color image, which was transmitted to the optimized
DCNN for learning and training, so as to complete the rotary machinery fault diagnosis
and recognition. The effectiveness of this method was first verified by experiments on the
CWRU dataset. The relationship between the optimization algorithm and the diagnosis
results in the training process was studied. The correlation between the clustering effect
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of each layer output of the RRP-DCNN model and the recognition result of confusion
matrix was investigated and discussed. Moreover, the data acquired from the self-made
online test bench were utilized for training the RRP-DCNN model. Compared with the
traditional algorithm in the accuracy and time efficiency of fault diagnosis identification,
the efficiency of the algorithm was further verified. The 2D CNN used in this article
cannot adaptively adjust the structure and network parameters once the model is fixed. If
a “dynamic feedback” mechanism is added, the network model can be optimized based on
the characteristics of the data, truly realizing an artificial intelligence method for unmanned
parameter adjustment, and improving the generalization performance and robustness of
fault diagnosis methods.

Author Contributions: Conceptualization, X.W. (Xiaoyuan Wang); methodology, X.W. (Xiaoyuan Wang);
software, X.W. (Xin Wang); validation, X.W. (Xin Wang) and T.L.; formal analysis, T.L. and X.Z.; data
curation, X.W. (Xin Wang); writing—original draft preparation, X.W. (Xin Wang); writing—review and
editing, X.W. (Xin Wang); supervision, X.W. (Xiaoyuan Wang) and X.Z. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arellano-Espitia, F.; Delgado-Prieto, M.; Martinez-Viol, V.; Saucedo-Dorantes, J.J.; Osornio-Rios, R.A. Deep-Learning-Based

Methodology for Fault Diagnosis in Electromechanical Systems. Sensors 2020, 20, 3949. [CrossRef] [PubMed]
2. Zhang, S.; Zhang, S.; Wang, B.; Habetler, T.G. Deep Learning Algorithms for Bearing Fault Diagnostics—A Comprehensive

Review. IEEE Access 2020, 8, 29857–29881. [CrossRef]
3. Yu, Y.; Liang, S.; Samali, B.; Nguyen, T.N.; Zhai, C.; Li, J.; Xie, X. Torsional capacity evaluation of RC beams using an improved

bird swarm algorithm optimised 2D convolutional neural network. Eng. Struct. 2022, 273, 115066. [CrossRef]
4. Yu, Y.; Rashidi, M.; Samali, B.; Mohammadi, M.; Nguyen, T.N.; Zhou, X. Crack detection of concrete structures using deep

convolutional neural networks optimized by enhanced chicken swarm algorithm. Struct. Health Monit. 2022, 21, 2244–2263.
[CrossRef]

5. Skowron, M.; Orlowska-Kowalska, T.; Wolkiewicz, M.; Kowalski, C.T. Convolutional Neural Network-Based Stator Current
Data-Driven Incipient Stator Fault Diagnosis of Inverter-Fed Induction Motor. Energies 2020, 13, 1475. [CrossRef]

6. An, Z.; Li, S.; Xin, Y.; Xu, K.; Ma, H. An intelligent fault diagnosis framework dealing with arbitrary length inputs under different
working conditions. Meas. Sci. Technol. 2019, 30, 125107. [CrossRef]

7. Zhang, W.; Peng, G.; Li, C.; Chen, Y.; Zhang, Z. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and
Domain Adaptation Ability on Raw Vibration Signals. Sensors 2017, 17, 425. [CrossRef]

8. Yang, J.; Yin, S.; Chang, Y.; Gao, T. A Fault Diagnosis Method of Rotating Machinery Based on One-Dimensional, Self-Normalizing
Convolutional Neural Networks. Sensors 2020, 20, 3837. [CrossRef]

9. Islam, M.M.M.; Kim, J. Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep
convolutional neural network. Comput. Ind. 2019, 106, 142–153. [CrossRef]

10. Zhou, C.; Zhang, W. A New Process Monitoring Method Based on Waveform Signal by Using Recurrence Plot. Entropy 2015, 17,
6379–6396. [CrossRef]

11. Yuan, L.; Lian, D.; Kang, X.; Chen, Y.; Zhai, K. Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network and
Support Vector Machine. IEEE Access 2020, 8, 137395–137406. [CrossRef]

12. Koh, D.; Jeon, S.; Han, S. Performance Prediction of Induction Motor Due to Rotor Slot Shape Change Using Convolution Neural
Network. Energies 2022, 15, 4129. [CrossRef]

13. Garcia-Ceja, E.; Uddin, M.Z.; Torresen, J. Classification of Recurrence Plots’ Distance Matrices with a Convolutional Neural
Network for Activity Recognition. Procedia. Comput. Sci. 2018, 130, 157–163. [CrossRef]

14. Hirata, Y. Recurrence plots for characterizing random dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 2021, 94, 105552.
[CrossRef]

15. Marwan, N.; Carmen Romano, M.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438,
237–329. [CrossRef]

16. Shi, Y.; Guo, Y.; Yao, T.; Liu, Z. Sea-Surface Small Floating Target Recurrence Plots FAC Classification Based on CNN. IEEE Trans.
Geosci. Remote Sens. 2022, 60, 5115713. [CrossRef]

https://doi.org/10.3390/s20143949
https://www.ncbi.nlm.nih.gov/pubmed/32708574
https://doi.org/10.1109/ACCESS.2020.2972859
https://doi.org/10.1016/j.engstruct.2022.115066
https://doi.org/10.1177/14759217211053546
https://doi.org/10.3390/en13061475
https://doi.org/10.1088/1361-6501/ab26a2
https://doi.org/10.3390/s17020425
https://doi.org/10.3390/s20143837
https://doi.org/10.1016/j.compind.2019.01.008
https://doi.org/10.3390/e17096379
https://doi.org/10.1109/ACCESS.2020.3012053
https://doi.org/10.3390/en15114129
https://doi.org/10.1016/j.procs.2018.04.025
https://doi.org/10.1016/j.cnsns.2020.105552
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1109/TGRS.2022.3192986


Energies 2023, 16, 4357 15 of 15

17. Wang, X.; Wang, X.; Zhang, X.; Chen, Q. Motor Fault Diagnosis Under Variable Working Conditions Based on Two-Dimensional
Time Series and Transfer Learning. In Proceedings of the 25th International Conference on Electrical Machines and Systems
(ICEMS), Chiang Mai, Thailand, 2 December 2022; pp. 1–5.

18. Zhang, Z. From Artificial Neural Networks to Deep Learning: A Research Survey. J. Phys. Conf. Ser. 2020, 1576, 12030. [CrossRef]
19. Wang, Y.; Li, F.; Sun, H.; Li, W.; Zhong, C.; Wu, X.; Wang, H.; Wang, P. Improvement of MNIST Image Recognition Based on CNN.

IOP Conf. Ser. Earth Environ. Sci. 2020, 428, 12097. [CrossRef]
20. Xu, G.; Liu, M.; Jiang, Z.; Shen, W.; Huang, C. Online Fault Diagnosis Method Based on Transfer Convolutional Neural Networks.

IEEE Trans. Instrum. Meas. 2020, 69, 509–520. [CrossRef]
21. Wang, K.; Chen, C.; He, Y. Research on pig face recognition model based on keras convolutional neural network. IOP Conf. Ser.

Earth Environ. Sci. 2020, 474, 32030. [CrossRef]
22. Wen, L.; Li, X.; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE Trans.

Ind. Electron. 2018, 65, 5990–5998. [CrossRef]
23. Chen, Z.; Li, C.; Sanchez, R. Gearbox Fault Identification and Classification with Convolutional Neural Networks. Shock Vib. 2015,

2, 390134. [CrossRef]
24. Gao, S.; Xu, L.; Zhang, Y.; Pei, Z. Rolling bearing fault diagnosis based on intelligent optimized self-adaptive deep belief network.

Meas. Sci. Technol. 2020, 31, 55009. [CrossRef]
25. Xue, J.; Chen, Y.; Li, O.; Li, F. Classification and identification of unknown network protocols based on CNN and T-SNE. J. Physics.

Conf. Ser. 2020, 1617, 12071. [CrossRef]
26. Garg, I.; Panda, P.; Roy, K. A Low Effort Approach to Structured CNN Design Using PCA. IEEE Access 2020, 8, 1347–1360.

[CrossRef]
27. Wang, X.; Wang, X.; Chen, Q.; Zhang, X. Design of Experimental Platform for Motor Fault Diagnosis Based on Embedded System

and Shallow Neural Network. In Proceedings of the 25th International Conference on Electrical Machines and Systems (ICEMS),
Chiang Mai, Thailand, 2 December 2022; pp. 1–5.

28. Ma, P.; Zhang, H.; Fan, W.; Wang, C.; Wen, G.; Zhang, X. A novel bearing fault diagnosis method based on 2D image representation
and transfer learning-convolutional neural network. Meas. Sci. Technol. 2019, 30, 55402. [CrossRef]

29. Zhang, X.; Han, P.; Xu, L.; Zhang, F.; Wang, Y.; Gao, L. Research on Bearing Fault Diagnosis of Wind Turbine Gearbox Based on
1DCNN-PSO-SVM. IEEE Access 2020, 8, 192248–192258. [CrossRef]

30. Xiao, Y.; Wei, X.Z. Specific emitter identification of radar based on one dimensional convolution neural network. J. Phys. Conf. Ser.
2020, 1550, 32114. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/1742-6596/1576/1/012030
https://doi.org/10.1088/1755-1315/428/1/012097
https://doi.org/10.1109/TIM.2019.2902003
https://doi.org/10.1088/1755-1315/474/3/032030
https://doi.org/10.1109/TIE.2017.2774777
https://doi.org/10.1155/2015/390134
https://doi.org/10.1088/1361-6501/ab50f0
https://doi.org/10.1088/1742-6596/1617/1/012071
https://doi.org/10.1109/ACCESS.2019.2961960
https://doi.org/10.1088/1361-6501/ab0793
https://doi.org/10.1109/ACCESS.2020.3032719
https://doi.org/10.1088/1742-6596/1550/3/032114

	Introduction 
	A Brief Introduction of RRPs 
	The Proposed RRP-DCNN Intelligent Diagnosis Method 
	Overview of the Proposed RRP-DCNN Model 
	RRP Conversion and Pretreatment 
	Design of a DCNN 
	Training of the DCNN 
	The RRP-DCNN Fault Diagnosis Process 

	Experimental Results and Analysis 
	Standard Dataset Validation 
	Parameters of the Proposed Model 
	Fault Diagnosis Accuracy Assessment 
	Self-Made Test Bench Verification 
	Method Comparison 

	Conclusions 
	References

