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Abstract: Renewable energy sources play a key role in the transition towards clean and affordable
energy. However, grid integration of renewable energy sources faces many challenges due to its
intermittent nature. The controllability of aggregated regenerative electric heating load provides a
method for the consumption of renewable energy sources. Based on the concept of a virtual power
plant (VPP), this paper considers the cooperative energy management of aggregated residential
regenerative electric heating systems. First, considering physical constraints, network constraints,
and user comfort, comprehensive modeling of a VPP is given to maximize its social benefits. In
addition, this VPP is investigated as a participant in day-ahead energy and reserve markets. Then, to
solve this problem, a distributed coordination approach based on an alternating direction method of
multipliers (ADMM) is proposed, which can respect the independence of users and preserve their
privacy. Finally, the simulation results illustrate the effectiveness of our algorithm.

Keywords: virtual power plant; regenerative electric heating systems; ADMM

1. Introduction

Modern power systems face an energy trilemma amid growing concerns over envi-
ronmental issues and the depletion of fossil fuel resources. Transitioning to zero-carbon
electricity generation while ensuring universal and affordable energy access poses signifi-
cant challenges. However, there are two emerging technology trends that offer promising
solutions: consumer-level control and communications and distributed energy resources
(DERs). These trends provide new opportunities to address this crucial challenge ef-
fectively [1]. Consumer-level communication and control include energy management
systems and the adoption of smart meters [2]. DERs encompass various components, such
as distributed generation (DG), energy storage systems (ESSs), and flexible loads (FLs). A
virtual power plant (VPP) is the primary vehicle for integrating DERs into the electrical
distribution system [3]. VPPs have system controllability, visibility, and impact similar to a
traditional generator.

With increasing pressure to increase DER penetration, how to manage numerous and
heterogeneous DERs becomes an important and fundamental question. One approach is
through a centralized coordination paradigm, wherein a central controller manages all
DERs [4–7]. A coevolutionary version of the particle swarm optimization (PSO) algorithm
is proposed to coordinate the scheduling of DERs [4]. A real-time active power control
strategy is proposed to optimize the average generation cost of a VPP by dispatching DG
to handle the load variation and intermittent active power output of non-controllable DG,
such as wind turbines [5]. Aiming at the realization of VPP, an optimization algorithm
based on the big bang big crunch method is proposed in [6]. The objective of these algo-
rithms is to optimize the energy management of unbalanced distribution networks, with the
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primary aim of minimizing the reliance on purchasing electricity from the grid. This goal is
achieved through the optimal scheduling of FLs and ESSs, and the optimal configuration
of distributed renewable energy. For the optimal energy management problem of VPPs
with different DGs and energy storage systems, an efficient optimization method based
on the imperialist competition algorithm is proposed in [7]. Under the framework of the
electricity market, DERs such as DGs and controllable loads have the opportunity to form
VPP through aggregation and participate in the real-time operation of the transmission and
distribution network. Ref. [8] proposed a direct load control-based algorithm for effectively
managing a VPP comprising a large number of customers equipped with thermostatically
controlled loads [9] consider a VPP with a dispatchable power plant, intermittent wind
energy resources, and energy storage (ES). To maximize the profit of a VPP by selling and
buying electricity in a day-ahead and balanced market. To solve this uncertainty problem,
they proposed a two-stage stochastic mixed-integer linear programming model. Ref. [10]
considers the optimal bidding strategy problem of a commercial VPP, which consists of
DERs and electricity users. In order to simultaneously maximize day-ahead profit and mini-
mize expected real-time production and unbalanced expenses, they developed a three-stage
stochastic bi-level optimization model, the upper level aims to solve the profit maximization
problem, and the lower level is responsible for the market-clearing problem. This bi-level
is solved by using the mixed-integer linear programming model. In order to maximize
the operating income of VPP with renewable energy sources, Ref. [11] also proposed a
bi-level stochastic scheduling strategy based on a robust optimization method. However,
with the increasing scale of the power system, the centralized framework faces significant
challenges. These challenges include high communication and computational burden, lack
of privacy, etc. These issues hinder the effectiveness of the centralized approach [12].

On the other hand, the distributed coordination method can overcome these limita-
tions. Therefore, it is an effective method to solve the optimal coordination problem of
DERs. Ref. [13] developed a cooperate control strategy aimed at effectively managing
the output power of DGs in a distribution network system. To achieve this, the DGs
are integrated into the system by aggregating them into a VPP. The proposed method
is center-free, each DG only needs to communicate with its neighbors by using a local
communication network. The VPP converges to the optimal output in a distributed manner
according to the cost of the DGs and the necessary grid demand in the distribution network.
Traditionally, the ESSs are aggregated into a fixed VPP. To reduce the power losses of the
power network and improve voltage regulation. Ref. [14] developed a dynamic formation
of VPPs. The clustering algorithm aggregates the ESSs into multiple VPPs according to the
power demand and capacity of the ESSs. This distributed clustering algorithm improves the
flexibility of the ESSs and then realizes energy trading, power dispatch, and optimal power
flow based on VPP. In order to maximize the economic profit of a VPP, Ref. [15] proposed
a distributed optimization algorithm based on the distributed primal-dual sub-gradient
method, which can realize the collaborative decision-making of DERs in a VPP with limited
communication, and its performance is similar to the centralized approach. Based on the
alternating direction method of multipliers (ADMM) and consensus optimization, Ref. [16]
developed a distributed optimization algorithm for the optimal dispatch problem of a VPP.
This algorithm can maximize the economic benefits of two specific VPPs while satisfying
power balance constraints, line transmission constraints, and local capacity constraints of
DERs. To minimize the operation cost of a VPP, Ref. [17] developed a distributed approach
for optimizing coordinated control of DERs in distribution networks with renewable energy.
These devices provide active power at the aggregated level as required by the system
operator. In order to solve this optimization problem, an improved algorithm based on
ADMM is adopted. In this improved algorithm, by using the proximal operator, the initial
update has a closed-form analytical solution, which greatly reduces the cost of a single
agent. We reduce the amount of calculation and realize fast energy storage dispatch. A
decentralized economic dispatch method and a lightweight architecture are proposed for
VPPs with a large number of DERs [18]. This method has guaranteed convergence and
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can solve optimal dispatch problems quickly. This algorithm has strong robustness to
large-scale DERs and randomness of parameters. Moreover, it has strong adaptability and
can realize plug-and-play. To address the issue of delay in the existing consensus-based
optimal dispatch algorithm, Ref. [19] proposed improvements by introducing new update
rules and a reduction method. These enhancements aim to enhance the algorithm’s per-
formance and ensure convergence to the optimal solution in a distributed manner under
specific conditions.

Noting that DERs are not only generators but also controllable loads connected to the
network, most existing consensus-based algorithms aim to solve the optimal coordination
problems of DERs in separate and independent time periods. However, these algorithms
may inherently fail to fully capture the time-coupled operating characteristics of ES and
flexible demand (FD). To solve this basic problem, Ref. [20] proposed a new consensus-
based algorithm that incorporates additional consensus variables. These variables represent
the relative maximum power constraints imposed on ES and FD resources, which drive
consensual outcomes toward a feasible optimal solution and effectively mitigate the con-
centration of ES and FD responses over the same time period. To promote energy trading
among residential buildings with ES, FLs, and renewable energy resources, Ref. [21] pro-
posed a VPP energy management platform that leverages blockchain technology, which
can protect the privacy of users and respect their independence. Typically, the practical
communication network of power systems is affected by noise, communication delays, and
dynamic switching of communication topology. In order to solve these problems, VPP
is considered to participate in the power system, and a fully distributed robust optimal
scheduling algorithm based on the dual decomposition and double consensus technologies
is proposed [22]. The profit maximization problem of a VPP is solved by decomposing
it into sub-problems. Moreover, in order to suppress the adverse effects of communica-
tion delay and noise, the algorithm proposes a monotonically decreasing uniform gain
function. Ref. [23] introduced a decentralized coordination operation model for VPPs and
Power-to-Hydrogen (P2H) energy systems, leveraging the Nash-Harsanyi bargaining game
framework. The proposed model can capture the bargaining power and contributions of
participants in the cooperative setting, ensuring a fair and reasonable distribution of profits.
Furthermore, to enhance convergence efficiency and protect the privacy of each participant,
an improved ADMM method is employed to solve the optimization problems in a dis-
tributed manner. In order to minimize the social utility loss of a VPP with photovoltaics and
electric vehicles, Ref. [24] formulated the stochastic optimization problem. The charging
dynamics of electric vehicles are temporally coupled constraints. In general, long-term
optimization problems with temporally coupled constraints are difficult to solve well in
real-time operations since the current control behavior affects the future feasible domain. To
address this problem, a temporally coupled distributed online algorithm is proposed based
on the dual ascent technique and Lyapunov optimization algorithm. However, existing
studies [20–23] ignored power flows of the power grid, assuming all DERs are connected to
an electrical node. In short, these optimization methods are network-agnostic [25]. While
this simplifies the design of control and optimization algorithms, the results obtained with
this approach may not be practical under time-varying operating conditions.

Greenhouse gas emissions were reduced by 30–40% due to the introduction of heating
electrification [26]. Wherein regenerative electric heating (REH), as a promising residen-
tial heating form, is widely constructed in North China. REH is often considered as an
alternative to traditional electric heating methods because of its energy efficiency and envi-
ronmental benefits. REH works by storing heat energy in a thermal mass, such as ceramic
bricks, during off-peak hours when electricity is cheaper. The stored heat energy can then
be released during peak hours when electricity is more expensive, providing a cost-effective
and energy-efficient heating solution. In addition to its cost and energy-saving benefits,
REH also has environmental advantages. It can reduce carbon emissions by using off-peak
electricity generated from renewable sources. Furthermore, REH systems are durable,
require little maintenance, and have a long lifespan, making them a sustainable heating
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solution. In recent times, research on REH has been gaining increased attention from the
scientific community. To achieve the optimal match between the supply and demand of
REH, Ref. [27] proposed a novel multi-agent cooperative framework by utilizing deep
reinforcement learning. In addition, Ref. [28] proposed an affine arithmetic-based model
predictive control approach for optimizing the scheduling of REH, taking into account
emergency residential building heating. Ref. [29] provided valuable insights into the de-
mand response process of REH users in rural areas, taking into account the participation of
load aggregators. However, the above studies [27–29] did not consider the reserve capacity
of REH.

This paper focuses on the optimal coordination problem of REHs load within a VPP.
To solve this problem, this paper proposes a distributed coordination algorithm to optimize
the coordination of a VPP with residential REH systems. The primary aim of this study
is to enhance the overall profitability of VPPs by managing the energy production and
consumption of the VPP. The main contributions of this paper are as follows:

1. Optimal Coordination: This paper considers the optimal coordination of a VPP
with residential REH systems. It involves coordinating the energy production and
consumption of the VPP with the REH systems to minimize its own costs.

2. Reserve Capacity: This paper investigates the participation of the VPP in day-ahead
energy and spinning reserve markets. By participating in these markets, the VPP can
minimize its own costs and provide spinning reserve capacity to the grid.

3. Distributed Coordination Algorithm: To solve the optimal coordination problem, this
paper proposes a distributed coordination algorithm based on ADMM. Compared
to previous studies on the distributed coordination of VPPs, the proposed algorithm
offers a more practical approach by considering the network constraints that exist in
a VPP.

The remainder of this paper is organized as follows. Section 2 gives the mathemat-
ical model of the optimal coordination problem of a VPP with residential REH systems.
Section 3 introduces the ADMM concept and its application in a VPP. Section 4 presents
case studies to validate the effectiveness of the proposed algorithm. Lastly, Section 5 draws
some conclusions.

2. Problem Formulation

In this section, we first introduce the architecture of the residential building. Then,
the system model of distributed optimal coordination for a VPP is given. The schematic
diagram of the VPP is shown in Figure 1. The VPP can provide energy and reserve services.

Grid
20kV 1200kW 400kW 800kW 10kW

MV line
0.5 km

MV line
5 km

20kV/400V LV line
400m

VPP

Figure 1. The schematic diagram of the VPP.

Residential Building

The architecture of a residential building is shown in Figure 2. The residential building is
equipped with DGs and various loads, such as REH, FL, and inflexible loads. These compo-
nents can be managed and dispatched via smart meters, which also connect the residential
building and the power grid. Next, we will present the models of these two methods.
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Smart 
Meter

REH

DG

Load

Figure 2. Architecture of a residential building.

In this paper, residential buildings in a VPP can obtain electric energy in two different
ways. First, the user can use their DGs to generate energy. Second, the user can purchase
electric energy from the local grid through traditional means.

Let pDG
i,t denote the power generated by DG i at time t. The generation cost of DG i is

formulated as a quadratic function:

CDG
i,t = αi(pDG

i,t )2 + βi pDG
i,t .

where αi and βi are the coefficient of the cost function. Moreover, DG involves three kinds
of individual constraints: capacity constraints, ramp rate constraints, and spinning reserve
constraints [30]. They can be expressed as follows:

pDG,min
i ≤ pDG

i,t ≤ pDG,max
i , (1)

−DRi ≤ pDG
i,t+1 − pDG

i,t ≤ URi, (2)

RDG
i + pDG

i,t ≤ pDG,max
i , (3)

where pmin
i and pmax

i are the generation limits of DG i; URi and DRi represent the ramp-up
rate limit and the ramp-down rate limit, respectively, of DG i; RDG

i is the spinning reserve
capacity of DG i.

The buying and selling of electricity between residential buildings and the grid involve
transaction costs that can be formulated as follows:

CE
i,t = πE pE

i,t,

where the πE is energy transaction price; pE
i,t means the amount of power transactions

between users i and VPP at time t.
As shown in Figure 2, the residential buildings have various electric loads. They can be

divided into three categories: adjustable load, flexible load, and inflexible load. The power
consumption of the REH is contingent upon the preferences and requirements of the user.
As such, the REH is considered an adjustable load, meaning that its power consumption
can be dynamically adjusted and controlled based on the user’s needs and preferences. Its
structure is shown in Figure 3 [31].

Power Grid
Electric boilers

Heating Load

Thermal Energy Storage

The electric bus The heating bus

Figure 3. Structure of a regenerative electric heating system.
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The relationship between the indoor temperature of a residential building and the
power consumption of REH can be modeled as:

Tin
i,t+1 = Tin

i,t +
Tout

i,t − Tin
i,t

δ
+

1
γ

(
pREH

i,t + pr
i,t − pa

i,t

)
∆(t), (4)

where Tin
i,t is the indoor temperature of user i at time t; Tout

i,t is the outdoor temperature
of user i at time t; δ is the heat dissipation coefficient of residential building; γ is the
temperature coefficient of residential building; pREH

i,t is the power injection from the grid of
REH i at time t; pa

i,t and pr
i,t are charge and discharge power of REH i at time t, respectively;

∆(t) is the range of time.
The dynamic model of the ESSs of REH can be modeled as:

ETS
i,t+1 = ETS

i,t (1− u) +
(

ηa pa
i,t −

1
ηr pr

i,t

)
∆(t), (5)

where ETS
i,t is the energy of ESS i at time t; u is the coefficient of energy loss; ηa and ηr are

the efficiency of charge and discharge power.
The user’s cost can be expressed by the discomfort of indoor temperature, which is

defined as the deviation between the actual indoor temperature and the user’s preferred
temperature. It can be modeled as:

CREH
i,t = m(Tin

i,t − Tre f
i,t )2,

where m indicates the user’s sensitivity to the discomfort temperature; Tre f
i,t is the user’s

preferred temperature.
In practice, it is essential to maintain the indoor temperature within a reasonable range

to ensure occupant comfort. This range can be mathematically expressed as follows:

Tmin
i ≤ Tin

i,t ≤ Tmax
i . (6)

where Tmin
i and Tmax

i represent the lower and upper bounds, respectively, on the indoor
temperature that can be attained by the REH.

Moreover, the operational constraints of REH are:

0 ≤ pa
i,t ≤ pa,max, (7)

0 ≤ pr
i,t ≤ pr,max, (8)

0 ≤ ETS
i,t ≤ ETS,max, (9)

pa
t + Red ≤ pR, (10)

pr
t + Reu ≤ pR, (11)

where pa,max is the upper bound of the charging power of REH i; pr,max is the upper bound
of the discharging power of REH i; ETS,max is the upper bound of energy that can store in
ESS i; Red and Reu are reserve energy capacity that can be used for charging or discharging;
pR is the rated power of ESS of REH. Equations (7) and (8) mean that both charge and
discharge process limits exist; the capacity to store the energy of ESSs also should be
in a range, which is expressed by (9); Equations (10) and (11) mean that the charge and
discharge power has to remain within the rated power.

Similar to REH, the discomfort cost of the FL can be expressed as follows:

CFL
i,t = n(pFL

i,t − pre f
i,t )

2,
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which is defined as the deviation between the actual and preferred schedule of the FL, and
n indicates the user’s sensitivity to the discomfort schedule; pre f

i,t is the user’s preferred
schedule of the FL.

The FL can be scheduled but the sum of power should meet the user’s needs within the
operation time T. Moreover, the power of the FL should be bounded. They are expressed as:

T

∑
t=1

pFL
i,t =

T

∑
t=1

pre f
i,t , (12)

pFL,min
i,t ≤ pFL

i,t ≤ pFL,max
i,t , (13)

where pFL,min
i,t and pFL,max

i,t are the upper and lower bounds of the power of the FL, respectively.
Moreover, denote RFL

i,t as the reserve capacity of flexible loads, which should be in a
reasonable range. Hence, the constraints on the reserve capacity of flexible loads are:

pFL
i,t − RFL

i,t ≥ pFL,min
i,t , (14)

RFL
i,t ≥ 0. (15)

As shown in the [32,33], power flow constraints are crucial for the optimal coordination
of VPPs. However, existing related studies [20–23] ignore this constraint. Generally,
distribution networks have a radial structure. Therefore, the network constraints of a VPP
are established according to LinDistFlow [34]:

Pij −∑ Pjk = −pj, (16)

Qij −∑ Qjk = −qj, (17)

vi − vj = rijPij + xijQij, (18)

where Pij and Qij denote the active power and reactive power on line (i, j), respectively; pj
and qj are the net active power injection and the net reactive power injection of node i; and
vi is the voltage of node i; rij is the resistance of the distribution lines; xij is the reactance of
the distribution lines.

Moreover, the reserve requirements of a VPP are expressed as

n

∑
i=1

RDG
i,t + Redηa + Reuηr + RFL

i,t + RE
i,t ≥

n

∑
i=1

Ri,t. (19)

Therefore, the optimal coordination problem of a VPP can be formulated as follows:

min
T

∑
t=1

N

∑
i=1

CE
i,t + CDG

i,t + CREH
i,t + CFL

i,t ,

S.t.(1)–(19).

(20)

where CE
i,t is the transaction cost between the main grid and node i; CDG

i,t is the gen-
eration cost of distributed generation (DG); and CREH

i,t and CFL
i,t are the user’s discom-

fort cost. Specifically, in the optimal coordination problem, the decision variable are
pDG

i,t , pa
i,t, pr

i,t, ETS
i,t , pFL

i,t , pE
i,t, RDG

i , Red, Reu, RFL
i,t , RE

i , Tin
i,t . All of them are real variables. More-

over, there are 13 inequality constraints and 6 equality constraints.

Remark 1. Note that the REH cannot be charged and discharged simultaneously. Therefore, we
have to ensure that either pa

i,t or pr
i,t needs to be zero, i.e.,

pa
i,t pr

i,t = 0. (21)

However, when ηaηr < 1, there is no need to consider this nonconvex constraint [35].
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3. Distributed Coordinated Operation

In this section, a distributed method is developed to solve the optimal coordination
problem with residential REH systems in a VPP.

3.1. ADMM Algorithm

In this section, we will introduce the concept of ADMM. You can see more details
in [36]. ADMM is a powerful approach for effectively addressing distributed convex opti-
mization problems. This algorithm is based on a decomposition-coordination architecture
where the solution of large global problems is achieved by effectively coordinating the
solutions of small local subproblems. ADMM can be perceived as an attempt to merge the
advantageous attributes of augmented Lagrangian methods and dual decomposition.

ADMM is a distributed optimization algorithm that adeptly combines the remarkable
convergence properties offered by the method of multipliers with the inherent decompos-
ability of dual ascent. Consider the following generic constrained optimization problem [36]

min f (x) + g(y),

s.t.Ax + By = c.
(22)

where x ∈ Rn and y ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp.

Assumption 1. Suppose the functions f and g are convex.

The optimal solution of the problem (22) is denoted by

p? = inf{ f (x) + g(y)|Ax + By = c}. (23)

Denote the augmented Lagrangian function as

Lρ(x, y, u) = f (x) + g(y) + uT(Ax + By− c) +
ρ

2
||Ax + Bz− c||22. (24)

The ADMM consists of the iterations

xk+1 := arg minxLρ(x, yk, uk) (25)

yk+1 := arg minyLρ(xk+1, y, uk) (26)

uk+1 := uk + ρ(Axk+1 + Byk+1 − c) (27)

where ρ > 0. This algorithm comprises three essential steps: the step (25) aims at minimiz-
ing the variable x, the step (26) aims at minimizing the variable y, and the step (27) aims to
update for the dual variables u.

For convenience, ADMM can be reformulated in an alternative form that involves the
combination of quadratic and linear terms in the augmented Lagrangian, accompanied by
the scaling of the dual variable. The residual is defined as r = Ax + By− c, we have

uTr +
ρ

2
||r||22 =

ρ

2

∣∣∣∣∣∣∣∣r +(
1
ρ

)
u
∣∣∣∣∣∣∣∣2

2
−

(
1

2ρ

)
||u||22, (28)

=
ρ

2
||r + ν||22 −

(ρ

2

)
||ν||22, (29)

where ν = (1/ρ)u is the scale dual variable.
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According to the scaled dual variable, the ADMM can be expressed as

xk+1 := arg min
(

f (x) +
ρ

2
||Ax + Byk − c + νk||22

)
,

yk+1 := arg min
(

g(y) +
ρ

2
||Axk+1 + By− c + νk||22

)
,

uk+1 := νk + Axk+1 + Byk+1 − c.

(30)

The residual at iteration k is denoted as rk = Axk + Byk − c. Thus, the sum of the
residuals is

νk = ν0 +
k

∑
j=1

rj. (31)

3.2. Distributed Optimal Operation Decision of VPP

Let xi be the decision variable. Then, the coordination optimization problem (20) can
be expressed as the following general formulation:

∑ fi(xi), (32)

s.t. ∑ Axi = b, (33)

x ∈ Ξ (34)

Up to now, there are many advanced distributed algorithms that have been pro-
posed [36–40]. Among them, ADMM is widely used in electric power systems, especially
for optimal power flow problems [41]. Therefore, inspired by [42], this paper utilizes
ADMM (30) as the primary method to solve the optimal coordination problem of the VPP
in a distributed manner.

4. System Simulation

To evaluate the performance of the proposed distributed coordination method, a test
system with 15 nodes is used. The single line diagram of a VPP is shown in Figure 4,
where nodes {2,4,5,6,9,10,12,13} are connected with DGs. Moreover, the cost coefficients and
the generation capacity limitations of DGs are presented in Table 1, which are referenced
from [43]. Moreover, the parameters of the loads are shown in Figure 5. The result is based
on Matlab 2018b and CPLEX 12.9.

Table 1. Parameters of the DGs.

DG αi (MW2h) βi ($/MWh) pDG,min
i (MW) pDG,max

i (MW)

DG1 0.04 10.5 20 85
DG2 0.01 6.5 35 115
DG3 0.01 9.2 50 110
DG4 0.04 12.6 20 75
DG5 0.01 7.2 25 80
DG6 0.01 7 30 90
DG7 0.01 10.1 30 105
DG8 0.04 12.7 20 90
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Figure 4. The single line diagram of a VPP.
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Figure 5. The parameters of loads.

In order to incentivize residential prosumers to actively manage their energy consump-
tion and effectively reduce electricity costs, the VPP operates on the principles of Time of
Use (TOU) tariffs. By implementing TOU tariffs, the VPP provides a structured pricing
mechanism that incentivizes prosumers to adjust their energy usage patterns according
to the varying electricity rates during different time periods. Specifically, the static TOU
pricing scheme is employed as the basis for analysis and investigation [44]. The electricity
price of the main grid is presented in Figure 6. The main grid implements a peak pricing
scheme from 7:00 to 22:00, during which electricity is priced at its highest rate. Conversely,
outside this time range, the grid employs an off-peak pricing structure, offering electricity
at a lower cost. This time-dependent pricing strategy encourages consumers to shift their
energy consumption activities to off-peak hours, thereby helping to alleviate the strain on
the grid during peak periods and optimize the overall utilization of energy resources.
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Figure 6. Electricity price.

The outdoor temperatures of residential buildings are shown in Figure 7a. The data
comes from the outdoor temperature in winter in Beijing. People in different states have
different requirements for indoor comfort temperatures. The optimum temperature for
productivity is 22 ◦C. The optimum temperature for sleep is 15 ◦C. The comfort temperature
range for working is from 20 to 24 ◦C. The comfort temperature range for sleeping is from
11 to 19 ◦C. The time for working is from 7:00 to 22:00, and the rest time is for sleeping and
the indoor temperatures of residential buildings are shown in Figure 7b.
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Figure 7. Outdoor and indoor temperature of the building: (a) Outdoor temperature; (b) Indoor temperature.

The power of DGs is shown in Figure 8a. DG produces less power during the off-peak
demand for electricity but fully generates power during peak demand for electricity. The
power transaction between the VPP and the main grid is shown in Figure 8b. The VPP
strategically engages in the practice of procuring electric power from the main grid during
periods of low demand, commonly known as off-peak hours, while subsequently selling
electric power to the main grid during peak-demand periods. This dynamic approach
empowers the VPP to optimize its operational profitability by capitalizing on the price
differentials between off-peak and peak electricity demand. As shown in Figure 9, the
storage system is charged and discharged several times. On the whole, the storage system
is mainly discharged during the peak demand for electricity, and mainly charged during
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the off-peak demand for electricity. Therefore, thermal storage in residential REH systems
has the potential for peak shaving.
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Figure 8. The electric power in a VPP: (a) The power of DG; (b) The transaction power with the
electrical market.
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Figure 9. The power of thermal storage.

5. Conclusions

This paper tackled the intricate challenge of optimizing the coordination of residential
regenerative electric heating (REH) systems using a virtual power plant (VPP) concept. This
paper developed a comprehensive model considering the physical and network constraints
of the VPP, while also ensuring user comfort. Moreover, the paper delved into investigating
the VPP’s potential as a participant in day-ahead energy and reserve markets. This would
enable the VPP to optimize its operations and earn additional revenue by capitalizing
on price signals. The simulation results reveal that thermal storage within REH systems
holds significant potential for peak shaving. Moreover, to solve this complex coordination
problem, the paper proposed a distributed method based on the alternating direction
method of the multiplier. The simulation results serve as evidence of the efficacy of the
algorithm in optimizing the VPP’s operations in compliance with various constraints.

Building-integrated photovoltaics is an effective technology to achieve sustainable
development energy. However, how to effectively integrate intermittent renewable energy
into buildings is a great challenge. We will consider the impact of renewable sources in
future research. In this way, the operating costs of the VPP are reduced while providing an
environmentally friendly and sustainable operating mode.
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