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Abstract: This paper proposes a model predictive controller (MPC) design based on the optimal tip-
speed ratio method for maximum power point tracking (MPPT) of a direct-driven permanent magnet
synchronous generator (D-PMSG)-based wind energy conversion system (WECS). To eliminate sys-
tem nonlinearity and time-varying characteristics, a control variable was added at the wind turbine
and the system model was feedback-linearized to create a linear time-invariant system, reducing the
computational burden of the MPC and improving system performance. MATLAB/Simulink simula-
tions were performed and the results show that the linearized system has high fidelity. Compared
to traditional MPC that use an operating point to linearize the system, it has better adaptability to
turbulent wind speeds, improving the stability and rapidity of the system.

Keywords: direct-drive permanent magnet synchronous generator (D-PMSG)-based wind turbines;
MPPT; MPC; feedback linearization; turbulent wind speeds

1. Introduction

Wind turbines are an effective renewable energy generation devices, with minimal
emissions and reduced environmental pollution compared to traditional fossil fuel power
generation methods [1–5]. Among them, (D-PMSG)-based wind turbines have received
extensive attention due to their superiority. Its rotor is composed of permanent magnets
and uses direct drive to generate power, without the need for mechanical transmission
devices, such as gears, reducing the failure rate of the wind turbine. Additionally, it has the
advantages of small size, low noise, and high efficiency [6–9]. However, the harsh working
environment still presents challenges for their stable operation.

In order to improve the stability and energy conversion efficiency of wind turbines, a
method combining grey prediction and PI controller was proposed in [10]. The predicted
value obtained by grey prediction was used as the input of the PI controller, together with
the deviation from the given value, to adjust the power output of the wind turbine. The
simulation results showed that the designed system had the characteristics of fast response
and small overshoot. In [11], a combined optimization control method based on ant colony
algorithm and PI controller was proposed to obtain better PI controller coefficients. The pa-
rameters were optimized using the optimization algorithm. The simulation results showed
that this method can effectively improve the power generation efficiency of wind turbines.
Ref. [12] proposed a control strategy combining grey wolf optimization and PI controller
to better track the maximum power point of wind turbines by calculating the parameters
of the PI controller through the optimization algorithm. The above literature used other
algorithms combined with PI controller to achieve good control effects. However, for
multi-parameter systems, such as wind turbines, achieving constraints on some variables
and solving the dead zone problem with PI control is difficult. To suppress disturbances in
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nonlinear systems, ref. [13] combined sliding mode control and fuzzy control technology
to design a controller that can achieve the required performance. The simulation results
showed that this method enhances the robustness of wind turbines. The accurate measure-
ment of an effective wind speed is a key task that has a significant impact on the output
power, safety, and control performance of wind turbines. Ref. [14] trained an artificial
neural network using the least squares method and backpropagation gradient descent algo-
rithm to accurately estimate the effective wind speed without using any mechanical wind
speed sensors. The MATLAB simulation results demonstrated the accuracy and reliability
of the estimator, and the effectiveness of the method was demonstrated by the simulation
testing of a 5 MW offshore wind turbine system. Due to the inherent inertia, wind turbine
rotors cannot immediately respond to changes in wind speed. Therefore, ref. [15] proposed
using the time-series adaptive linear prediction (ALP) technique to improve the lag of
wind turbines. The simulation results showed that this method improved the wind turbine
power generation efficiency by nearly 5%. The methods mentioned in the above articles
can improve the performance of wind turbines, but the design is relatively difficult and the
implementation in engineering is challenging, which can add considerable uncertainty in
complex environments.

With the development of artificial intelligence technology, this technology has been ap-
plied to wind turbines. A reinforcement learning-based adaptive optimal fuzzy controller
was proposed in [16]. The critic used an adaptive neuro-fuzzy inference system (ANFIS)
network instead of a traditional neural network for the construction process, in order to
reduce computation. Additionally, the proposed controller is output feedback instead of
state feedback, which does not require system models and parameters, thus exhibiting
robustness to system uncertainties and external disturbances. The feasibility of the method
was verified through simulations. In [17], a training model based on a recursive neural
network was proposed to reduce wind speed measurement errors. A method combining
rotor speed control and pitch angle control was also proposed to better achieve the maxi-
mum power point tracking (MPPT) problem. The effectiveness of the control system was
demonstrated through simulation experiments on a 5 kW wind turbine model. Different
intelligent control strategies for wind turbine blade pitch angle control were introduced
in [18]. Neural networks and reinforcement learning were used to control the pitch angle of
wind turbines, aiming at the nonlinearity of wind turbine systems and the interference of
external environments. Some application examples were presented in the article, proving
the feasibility of the methods. A specific learning algorithm was designed in [19] to adjust
neuron weights online, while most previous articles trained networks offline. This method
can effectively reduce errors caused by wind speed changes to the system. The simulation
experiments on a 1.5 MW wind turbine in the article showed that the wind turbine power
increased by 7.87%.

In recent years, the method of combining MPC with wind turbines has been proposed.
The MPC control algorithm is an advanced control method that can accurately predict the
behavior of the control system, minimize losses, and meet various constraints, effectively
dealing with various problems faced by wind power generation. The MPC control method
can consider multiple factors, such as wind speed, rotor speed, power generation, and
power factor. through model optimization prediction, making the wind turbine system
more stable, efficient, and reliable. To reduce the impact of wind speed fluctuations on the
stable operation of the wind turbine, ref. [20] treated wind speed random fluctuations as
bounded disturbances and used the Robust Model Predictive Control (RMPC) strategy
to limit the state of the wind turbine system within a certain range. The simulation
results showed that it can effectively reduce the impact of wind speed changes on the
stable operation of the turbine and improve the quality of power generation. In order
to enable the semi-submersible floating wind turbine to operate stably under various
complex working conditions, ref. [21] designed and constructed a Gain-Scheduling Multi-
Model Predictive Controller (GM-MPC). The simulation experiments were conducted
under various wind-wave joint loads, and the results showed that the wind turbine reduces
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the mechanical load of the unit while ensuring power stability. Both of these studies
achieved good control results, but they used the equilibrium point linearization method
when linearizing the system, which is only accurate near the equilibrium point. When the
external environment changes, there will be distortion problems in the system. Ref. [22]
established a small-signal model of the wind turbine system, and the simulation results
showed that the system is stable when experiencing disturbances of step-down and step-up
in wind speed. The dynamic response of the system is consistent with the small-signal
analysis results. In view of the dual time-scale characteristics of the wind power generation
system, ref. [23] decomposed the wind turbine system into fast and slow subsystems based
on singular perturbation theory, and applied the continuous MPC algorithm to control
the two subsystems separately. A Kalman filter was designed for noise. According to the
simulation results, this method effectively improved the power generation efficiency of the
wind turbine. However, there is no accurate method for decomposing the fast and slow
subsystems. A continuous MPC algorithm will introduce derivative and integral operations,
which add computational pressure to the system. Moreover, the parameter adjustment of a
continuous MPC is very difficult, which is not conducive to engineering implementation.

Based on the above analysis, the nonlinearity and time-varying nature of wind turbines
are the challenges of implementing MPC control. Currently, the mainstream method is to
use the steady-state linearization method. However, it is difficult to select the equilibrium
point, and the model only has high fidelity around the equilibrium point. When the system
deviates from the equilibrium point, the previously selected model becomes distorted.
When facing turbulent wind speeds, the equilibrium point continuously changes. To ensure
the model’s authenticity, the calculated model needs to be continuously updated, which
adds a considerable computational burden to the MPC control system and introduces
system lag.

To solve this problem, this paper adds a control variable to the system, and uses
feedback linearization to eliminate the nonlinear part and time-varying parameters of the
system. The obtained linear system calculates the virtual control rate through MPC, and
then obtains the actual control rate through the feedback equation, which acts on the actual
nonlinear system. The structural schematic diagram is shown in Figure 1.
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By using MATLAB/Simulink simulation, the results show that the (MPC) system
based on feedback linearization is superior to the MPC controller using the linearization
around an operating point, with improved speed and stability. The main work of this paper
is as follows:

(1) The mathematical modeling of (D-PMSG)-based wind turbines is carried out based
on the mechanism modeling method.

(2) A novel controller is introduced to perform feedback linearization processing on the
system, eliminating the nonlinear part and time-varying parameters. The obtained
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system is discretized. Through simulation, the fidelity of the system is proved by
comparing it with the original system.

(3) Design an MPC controller, the system is simulate using MATLAB/Simulink and the
results are observed.

2. Modeling of (D-PMSG)-Based wind Turbines
2.1. Wind Turbine Model

The power extracted from the wind can be represented as:

Pm =
1
2

ρAV3
wCp (1)

where ρ is the air density in [kg/m3], A is the area swept by the fan blades in [m2], Vw
is the wind speed, in [m/s], and Cp is the optimal coefficient for wind energy utilization,
whose approximate value, obtained from [24], is:

Cp = 0.5176
(

116
λi
− 0.4β− 5

)
e
−21
λi + 0.0068λ (2)

where, as a function, β represents the pitch angle of the blades and λ = Rωm/Vw represents
the tip-speed ratio, where R is the blade rotation radius measured in [m] and ωm is the
angular velocity of the blade rotation measured in [rad/s]. The expression for λi is:

λi =

(
1

λ + 0.08β
− 0.035

1 + β3

)−1
(3)

The mechanical torque, denoted as Tm and measured in [N m], can be obtained by the
ratio of mechanical power and angular velocity [25]:

Tm =
Pm

ωm
(4)

2.2. Drive Train Model

The drive train of a wind turbine can be treated as a model with a concentrated mass at
a single point, which can yield a highly accurate analytical model. The rotational dynamics
of this system can be expressed as a second-order differential equation [26]:

J
dωr

dt
= Tm − Te − Bωr (5)

where J is the combined inertia of the turbine and generator in [kg m2], B is the damping
coefficient of the turbine in [kg m2/s], Te is the electromagnetic torque of the generator in
[N m], ωr is the rotor speed of the Permanent Magnet Synchronous Generator (PMSG), and
ωr = nωωt, where n is the gearbox transmission ratio. In PMSG, there is no gearbox, hence
n = 1. The dynamic equation for rotor speed is expressed as:

dωr

dt
=

ρAV3
w

2Jωr
CP −

B
J

ωr −
Te

J
(6)

2.3. Permanent Magnet Synchronous Generator Model

Electric motors with windings having a sinusoidal distribution are typically mathe-
matically modeled using the dq-axis framework, consisting of two equivalent circuits, each
on one axis. The dq-axis coordinate system is used to analyze the transient and steady-state
performance of permanent magnet synchronous generators.

The instantaneous voltage and current of the synchronous generator’s phases a, b, and
c constitute the three-phase variables of the abc coordinate system. They can be transformed
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into two-phase variables in a reference system defined by mutually perpendicular d and
q axes. The dq-axis fame has an arbitrary position relative to the abc-axis fame, rotates
at a speed of ω = dθ/dt, and is determined by the angle between the a-axis and d-axis.
The balanced three-phase voltages ua, ub, and uc in the abc coordinate system can be
equivalently transformed into the rotating dq-axis fame through inverse Park and Clarke
transformations [27].ud

uq
u0

 =
2
3

 cos θ cos (θ − 2π
3 ) cos (θ + 2π

3 )
−sin θ −sin (θ − 2π

3 ) −sin (θ + 2π
3 )

1
2

1
2

1
2

ua
ub
uc

 (7)

where ud and uq represent the d-axis and q-axis voltage, respectively, and u0 represents the
zero-sequence voltage. The zero-sequence variable is related to the symmetrical component:

u0 =
1
3
(ua + ub + uc) (8)

In the balanced condition, ua + ub + uc = 0, therefore u0 = 0, which means that the
zero-sequence component can be ignored in the dq-axis coordinate system.

The voltage equation of a permanent magnet synchronous generator (PMSG) can be
expressed using the aforementioned transformation, with the angular speed in the motor’s
measured reference frame serving as the electrical angular frequency [24], represented as:

ud = −idRs −ωeλq +
dλd
dt

uq = −iqRs −ωeλd +
dλq
dt

(9)

where id and iq are the stator currents in [A], ud and uq are the stator voltages in [V], and
Rs is the stator resistance in [ω]. ωe is the electrical angular frequency of the generator in
[rad/s], and it is equal to

ωe =
pωr

2
(10)

where p is the number of magnetic poles in a permanent magnet synchronous generator
(PMSG). λd and λq are the stator magnetic flux linkages in [Wb]. The stator magnetic flux
linkage can be represented as

λd = −Ldid + λm
λq = −Lqiq

(11)

where Ld and Lq are the stator inductances on the d-axis and q-axis in [H]. λm is the magnetic
flux linkage of the permanent magnet. By inputting the stator magnetic flux linkage into
the voltage equation, we obtained:

ud = −idRs + ωeLqiq − Ld
did
dt

uq = −iqRs −ωeLdid + ωeλm − Lq
diq
dt

(12)

The equation is converted into a differential equation form [28] and substituted in (10):
did
dt = −id

Rs
Ld

+ ωriq
p
2

Lq
Ld
− ud

Ld
diq
dt = −iq

Rs
Lq
−ωrid

p
2

Ld
Lq

+ ωr
p
2

λm
Lq
− uq

Lq

(13)

For non-salient pole PMSG, Ld = Lq [29], the electromagnetic torque is expressed as:

Te =
3p
4

λmiq (14)
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3. MPC Controller Design Based on Feedback Linearization

In this section, the feedback linearization technique is used to transform the model of
the fan system into a linear model, thereby reducing the computational burden of MPC, im-
proving system performance, and making it more feasible for engineering implementation.

3.1. Design of MPC

MPC (Model Predictive Control) is an algorithm based on predicting future states
based on the current system state, typically used for controlling discrete-time linear time-
invariant systems. Compared to the traditional PI closed-loop control, MPC has the
advantages of a fast dynamic response and good parameter optimization [30]. The key
concept of MPC is to use a system model to predict the future states of the system. Consider
the following system: {

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(15)

the prediction horizon is set to N in the process of prediction:

x(k + 1) = Ax(k) + Bu(k)

x(k + 2) = Ax(k + 1) + Bu(k + 1)

= A2x(k) + ABu(k) + Bu(k + 1)
...

...
...

x(k + N) = Ax(k + N − 1) + Bu(k + N − 1)

= AN x(k) + AN−1Bu(k) + AN−2Bu(k + 1)

+ · · · . . . + Bu(k + N − 1)

(16)

Equation (16) can be written in a more concise form:

X(k) = Fx(k) + ΦU(k) (17)

where:

X(k) ,


x(k + 1)
x(k + 2)

...
x(k + N)

 U(k) ,


u(k)

u(k + 1)
...

u(k + N − 1)

 F ,


A
A2

...
AN



Φ =


B 0 · · · 0

AB B · · · 0
...

AN−1B

...
AN−2B

. . .
...

· · · B


(18)

In the control process, it is desired that the system can accurately track the set value
and the control variable is as smooth as possible [31]. Therefore, the quadratic cost function
is written as:

J(k) = (X(k)− Xre f (k))
TQ(X(k)− Xre f (k)) + U(k)T RU(k) (19)

where:

Q =

Q · · · 0
...

. . .
...

0 · · · Q

 R =

R · · · 0
...

. . .
...

0 · · · R

 (20)

Because the objective is to minimize the cost function J, if more emphasis is placed
on the system’s tracking ability, the elements in the matrix Q can be set to be larger, which
can make the system reach the set value faster but unavoidably causes larger overshoots.
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However, if it is desired to avoid rapid changes in the system control variable or to save
energy, the elements in the matrix R can be set to be larger, but this increases the time for
the system to reach the set value. Additionally, if it is desired to handle a specific state or
control variable, the corresponding weight values can be changed. Equation (17) can be
substituted into (19), thus obtaining the results for:

J(k) = [2x(k)FTQΦ− 2XT
re f (k)QΦ]U(k) + U(k)T(ΦTQΦ + R)U(k)

+xT(k)FTQFx(k)− 2XT
re f (k)QFx(k) + XT

re f QXre f
(21)

The quadratic function is calculated to obtain the control sequence U(k). Only the
first term is applied to the system [32]. The resulting new state is used in Equation (16) to
achieve rolling optimization.

3.2. System Feedback Linearization Design

According to Equations (6), (13), and (14), (D-PMSG)-based wind turbines are de-
scribed as: 

dωr
dt = ρAV3

w
2Jωr

CP − B
J ωr − 3p

4
λmiq

J
did
dt = −id

Rs
Ld

+ ωriq
p
2

Lq
Ld
− ud

Ld
diq
dt = −iq

Rs
Lq
−ωrid

p
2

Ld
Lq

+ ωr
p
2

λm
Lq
− uq

Lq

(22)

The system state and input variables are defined as:

x = [ωr, id, iq]T ; u = [ud, uq]
T (23)

From Expression (22), we obtained the following:

• The system exhibits obvious nonlinearity. The mainstream approach to deal with
nonlinear systems is to linearize the system using the equilibrium points. However,
the selection of equilibrium points is difficult, and the equilibrium points also change
with the variation of wind speed, which affects the accuracy of the system.

• The system is a time-varying system. In order to achieve a maximum power point
tracking, the wind turbine needs to keep the generator speed ωr at ωre f , where
ωre f = λVw/R. Therefore, as the wind speed changes, ωr also changes accordingly.
This means that the matrices F and Φ in Equation (18) also change in real time. In other
words, when the wind speed changes, the controller needs to calculate the system
reference values based on the current wind speed and compute the new F and Φ
values. This introduces a delay to the system.

This article considers using feedback linearization to turn the system into a linear
system and eliminate time-varying parameters. Since the system’s control variables ud
and uq cannot directly affect ωr, an additional controller B = kbub + b is added. Here,
B represents the friction coefficient, kb is a negative coefficient, and b is a small positive
number. According to [33], the stability margin of the system and the friction coefficient
have a linear relationship within a certain range. Therefore, by controlling the friction
within a certain range, the system’s stability can be improved. The resulting system with
an additional controller is expressed as:

dωr
dt = ρAV3

w
2Jωr

CP − kbub
J ωr − b

J ωr − 3p
4

λmiq
J

did
dt = −id

Rs
Ld

+ ωriq
p
2

Lq
Ld
− ud

Ld
diq
dt = −iq

Rs
Lq
−ωrid

p
2

Ld
Lq

+ ωr
p
2

λm
Lq
− uq

Lq

(24)

Equation (24) is expressed in the form of a nonlinear system [34]:

.
x = f (x) + g(x)u (25)



Energies 2023, 16, 4244 8 of 16

The linear feedback design for (25) can be obtained by rewriting the control variable as:
ub = ρAV3

w
2kbωr2 CP + vb

ωr

ud = iqLq
p
2 ωr + vd

uq = −idLd
p
2 ωr + vq

(26)

The new system representation in the state-space form is:
.

ωr.
id.
iq

 =

 −
b
J 0 − 3p

4
λm
J

0 − Rs
Ld

0
p
2

λm
Lq

0 − Rs
Lq


ωr

id
iq

+

−
kb
J 0 0

0 − 1
Ld

0
0 0 − 1

Lq


vb

vd
vq

 (27)

The system thus becomes a linear system, and the time-varying parameters are elimi-
nated.

3.3. Feedback Linearization Feasibility Analysis
3.3.1. Lyapunov Stability Analysis

To analyze the stability of the system (26), consider a Lyapunov quadratic candidate
function:

V(x) = xT Px (28)

where P is a diagonal matrix and x is the system state variable.

P =

P11 0 0
0 P22 0
0 0 P33

 (29)

The matrix is positive definite and symmetric, where P11, P22, and P33 are positive. It
satisfies the condition for a Lyapunov candidate function. The system matrix is represented
by A, considering that the derivative of V(x) with respect to time is negative definite,
that is: .

V(x) = xT(PA + AT P)x < 0 (30)

Lemma 1. When P33 = 3
2

Lq
J P11, there exists a negative definite symmetric matrix Q that satisfies

the Lyapunov condition:
PA + AT P = Q (31)

Proof of Lemma 1. Q matrix is:

Q =


−2 b

J p11 0 pλm
2Lq

p33 − 3pλm
4J p11

0 −2 RS
Ld

p22 0
pλm
2Lq

p33 − 3pλm
4J p11 0 −2 RS

Lq
p33

 (32)

The order of the matrix’s leading principal minors can be obtained based on the
conditions of Lemma 1.
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Q1 = −2
b
J

p11

Q2 =

[
−2 b

J p11 0
0 −2 RS

Ld
p22

]

Q3 =

−2 b
J p11 0 0
0 −2 RS

Ld
p22 0

0 0 −2 RS
Lq

p33


(33)

As all b, J, RS, Ld, Lq, p11, p22, p33 are positive, Q1 is negative definite, Q2 is positive
definite, and Q3 is negative definite. Q is a negative definite and diagonal matrix. The P
and Q matrices satisfy the Lyapunov equation. Therefore, the system is stable. �

3.3.2. System Equivalence Analysis

The system obtained after feedback linearization was discretized to obtain a linear
time-invariant (LTI) discrete system. We used MATLAB/Simulink to build the original
system and the LTI system, inputting the same signal to both systems and observing the
response curve. The obtained response curves are shown in Figures 2 and 3.
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Figure 3. Response when the input is a high-frequency oscillation signal. (a) Original system;
(b) LTI system.

The results indicate that the system has similar dynamic characteristics to the original
system for step and high-frequency signals. By eliminating non-linear terms and time-
varying parameters Vw and ωr, designing an MPC controller at this point without the need
for real-time updates of F and Φ can improve the system’s response speed and accuracy.
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4. Simulation Results and Analysis

To verify the feasibility of the theory, the simulation testing of a 300 kW direct-drive
permanent magnet synchronous wind turbine generator was carried out using MAT-
LAB/Simulink. The parameters of the (D-PMSG)-based wind turbines are shown in
Table 1.

Table 1. The wind turbine and generator parameters.

Name Symbol Value

Wind turbine parameters

Tip speed ratio ai peak power λ 8.1
Blade radius R 14 m

Peak power coefficient Cp 0.48
Turbine and generator inertia J 60 kg ×m2

Coefficient of friction B 0.048
Air density ρ 1.2 kg/m3

Friction controller coefficient kb −5
Friction controller coefficient b 5

Cut-in wind speed 3 m/s
Cut-out wind speed 16 m/s

Generator parameters
Stator resistance Rs 0.025ω

Stator d-axis inductance Ld 0.0036 H
Stator q-axis inductance Lq 0.0036 H

Wind speed sequences were simulated within the range of 8 m/s to 15 m/s using
MATLAB, as shown in Figure 4.
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A comparison was made between a wind turbine control system based on Feedback
Linearization Control (FLC) and Model Predictive Control (MPC), and a MPC wind turbine
control system based on Linearization about an Equilibrium Point (LEP), using the method
described in [35] for LEP. The selection of parameters is described in Appendix A. The
comparison was carried out for maximum power point tracking under the wind speed
shown in Figure 4, and the simulation results are shown in Figures 5–7.
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Figures 5 and 6 demonstrate that the combination of feedback linearization and MPC
can achieve faster and more accurate maximum power point tracking, resulting in a higher
power generation. As mentioned in [36], the efficiency of the wind energy conversion
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system was used as a performance metric, which is defined as the ratio of actual output
power to theoretical power. This can be expressed as shown in (34).

nsys =

∫ t
0 Pg∫ t
0 Pth

·100[%] (34)

where Pth and Pg are the theoretical power and actual power of the WECS, respectively,
and nsys is the overall system efficiency. According to calculations, the results presented in
Table 2 are obtained.

Table 2. Numerical analysis of the power generation efficiency.

MPPT Algorithm nsys (%)

FLC-MPC 92.28
LEP-MPC 87.80

Figure 7 shows that using feedback linearization can reduce the error. Based on the
comprehensive analysis of performance indicators, such as root-mean-square error (RMSE),
mean absolute error (MAE), relative error (RE), and maximum deviation (MAX DEV), the
results obtained are shown in Table 3.

Table 3. Numerical analysis of error.

Numerical Analysis Methods FLC-MPC LEP-MPC

RMSE 0.1830 0.3995
MAE 0.1418 0.3555

RE 2.1587% 5.3300%
MAX DEV 0.6730 0.9993

According to the results, the combination of feedback linearization and MPC can make
the wind turbine track the maximum power point more quickly and accurately, effectively
improving the system’s dynamic performance. This increases the average wind energy
capture efficiency and power generation efficiency of the wind turbine.

5. Conclusions and Future Works

In recent years, the MPC algorithm has gradually been used in wind power generation
systems due to its easy-to-adjust parameters and good control effect. However, MPC places
a significant demand on computation, especially in controlling nonlinear and time-varying
systems. This article proposed the use of feedback linearization to linearize wind power
systems, solving the difficulties of system nonlinearity and time variation. Compared with
the equilibrium point linearization method, it greatly reduces the amount of computation
required and is more conducive to engineering implementation. The simulation results
show that the feedback-linearization-based MPC wind energy conversion system has a
good control performance in simulated wind speed sequences. Compared with MPC
control systems processed by equilibrium point linearization, it has a faster response speed,
can better track the optimal speed, and effectively improves the average wind energy
capture efficiency and power generation efficiency.

As for our future work, the analysis of the impact of friction on the wind turbine
system will be conducted to determine the values of kb and b using a more scientific
method. Regarding the idea of controlling friction, there is currently no suitable actuator
available. Furthermore, for wind turbines, multiple types of turbines will be considered in
future studies.
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Appendix A

The selection of the important parameters for the method presented in reference [35]
is shown below.

Selection of the Lie derivative:
The representation of the nonlinear system is expressed by:{ .

x = f (x) + g(x)u
y = h(x)

(A1)

where: 

x =
[

id iq wr
]T

f (x) =

 f1
f2
f3

 =


1

Ld+Ls
(−Rx1 + p(Lq − Ls)x2x3)

1
Lq+Ls

(−Rx2 + p(Ld + Ls)x1x3 + pλmx3)

1
J (

ρAv3Cp
2 · 1

x3
− Bx3 − 3

4 pλmx2)


g(x) =

[
− 1

Ld+Lq
x1 − 1

Lq+Ls
0
]T

u = Rs
h(x) = x3 = wr

(A2)

The Lie derivatives are:{
L f h(x) = ∂h(x)

∂x · f (x) = d1· 1
x3
− d2x3 − d3x2

Lg[L f h(x)] = d3· x2
Lq+Ls

(A3)

where: 
d1 =

ρAv3Cp
2

d2 = B
d3 = 3

4 pλm

(A4)

Thus, we obtain:
Lg[L f h(x)] = d3·

x2

Lq + Ls
6= 0

n = 1, r = n + 1 = 2
(A5)

In order to transform the system into a normal form, a coordinate transform, fulfilling
the diffeomorphism condition, must be found:

∂z3

∂x1
·g1 +

∂z3

∂x2
·g2 +

∂z3

∂x3
=

∂z3

∂x1
·a3x1 +

∂z3

∂x2
·a3x2 = 0 (A6)

Solving for:

a3 = − 1
Lq + Ls

, z3 =
a3x1

x2
(A7)
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Therefore:

Z = Φ(x1, x2, x3) =

 x3
d1· 1

x3
− d2x3 − d3x2

a3x1
x2

 (A8)

where: 
x1 = z3

a3
·

d1· 1
z1
−d2z1−z2

d3

x2 =
d1· 1

z1
−d2z1−z2

d3
x3 = z1

(A9)

The control input:

u =
1

Lg[L f h(x)]
(−L2

f h(x) + uv) (A10)

where:
L2

f h(x) = −d3· f2 − d1
f3

x2
3
− d2 f3 (A11)

Thus, we obtain: 
[ .

z1.
z2

]
=

[
0 1
0 0

]
·
[

z1
z2

]
+

[
0
1

]
u

y =
[
1 0

][z1
z2

] (A12)

Selection of k1, k2, and kI :
In order to ensure zero error in the steady-state regime, an integrator was added.

Defining the extended state vector ẑ = [z1 z2 ε]
T , the linear system is: .

z1.
z2.
ε

 =

 0 1 0
0 0 0
−1 0 0

·
z1

z2
ε

+

0
0
1

·yre f (A13)

The control input uv was obtained as:

uv = −[k1 k2 kI ]·

z1
z2
ε

 (A14)

Thus, the closed-loop system is described by:

[ .
z1

.
z2

.
ε
]T

=

 0 1 0
0 0 0
−1 0 0

−
0

1
0

·[k1 k2 kI ]

·
z1

z2
ε

+

0
0
1

yre f (A15)

k1, k2, and kI were calculated using a pole-placement technique. According to (A15),
the transfer function of the system can be obtained as:

G(s) =
kI

s3 + k2s2+k1s + kI
(A16)

Thus, a dominant pair of poles was imposed, defined by the cut-off frequency ω0 =
20 rad/s and the damping factor ζ = 0.8. The corresponding characteristic equation
should be:

s2 + 32s + 400 (A17)
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The dominant poles can be obtained as:{
s1 = −16 + 12i
s2 = −16− 12i

(A18)

To reduce the impact of the other pole on the system, the real part should be at least
five times larger than the dominant pole. Therefore, the pole selection is:

s3 = −100 (A19)

Based on the poles, we can determine:

k1 = 3600, k2 = 132, kI = 40,000 (A20)
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