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Abstract: The penetration of power generations from renewable energy sources into the power
market has a significant impact on the capacity factor of existing power generations. This is because
power producers cannot recover a capital cost of power generations with high operating cost possibly
due to underinvestment. One solution to address this problem includes a capacity mechanism;
that is, the capacities of the power generations can be sold through a market or a bilateral contract.
Many schemes of the capacity mechanism have been used worldwide. In this study, we examine an
investment in a power plant in both the electricity and capacity markets. The effect of investment
opportunity on uncertainty and risk aversion is analyzed by a real options approach that is one
of analytical methods for investment decisions under uncertainty. The investment timing for the
standard energy-only market is compared with that for the capacity market. When the risk averse for
the power producer is relatively small, the income in the energy-only market is obtained whereas,
when the risk averse is relatively high, the income is gained in both the electricity and capacity
markets for the sake of enough profit.

Keywords: capacity market; electricity market; investment in power generation; risk-averse decision
making; mean-variance utility; threshold price

1. Introduction
1.1. Background

Recently, policymakers in the power sector have implemented policies and regulations
for solving various problems such as mitigating greenhouse gas emissions and promoting
renewable energy. As electricity cannot be economically stored, power producers obtain
their profit only when it is delivered to consumers immediately after it is produced via
power markets and/or bilateral contracts. Therefore, if producers cannot operate power
generations due to the market, policy and regulations, and/or physical conditions for power
generations, they might not obtain sufficient profit from selling electricity. Particularly, a
capacity factor of power generations with relatively high fuel cost becomes low, and then
these are closed due to the operating management depending on the relationship between
operating costs and market prices. Meanwhile, the penetration of power generations
from renewable energy sources into the power market has a significant impact on the
capacity factor of existing power generations. This is because operations of renewable
energy sources has become a priority due to their relatively low operating cost, that is,
the merit-order effect. Consequently, power producers cannot recover a capital cost of
power generations with high operating costs possibly due to underinvestment. This is
called the “missing money” problem [1]. European utilities such as RWE, Vattenfall, and
E.ON closed or mothballed 21 GWe of gas-fired generation in 2012–2013 although 11 GWe
of this generation was less than 10-years-old because of the rise of renewable energy [2].
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The penetration of renewable energy into the power market leads to low market prices.
Reference [3] indicates that, in the California power market, the price increases slow down
due to the high penetration of renewable energy, although the shutdown of nuclear power
plants leads to increasing prices.

One of the policies for mitigating this problem includes a capacity mechanism, indicat-
ing that power producers can sell their generating capacities kWe through a market of the
capacity or via a bilateral contract. Many schemes of the capacity mechanism (e.g., strategic
reserve, capacity market, capacity obligation, reliability options, and capacity payments)
have been used in many countries. Although the capacity mechanism has a beneficial
aspect for the capacity adequacy, some operational capacity adequacy occurs. Even if the
revenue is priced adequately through the capacity mechanism, risks such as missing money,
cannot be efficiently addressed when it is not perceived by producers. This is the so-called
“missing market” problem [4]. Thus, producers should recognize how much effect of risk
hedge occurs in the capacity mechanism.

In this study, we consider an investment problem of capacity expansion considering
the scheme of capacity mechanisms. We analyze an investment timing for different ratios
of selling the capacity. We also compare the investment timing for the standard energy-only
market with that for the capacity market.

1.2. Literature Review

There is a growing body of literature that addresses the impact of capacity mechanisms
on power market prices and investment decisions for power producers and mitigates the
missing money problem by using analytical models [5,6]. Reference [7] evaluates a stability
of capacity mechanisms in the presence of uncertainty of the demand growth rate by
using a system dynamics model and a Markov Chain Monte Carlo approach. They show
that all capacity mechanisms such as capacity payments, operating reserve pricing, and
capacity obligation, can contribute to less volatility of power prices and mitigate the
shortage. Among these mechanisms, capacity obligation is the most stable both in terms of
investment and prices and reduces the market power and offers power producers efficient
operating incentives. Reference [8] examines an effect of capacity payment on investment
in gas-fired generations under uncertainties of electricity and fuel prices in a real option
framework. In a circumstance of this model, they show that capacity payment increases
investment opportunity. In cases of capacity payments of 30,000–50,000 EUR/MW p.a.,
the generations can have positive values even if their capacity factors are low as 5–10%.
Thus, they indicate that capacity payment is an important policy for gas-fired generation of
a low-capacity factor when shares of renewable energy is high. Reference [9] evaluates a
market-wide centralized capacity market and targeted strategic reserves by formulating a
game-theoretic market equilibrium model. They find that strategic reserves have significant
drawbacks such as an additional investment by replacing the lost flexibility of a contracted
capacity. They also show that a centralized capacity market provides a beneficial outcome
from both system’s and generator’s perspective. This is because the scheme obtains a
suitable reserve margin that avoids energy non-served at the lowest cost and meets the
renewable energy target at a lower cost. Reference [10] investigates the robustness and total
cost of power generation when the capacity market is adopted, rather than the energy-only
market. They analyze a case of the Great Britain market in the framework of a stochastic
dynamic model for the capacity investment. They find that the capacity market has a
stabilizing effect on unplanned possibilities as no-load of conventional power generations
forms the aspects of the cost and price volatility. The introduction of the capacity market
leads to an increase in the total cost via payments for the capacity. In the parameter setting,
they find that there is an effective region as trade-offs between robustness and costs in the
range of reserve margins between 0 and 15%. Reference [11] addresses the dynamics of
capacity adequacy and market efficiency with capacity remuneration policy by means of
a stochastic simulation model based on the framework of real options. They show that
policymakers replace supply security for market prices with payment for consumers when
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the capacity remuneration mechanism is implemented. They find that when uncertainty
affects the growth of electricity demand and power capacity, the capacity market has a
beneficial effect in increases in supply security.

The capacity mechanisms have a characteristic of hedging the profit from the energy-
only market as forward or option contracts. Thus, the effect of these mechanisms on
risk-averse decision-making might become prominent. Reference [12] explores the effect
of contracts for the difference, reliability options, and forward capacity market on welfare
and investment by using stochastic equilibrium models of risk-averse agents. They find
that these contracts are quite effective complements to the energy-only market. However,
adding the forward capacity market to the energy-only market can have quite different
impacts depending on the extent to which the demand for capacity is calibrated. The
contract for the difference and reliability options might also require trade volumes that
have never been encountered in power markets. Reference [13] analyzes how the capacity
mechanism can address the supply security in power markets by using a system dynamics
model that integrates investment and closure decisions. They discuss the energy-only
market with a price cap, with and without the capacity mechanisms compared to scarcity
pricing in investment decision scenarios with and without risk aversion. In risk-neutral
decision-making, the energy-only market with scarcity pricing and the capacity mechanism
are two efficient schemes to reach similar levels of load loss. Meanwhile, under risk aversion
the capacity mechanism is more effective than scarcity pricing. Reference [14] analyzes the
risk aversion of power producers facing an uncertain peak load in the capacity mechanism
by using a simulation model based on system dynamics. Particularly, they investigate the
impact of the capacity mechanism on the ability to limit shortage and total generation cost,
compared to the energy-only market, capacity market, and strategic reserve mechanism.
The analytical results indicate that the scheme of the capacity market is the least affected by
the degree of risk aversion both with respect to reliability and cost. Therefore, the capacity
market is a robust scheme for reliability and cost even if the producers in the market have
various forms of risk aversion.

Our work contributes to the literature by exploring how risk-averse decision-making
affects investment in power generation and capacity selling in a capacity market. We use
the dynamic mean-variance portfolio of [15] by incorporating the real option framework
of [16]. Some works focus on investment decisions for risk-averse firms in the real option
framework. Reference [17] extends a general model of [16,18] to introduce risk aversion for
a constant relative risk aversion utility function in the case where firms face an incomplete
market. They show that risk aversion decreases the investment opportunity and detracts
the value of investment projects. Reference [19] examines the extent to which operational
flexibility in the form of suspension and resumption options with no costs mitigates the
effect of risk aversion in the same framework as in [17]. They show how operational
flexibility becomes more valuable as risk aversion increases and volatility becomes large.
Reference [20] develops a utility-based, regime-switching model to evaluate different
technology-adoption strategies under price and technological uncertainty. They find that,
when market regimes are asymmetric, larger risk aversion has a non-monotonic impact
on the decision to abandon an old market regime and may either increase or decrease the
abandonment threshold in contrast with [19].

1.3. Significance and Contribution

This paper contributes to a growing literature on the relationship between the capacity
mechanism and producers’ decision-making under uncertainty. Our main results are
as follows.

First, we show that the use of the capacity market depends on risk aversion. When
the risk averse for the power producer is relatively small, the income in the energy-only
market is obtained. In contrast, when the risk averse is relatively high, the income is gained
in both the electricity and capacity markets for the sake of enough profit. Thus, the risk
averse power producer might use the capacity market for the risk hedge.
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Second, unlike previous papers such as [17,19], an effect of risk aversion on investment
decisions is non-monotonic by the existence of the capacity market. When the risk aversion
is relatively low, the risk averse power producer increases the investment opportunity in
the energy-only market, whereas when the risk aversion is relatively high, they obtain the
selling income in both the electricity and capacity market.

The third result is the finding that the relationship between the investment oppor-
tunity and the profit rate of the capacity market is ambiguous. When the profit rate is
relatively low, that is, a low capacity price compared to electricity (Since the unit of capacity
price is different from that of electricity, in this paper suppose that the unit of capacity is
converted to the same as electricity), the investment threshold increases with the profit
rate. This implies that while the power producers have an incentive to sell the capacity in
the market, the investment opportunity decreases because the profit from the electricity
market decreases. However meanwhile, when the profit rate is relatively high, the power
producers have a large incentive to invest because enough profit from the capacity market
can be obtained.

The remainder of this paper is organized as follows. Section 2 develops the model
after considering disinvestment and operating flexibility. In Section 3, we derive the
optimal policy of the investment in power plants, and examine the effects of parameters
on the optimal policy. We use the model to analyze the interaction between equilibrium
investments and a renewable energy policy. Figure 1 shows a flowchart of the analysis and
discussion in this study. Finally, Section 4 summarizes and concludes the study.

Assumption and setting of the model

Modeling the investment decision in 
electricity and capacity markets

Input the parameters into the model

Analysis on the effect of the 
investment opportunity on

uncertainty and risk aversion

Discussion and implication

Figure 1. Flowchart of the model analysis.

2. Methodology
2.1. Investment Problem to the Power Generator without the Capacity Market

We first consider the investment decision problem to the power generator in the
energy-only market (i.e., without the capacity market). As used in previous studies for
analytical convenience [21–23], we assume that the electricity price follows a geometric
Brownian motion (GBM); that is

dPt

Pt
= µdt + σdWt (1)
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where µ is the instantaneous expected growth rate, σ is the instantaneous volatilities, and
Wt is a standard Brownian motion (The uncertainty of the electricity price is represented
by the GBM, but the model considers no periodicity as a peak hour. If the periodicity is
embedded into the model, another stochastic process needs to be used).

Suppose that a single price-taking power producer with a capacity has the perpetual
option to invest in a power plant. This study assumes that the power producer sells the
total electricity with a capacity factor of 100% that the power producer generates in one
power plant, and that there exists no surplus electricity in the power plant.

After the investment at time s, a plant can produce electricity immediately and forever.
From this plant, the power producer can sell electricity at exogenous price Pt at time t > s.
Therefore, the power producer can obtain a discounted accumulated income for selling
electricity after the investment as follows:∫ ∞

s
e−ρ(t−s)Ptdt = PsR (2)

where

R =
∫ ∞

0
e−ρt exp

[(
µ− σ2

2

)
t + σWt

]
dt (3)

and ρ is the discount rate. (3) implies that R fluctuates corresponding to electricity price
after the investment time, s. Suppose that the discounted profit from selling electricity is
given by

S1 = BPsR− C− J, (4)

where B is a product of a capacity of the power plant and a profit rate, C is the accumulated
operating costs including fuel and O&M, and J is an investment cost that is not dependent
on investment time. In this study, suppose that the power producer is risk averse, and
his/her utility for the discounted profit is the mean-variance type as follows (Although the
power utility function has been used in real options analysis [17,19,20], the mean-variance
utility is used in this paper because the payoff function is difficult to obtain analytically
when the optimal ratio between the energy and capacity markets is derived. Although
previous papers of real options have used the power utility in the investment problem, the
electricity procurement problem faced by retailers utilizes utility functions with the risk
measure as the variance and the value-at-risk as in [24]):

f1(p) = E(S1 | Ps = p)− λ

2
V(S1 | Ps = p) (5)

where λ is a risk-averse coefficient. Since Pt follows the GBM, that is, a Markov process, the
expected value and the variance of PsR can be obtained as follows (see Appendix A.1):

E(PsR | Ps = p) = pE(R) =
p

ρ− µ
, (6)

V(PsR | Ps = p) = p2V(R) =
p2σ2

2(ρ− µ)(ρ− µ− σ2

2 )
. (7)

Using (6) and (7), the mean-variance utility, f1(p), is rewritten as

f1(p) = −γ

2
p2 + B0 p− I (8)
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where

B0 =
B

ρ− µ
, (9)

I = J + C, (10)

γ =
λB2

0
2η

, (11)

η =
ρ− µ

σ2 − 1
2

. (12)

Utility function f1(p) is a convex quadratic function and has an maximum value at
p = p[ ≡ B0

γ . When the electricity price, p, is high, f1(p) increases with the income of
electricity selling, whereas when the electricity price considerably increases, f1(p) decreases
due to the large risk for price fluctuation. If f1(p[) ≤ 0, the optimal policy is not to invest
at all. Therefore, we assume that f1(p[) > 0. This condition is rewritten as

λI < η. (13)

Under (13), it is assured that E(R) < ∞ and V(R) < ∞.
When the present time is t = 0, the optimal investment problem for the expected

utility is formulated by

V1(p) = sup
τ∈T

E
(

e−ρτ f1(Pτ)
∣∣ P0 = p

)
. (14)

T is a set of all stopping times that are adapted to the filtration generated by a Brownian
motion {Wt}.

2.2. Investment Problem to the Power Generator with the Capacity Market

In this section, the optimal investment problem in the presence of the capacity market
is formulated. The power producer holds the plant by a ratio of r ∈ [0, 1] and sells electricity
in the energy market, whereas the capacity of the remaining 1− r is sold at the investment
time in the capacity market. When the electricity price at the investment time, s, is Ps,
suppose that the profit in the case of selling the full capacity in the market is APs − C
(Although there exists no correlation between electricity and capacity prices in any realistic
case, we assume the correlation for analytical convenience). Unlike in the case of income
for electricity selling, the power producer is not effected by the price fluctuation in the
future due to selling the capacity in the market. Since S1 of (4) is the profit from electricity
selling when the power producer holds the power plant, the weighted average profit based
on the holding ratio is given by

S2 = rS1 + (1− r)(APs − C− J) = (BR− A)Psr + APs − I. (15)

Similarly, in Section 2.1, the mean-variance utility for S2 is calculated as follows:

E(S2 | Ps = p)− λ

2
V(S2 | Ps = p) = −γ

2
p2r2 + αpr + Ap− I (16)

where
α = B0 − A. (17)

In this study, we assume that α > 0 because α can be regarded as the risk premium for the
price fluctuation in the electricity market. If α ≤ 0, the power producer has no incentive to
hold the power plant to sell to the electricity market.
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The power producer determines the holding ratio, r, by maximizing (16). Since (16) is
a quadratic function for r, the optimal holding ratio is given by

r∗(p) =

{
1, 0 < p ≤ p0,
p0
p , p > p0

(18)

where p0 = α
γ . When p ≤ p0, the power producer can obtain the income from electricity

selling without selling in the capacity market, whereas when p > p0, the power producer
tends to sell a portion in the capacity market. The ratio for selling in the capacity market
increases with the market price. By substituting r = r∗(p) into (16), the utility function is
given by

f2(p) =

{
f1(p), 0 < p ≤ p0,
fc(p) = Ap + α2

2γ − I, p > p0
(19)

where f1(p) is the utility function without the capacity market. Since f1(p) is an increasing
function for 0 < p ≤ p0 from p0 < p[, f2(p) is an increasing function for p > 0. When
a capacity market does not exist, the utility function, f1(p), decreases due to high price
and an increase in the fluctuation risk. However, when the market exists, f2(p) is an
increasing function because the power producer can hedge the fluctuation risk by using
the capacity market.

Thus, the optimal investment problem with the capacity market is formulated by

V2(p) = sup
τ∈T

E
(

e−ρτ f2(Pτ)
∣∣ P0 = p

)
. (20)

3. Comparison of Optimal Investment Policies

In Section 3.1, we derive the optimal investment policy of the problems formulated in
Section 2. Based on the results, we show comparative statics and investigate in Section 3.2
how model parameters have effects on the optimal policies.

3.1. Optimal Investment Policies

We first derive the optimal policy of the investment problem without the capacity
market. As is well-known in the real option analysis, the quadratic equation

σ2

2
x2 + (µ− σ2

2
)x− ρ = 0 (21)

has two real solutions, β1 > 1 and β2 < 0, under (13). We define

p∗1 =
2β1 I

(β1 − 1 +
√

D)B0
, (22)

p−1 =
2(−β2)I

(1− β2 −
√

D−)B0
, (23)

D = (β1 − 1)2 − β1(β1 − 2)θ, (24)

D− = (1− β2)
2 − (−β2)(2− β2)θ, (25)

θ =
λI
η

(26)

where 0 < θ < 1 under (13). Thus, D > 0 and D− > 0.
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Theorem 1. If the capacity market does not exist, the optimal policy is to invest when p∗1 ≤ p ≤ p−1
and continue waiting otherwise, where p denotes the electricity price. The value function of this
policy is

V1(p) =


f1(p∗1)(p/p∗1)

β1 , 0 < p < p∗1 ,
f1(p), p∗1 ≤ p ≤ p−1 ,
f1(p−1 )(p/p−1 )

β2 , p > p−1 .
(27)

Proof. See Appendix A.2.

As discussed in Section 2.1, utility function f1(p) in this case is quadratic and concave.
Since V1(p) is smoothly pasted at p = p∗1 and p = p−1 , price p[1 that attains the maximum
of f1(p) satisfies p∗1 < p[1 < p−1 . Value function V1(p) is increasing for 0 < p < p[1 and
decreasing for p > p[1. It is optimal not to invest both when the electricity price is low and
when the price is high enough since it leads to high risk due to a large price fluctuation.

To state the optimal policy when a capacity market exists, we define

p∗2 =
β1 I

(β1 − 1)A

[
1− (1− A/B0)

2

θ

]
. (28)

Recall that p0 = α/γ, as defined in Section 2.2.

Theorem 2. If there exists a capacity market, the optimal policy is of a threshold type; that is, there
exists a threshold price p∗ such that it is optimal to invest when p ≥ p∗ and continue waiting if
p < p∗.
(Case 1) If p∗2 ≤ p0, the threshold price p∗ = p∗1 , and the value function is given by

V2(p) =


f1(p∗1)(p/p∗1)

β1 , 0 < p < p∗1 ,
f1(p), p∗1 ≤ p < p0,
fc(p), p ≥ p0.

(29)

(Case 2) If p∗2 > p0, the threshold price p∗ = p∗2 , and the value function is given by

V2(p) =
{

fc(p∗2)(p/p∗2)
β1 , 0 < p < p∗2 ,

fc(p), p ≥ p∗2 .
(30)

Proof. See Appendix A.3.

In Case 1, if the current electricity price p < p∗1 , it is optimal for the power producer to
invest when the price first reaches p∗1 . This policy is the same as in Theorem 1, wherein the
capacity market does not exist. In this case, the power producer does not use the capacity
market. If the current price p ≥ p∗1 , an immediate investment is optimal. The capacity
market is utilized only when the current price p > p0 and 1− p0/p of the capacity of the
power plant is sold in the capacity market to hedge the risk of price fluctuation in the
future. Consequently, the value function V2(p) is increasing for all p > 0 compared to
V1(p), which decreases for p > p[.

In Case 2, the capacity market is utilized even when the price first reaches to p∗2 and
1− p0/p∗2 of the capacity is sold in the capacity market. Value function V2(p) is increasing
for p > 0 as the payoff function fc(p) is increasing. From the viewpoint of electricity power
producers, a capacity market has a role to hedge risk especially when the price is high.

Figure 2 presents a numerical example where panels (a) and (b) correspond to Cases 1
and 2 in Theorem 2, respectively. We set the parameters as µ = 0.02, ρ = 0.04, σ2 = 0.01,
A = 3, B0 = 10, I = 5, and λ = 0.15 in panel (a). Panel (b) uses the same set of parameters
except for λ = 0.25. In panel (a), the red solid line represents V2(p) and the blue dashed
line represents f1(p). The two marked points in green and blue correspond to p0 and p∗1 . In
panel (b), the red solid line represents V2(p), and the blue and green dashed lines represent
f1(p) and fc(p), respectively. The marked points in green and red correspond to p0 and p∗2 .
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(a) (b)

Figure 2. (a) Value function V2(p) in Case 1. (b) Value function V2(p) in Case 2. Note: Red solid line
represents V2(p). For comparison, f1(p), p∗1 , and p0 are plotted in (a), and f1(p), fc(p), p0, and p∗2
are plotted in (b). In (a), µ = 0.02, ρ = 0.04, σ2 = 0.01, λ = 0.15, A = 3, B0 = 10, and I = 5. In (b),
λ = 0.25 and other parameters are the same as in (a).

3.2. Comparative Statics

As discussed in Section 3.1, the optimal investment policy is of the threshold type when
there is a capacity market. In this section, we show the comparative statics of the threshold
price in terms of four important parameters: risk aversion coefficient λ, profit ratio of the
capacity market A, electricity price volatility σ2, and investment cost I. Investigating how
these parameters have effects on the threshold price makes it possible to better understand
the role of the capacity market in the investment into a new power plant. We also suppose
that the remaining parameters µ, ρ, and B (and hence B0) are fixed.

To identify which cases in Theorem 2 occur, we consider

K(λ, A, σ2, I) =
p∗2
p0

=
β1{θ − (1− A/B0)

2}
2(β1 − 1)(1− A/B0)(A/B0)

, (31)

where θ is given in (26). For presentation simplicity, we will use an abbreviated notation
K, rather than K(λ, A, σ2, I). Theorem 2 implies that the threshold price p∗ = p∗1 if K ≤ 1
and p∗ = p∗2 if K > 1. Moreover, if K > 1 and the power producer makes an investment
at the price p = p∗2 , 1− K−1 of the capacity of the plant is sold in the capacity market. To
satisfy (13), the domain of λ, σ2, and I are limited from above by

λ =
η

I
, σ2 =

ρ− µ

λI + 1
2

and I =
η

λ
, (32)

respectively. Since the domain of A is (0, B0), we denote A = B0.

Theorem 3. For any of the parameters x ∈ {λ, A, σ2, I}, suppose that all other parameters are
fixed. Then, there exists a unique x0 such that K ≤ 1 for 0 < x ≤ x0, and K > 1 for x0 < x < x.
Moreover, ∂K/∂x > 0 in the region satisfying K > 0.

Proof. See Appendix A.4.

Theorem 3 indicates that, when each of the parameters λ, A, σ2, or I increases, the
threshold price p∗ switches monotonically from p∗1 to p∗2 . For parameters λ, σ2, and I, this
is a natural consequence since an increase in these parameters also increases the risk of the
power producer, inducing an incentive to hedge risk by using the capacity market. When
A increases, the capacity market becomes more attractive so that p∗ switches from p∗1 to p∗2 .

Theorem 3 also provides an important implication about the utilization of the capacity
market. When K > 1 and investment is made at price p = p∗2 , 1− K−1 of the capacity
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of a plant is sold in the capacity market. From ∂K/∂x > 0, the amount of capacity sold
in the capacity market increases as each parameter increases. Thus, an increase in these
parameters enhances the utilization of the capacity market. When θ goes to 1 (i.e., each
of λ, σ2 or I goes to the upper limit of the domain), the ratio sold in the capacity market
tends to

lim
θ→1

(1− K−1) =
(β1 − 2)(A/B0) + 2

β1(2− A/B0)
. (33)

Meanwhile, 1− K−1 tends to 1 when A goes to A, which implies that all of the capacity of
the plant is sold in the capacity market if the risk premium contained in the price in the
electricity market vanishes.

Subsequently, we further investigate the characteristics of threshold prices. Particu-
larly, we pay attention to whether the threshold price changes monotonically when each
parameter increases. The ratio sold in the capacity market is also discussed.

3.2.1. Risk Aversion Coefficient λ

We observe from (22) that p∗1 is a decreasing function of λ if 1 < β1 < 2, is constant
if β1 = 2, and is increasing if β1 > 2. Case 1 < β1 < 2 seems somewhat counter-intuitive
since, in many applications of real option analysis, threshold price increases as the investor
becomes more risk averse. This may be interpreted in the following manner. The payoff
function f1(p) contains a term− γ

2 p2, which quadratically decreases as the investment price
increases. Meanwhile, the value of waiting increases as pβ1 from (27). Since γ is a linear
function of λ, the former effect becomes dominant for large λ when 1 < β1 < 2, leading to
investment at a lower threshold price.

Unlike p∗1 , (28) shows that p∗2 is an increasing function of λ irrespective of the value
of β1. This is because a risk-sensitive power producer attempts to obtain a higher payoff
by increasing the investment threshold. Although larger p∗2 increases the risk of price
fluctuation, this risk can partially be hedged when there is a capacity market.

Figure 3 presents a numerical example that shows threshold price p∗ as a function of λ.
Here and in subsequent numerical examples, we use the same set of parameters in Figure 2b
as the base case. In panel (a), red and blue solid lines represent p∗1 and p∗2 , respectively. For
comparison, we also plot p∗1 in Case 2 with a red dashed line. Since β1 = 1.70 < 2 in this
case, p∗1 gradually decreases. The threshold price switches from p∗1 to p∗2 at λ0 = 0.199 and
starts to increase rather sharply. As a result, an effect of risk aversion on the investment
policy is non-monotonic by the existence of the capacity market unlike previous papers
such as [17,19]. The previous papers [17,19] show the risk averse firms tend to withhold
the investment opportunity due to avoiding the risk. In this paper, however, since the risk
could be mitigated by the transaction in the capacity market, the investment opportunity
increases even if the risk aversion is relatively large. Intuitively, when the risk aversion is
relatively low, the power producer increases the investment opportunity in the energy-only
market for lack of need for the capacity market. In contrast, when the risk aversion is
relatively high, the selling income in both the electricity and capacity markets might be
obtained. Panel (b) shows the ratio sold in the capacity market 1− K−1. Evidently, the ratio
sharply increases when λ exceeds the threshold λ0. When λ → λ = 0.3, 1− K−1 tends
to the limit 0.66 given by (33). When the risk averse for the power producer is relatively
small, the income in the energy-only market is obtained, whereas when the risk averse is
relatively high, the income is gained in both the electricity and capacity markets for the
sake of enough profit. This implies that the risk-averse power producer might use the
capacity market for the risk hedge.
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(a) (b)

Figure 3. (a) Threshold price and risk aversion coefficient λ. (b) Ratio sold in the capacity market and
risk aversion coefficient λ. Note: Red and blue solid lines represent Cases 1 and 2, respectively. For
comparison, p∗1 in Case 2 is plotted by a red dashed line in (a). µ = 0.02, ρ = 0.04, σ2 = 0.01, A = 3,
B0 = 10, and I = 5.

3.2.2. Profit Rate of Capacity Market A

We consider the effect that the profit rate of the capacity market A has on the threshold
price p∗. Unlike other parameters, p∗1 does not contain A and hence is constant. Concerning
p∗2 , we rewrite p∗2 as

p∗2 =
β1 I

(β1 − 1)θ

(
θ − 1

A
+

2
B0
− A

B2
0

)
, (34)

where θ is defined in (26). p∗2 is the sum of hyperbolic and linear functions of A, each
with a negative coefficient since 0 < θ < 1 under condition (13). Then, it is not difficult
to check that p∗2 is increasing for 0 < A < AM and decreasing for AM < A < A, where
AM =

√
1− θB0. This implies that p∗2 is not monotonic in A.

The effects that A has on p∗2 are two-fold. Since the power producer can hedge the
price fluctuation risk by selling some amount of capacity in the capacity market, an increase
in A will allow the producer to take more risk, and this pushes up p∗2 . As A approaches
to A, immediate investment becomes more attractive since the ratio of the plant sold in
the capacity market increases to 1 and the value of waiting comparatively decreases. This
pushes down p∗2 . The unimodal shape of p∗2 in terms of A is interpreted as the former effect
is dominant for small A, while the latter effect is dominant for larger A. Note also that
turning point AM is a decreasing function of all λ, σ2, and I. Investment becomes more
risky when these parameters increase. Then, p∗2 increases and then decreases for a smaller
value of A to avoid risk increase.

When A approaches A, p∗2 approaches p∗2(A) = β1 I
(β1−1)B0

. It can be checked that
p∗1 > p∗2(B0) if and only if β1 > 2. If this is the case, p∗2 decreases and goes below p∗1 as A
approaches A.

Figure 4 shows a numerical example of p∗ and 1− K−1 as a function of A. In panel
(a), the red solid line is p∗1 , which is constant, and blue solid line is p∗2 . In Case 2, p∗2
increases rather sharply for A0 = 1.45 < A < AM = 4.08 and gradually decreases for
AM < A < A = 10. Since β1 = 1.70 < 2 in this case, we observe that p∗2(A) > p∗1 . The
result indicates that the optimal investment policy depends in the relationship of both
prices in electricity and capacity markets. For low capacity price compared to electricity, the
investment threshold increases with the profit rate. Intuitively, while the power producers
have an incentive to sell the capacity in the market, the investment opportunity decreases
because the profit from the electricity market decreases. In contrast, when the profit rate is
relatively high, the power producers have a large incentive to invest because enough profit
from the capacity market can be obtained. Panel (b) depicts the ratio sold in the capacity
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market. Similar to Figure 3, the graph starts to increase sharply when A exceeds A0, and
the slope becomes gentle and approaches 1 as A goes to A.

(a) (b)

Figure 4. (a) Threshold price and profit rate of capacity market A. (b) Ratio sold in the capacity
market and profit rate of capacity market A. Note: Red solid line shows Case 1 and blue solid
line shows Case 2. For comparison, p∗1 in Case 2 is plotted by a red dashed line in (a). µ = 0.02,
ρ = 0.04, σ2 = 0.01, I = 5, B0 = 10, λ = 0.25.

3.2.3. Electricity Price Volatility σ2

We consider the relation between price volatility σ2 and the threshold price, as well
as the ratio sold in the capacity market. Since not only θ in (22) but also β1 is dependent
on σ2, the shape of p∗1 as a function of σ2 is difficult to analytically derive. Therefore, we
investigate it by using a numerical example. Conversely, it is easy to check from (28) that
p∗2 increases as σ2 increases for σ2

0 = 0.0084 < σ2 < σ2 = 0.0114.
Panel (a) of Figure 5 shows p∗ as a function of volatility σ2. In this case, p∗1 first

increases gradually and then decreases. After switching from p∗1 to p∗2 at σ2
0 , p∗2 increases

rather sharply compared to p∗1 . Panel (b) shows 1− K−1, which is quite similar to that in
Figure 3. The ratio sold in the capacity market increases sharply when σ2 exceeds σ2

0 .

(a) (b)

Figure 5. (a) Threshold price and price volatility σ2. (b) Ratio sold in the capacity market and price
volatility σ2. Note: Red and blue solid lines represent Cases 1 and 2, respectively. For comparison,
p∗1 in Case 2 is plotted by a red dashed line in (a). µ = 0.02, ρ = 0.04, I = 5, A = 3, B0 = 10, and
λ = 0.25.
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3.2.4. Investment Cost I

Finally, we consider the relation between investment cost I and the threshold price, as
well as the ratio of the capacity sold in the capacity market. From (22), it is readily checked
that p∗1 is an increasing function of I when β1 ≥ 2. Since p∗1 is rewritten as

p∗1 =
η(
√

D− β1 + 1)
λ(2− β1)

, (35)

we observe that p∗1 is an increasing function even when 1 < β1 < 2. Concerning p∗2 , we
observe from (28) that p∗2 is a linear function of I with the slope β1

(β1−1)A . Thus, threshold
price p∗ always increases as the investment cost increases. If I is large, the power producer
will wait until electricity prices go up to a high threshold to cover the high investment cost.

Figure 6 depicts a numerical example. From panel (a), the threshold price switches
from p∗1 to p∗2 at I0 = 3.98. The slope of increase of p∗2 is steeper than that of p∗1 . We observe
from panel (b) that the ratio sold in the capacity market starts to increase sharply when I
exceeds threshold I0, as observed in Figures 3–5.

(a) (b)

Figure 6. (a) Threshold price and investment cost I. (b) Ratio sold in the capacity market and invest-
ment cost I. Note: Red and blue solid lines represent Cases 1 and 2, respectively. For comparison,
p∗1 in Case 2 is plotted by a red dashed line in (a). µ = 0.02, ρ = 0.04, σ2 = 0.01, A = 3, B0 = 10, and
λ = 0.25.

4. Conclusions

This paper focuses on the interaction between the investment decision for the risk-
averse power producer and the policy of the capacity market in the framework of real
options. In particular, we show how the risk aversion and the profit rate of the capacity
market affect the optimal investment policy. The results indicate that the power producer
obtains the selling income in both the electricity and capacity markets when the risk
aversion is relatively high, the effect of risk aversion on the investment policy is ambiguous
unlike the previous work, and the power producers have a large incentive to invest because
enough profit from the capacity market can be obtained when the profit rate of the capacity
market is relatively high.

Our study contributes to the argument on the ‘missing money’ problem, and highlights
the relations among the investment opportunity, risk aversion, and the profit rate of the
capacity market. If policymakers can observe the risk aversion of power producers, the
missing money problem would be resolved by increasing the investment opportunity for
the optimal policy of the profit rate of the capacity market. Even if the power producers
have less investment opportunities due to low risk aversion, the problem might be mitigated
by means of a subsidy policy for the investment cost.

We highlight the importance of understanding the role of the capacity market for the
risk-averse power producers that have both problems of investment in power plants and
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missing money. In this paper, it is assumed that the capacity price is correlated with that of
electricity. Since in any realistic case there exists no correlation, it is necessary to mitigate
the assumption in the model. Hence, as an extension of our work, the capacity price is
modeled as a stochastic process different from the electricity price by estimating the real
data for the capacity market. The penetration of power generations from renewable energy
sources leads to the missing money problem, and then the capacity market is created due
to mitigating the problem. This means that not only local problems such as missing money,
but also whole market problems are included. Thus, it also would be important to address
social welfare in order to examine an effect of the interaction between the penetration of
renewable energy and the capacity market. In addition, the relations between the capacity
mechanism and risk aversion for power producers should be investigated by empirical
analyses because evidence of the results in this study could be obtained.
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Abbreviation

GBM Geometric Brownian motion

Appendix A. Proofs

Appendix A.1. Derivation of (6) and (7)

Let Qt = exp
[
(µ− σ2

2 )t + σWt)
]
. Then, (6) is obtained from

E(PsR | Ps = p) = pE(R) = p
∫ ∞

0
e−ρtE(Qt)dt =

p
ρ− µ

. (A1)

Since Qt is a Markov process,

E
(

R2
)

= 2
∫ ∞

0

∫ ∞

t
e−ρte−ρuE(QtQu)dudt

= 2
∫ ∞

0

∫ ∞

t
e−ρte−ρuE

(
Q2

t

)
E
(

Qu

Qt

)
dudt

= 2
∫ ∞

0

∫ ∞

t
e−ρte−ρue(2µ+σ2)teµ(u−t)dudt

=
1

(ρ− µ)(ρ− µ− σ2

2 )
. (A2)

From V(R) = E
(

R2)− E(R)2, (7) is derived from

V(PsR | Ps = p) = p2V(R) =
p2σ2

2(ρ− µ)2(ρ− µ− σ2

2 )
. (A3)

�
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Appendix A.2. Proof of Theorem 1

Based on [25], we first show the solution of the optimal stopping problem with a
general payoff function when the underlying process is a GBM. Let f (p) be a function such
that f (p) > 0 for some p > 0 and E( e−ρτ f (Pτ) | P0 = p) is well-defined for every stopping
time τ ∈ T , where Pt is a GBM (1). To solve the optimal stopping problem

V(p) = sup
τ∈T

E
(

e−ρτ f (Pτ)
∣∣ P0 = p

)
, (A4)

we define

g(u) = u
β1

β1−β2 f (u
1

β2−β1 ) (A5)

and let G(u) be the smallest non-negative concave majorant of g(u) on (0, ∞). The following
is a simplified version of [25] when Pt follows a GBM.

Theorem A1. Value function of the optimization problem (A4) is given by

V(p) = pβ1 G(pβ2−β1), p > 0. (A6)

Proof. Since the underlying process is a GBM, we plug ψ(p) = pβ1 and φ(p) = pβ2 into
Proposition 5.12 of [25]. The value function is given by V(p) = ψ(p)W̃(−pβ2−β1) for

p > 0 where, W̃(y) is the smallest non-negative concave majorant of H̃(y) = (−y)
β1

β1−β2

f ((−y)
1

β2−β1 ) for y < 0. By replacing −y for y < 0 with u > 0, g(u) and G(u) correspond
to H̃(−u) and W̃(−u), respectively.

Theorem A1 reduces an optimal stopping problem to find the smallest non-negative
concave majorant G(u). The next result is useful to identify G(u) in many applications.

Corollary A1. If u∗ = argmaxu>0{g(u)} exists and limu→∞
g(u)

u = 0, then the smallest non-
negative concave majorant of g(u) is in the form

G(u) =
{

G0(u), 0 < u ≤ u∗,
g(u∗), u > u∗

(A7)

where G0(u) is the smallest non-negative concave majorant of g(u) on (0, u∗].

Proof. It is not difficult to check that G(u) in (A7) is a non-negative concave majorant of
g(u) on (0, ∞) and is the smallest on (0, u∗]. To prove the minimality on (u∗, ∞), suppose
that there exists a non-negative concave majorant Ĝ(u) satisfying Ĝ(u∗) = g(u∗) and
Ĝ(û) < g(u∗) for some û > u∗. From the concavity of Ĝ(u),

Ĝ(u) ≤ g(u∗) +
Ĝ(û)− g(u∗)

û− u∗
(u− u∗), ∀u > û (A8)

which shows lim supu→∞
Ĝ(u)

u ≤ Ĝ(û)−g(u∗)
û−u∗ < 0. Since limu→∞

g(u)
u = 0, Ĝ(u) < g(u)

holds for sufficiently large u, which contradicts to that Ĝ(u) is a majorant of g(u).

We now prove Theorem 1.

Proof of Theorem 1. We define

g1(u) = u
β1

β1−β2 f1(u
1

β2−β1 ) = −γ

2
u

β1−2
β1−β2 + B0u

β1−1
β1−β2 − Iu

β1
β1−β2 . (A9)
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(Case A) β1 > 2: In this case, it is not difficult to check that g′1(u) = 0 has two positive
solutions

u± =

[
(β1 − 1±

√
D)B0

2β1 I

]β1−β2

(A10)

where D is defined in (24). Similarly, g′′1 (u) = 0 has two positive solutions

w± =

{
[(β1 − 1)(1− β2)±

√
Dw]B0

2β1(−β2)I

}β1−β2

(A11)

where
Dw = (β1 − 1)2(1− β2)

2 − β1(β1 − 2)(−β2)(2− β2)θ (A12)

that is positive under (13). Moreover, 0 < u− < w− < u+ < w+ in this case. Then,
we obtain

u 0 · · · u− · · · w− · · · u+ · · · w+ · · ·
g1(u) 0
g′1(u) − 0 + + + 0 − − −
g′′1 (u) + + + 0 − − − 0 +

(A13)

(Case B) 1 < β1 ≤ 2: In this case, both g′1(u) = 0 and g′′1 (u) = 0 have unique positive
solution u+ in (A10) and w+ in (A11), respectively. Thus,

u 0 · · · u+ · · · w+ · · ·
g1(u) −
g′1(u) + 0 − − −
g′′1 (u) − − − 0 +

(A14)

In both Cases A and B, g1(u) attains the maximum at u = u+. Moreover, limu→∞
g1(u)

u =
0. From Corollary A1, the smallest non-negative concave majorant of g1(u) is in the form

G1(u) =
{

G0(u), 0 < u < u+,
g1(u+), u ≥ u+.

(A15)

To obtain G0(u), consider a straight line that goes through the origin and is tangent to g1(u)
at some u ∈ (0, u+). The slope of the straight line connecting (0, 0) and (u, g1(u)) is h(u) =
g1(u)/u. With some algebra, we can observe that h′(u) = 0 has two positive solutions:

v± =

[
(1− β2 ±

√
D−)B0

2(−β2)I

]β1−β2

(A16)

where D− is given in (25), and that h′(u) > 0 for 0 < u < v− and u > v+, while h′(u) < 0
for v− < u < v+. This, along with limu→∞ h(u) = 0, imply that slope h(u) is the maximum
at u = v−. Moreover, v− < u+ since g′1(v−) > 0, and v− > w− in Case A since g′′1 (v−) < 0.
Then, the smallest non-negative majorant for 0 < u < u+ is given by

G0(u) =
{

g′1(v−)u, 0 < u ≤ v−,
g1(u), v− < u < u+.

(A17)

The value function is now derived from Theorem A1 by noting that p∗1 = (u+)
1

β2−β1 and

p−1 = (v−)
1

β2−β1 . �
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Appendix A.3. Proof of Theorem 2

As in the proof of Theorem 1, we define

g2(u) =
{

gc(u), 0 < u < u0,
g1(u), u ≥ u0

(A18)

where u0 = pβ2−β1
0 , g1(u) is defined in (A9) and

gc(u) = u
β1

β1−β2 fc(u
1

β2−β1 ) =
(β1 − 1)A

β1

(
β1

β1 − 1
u

β1−1
β1−β2 − p∗2u

β1
β1−β2

)
. (A19)

Here, the second equality follows from (28). It is noted that g1(u) < gc(u) for 0 < u < u0
since f1(p) < fc(p) for p > p0. Further, g1(u) and gc(u) are smoothly pasted at u = u0;
that is g1(u0) = gc(u0) and g′1(u0) = g′c(u0).

From

g′c(u) =
(β1 − 1)A

β1 − β2
u

β2
β1−β2

(
u−

1
β1−β2 − p∗2

)
, (A20)

g′′c (u) = − (β1 − 1)(1− β2)A
(β1 − β2)2 u

2β2−β1
β1−β2

[
u−

1
β1−β2 − (−β2)

1− β2
p∗2

]
, (A21)

gc(u) is increasing and concave for u > 0 if p∗2 ≤ 0. If p∗2 > 0, the shape of gc(u) is given as

u 0 · · · x1 · · · x2 · · ·
gc(u) 0
g′c(u) + 0 − − −
g′′c (u) − − − 0 +

(A22)

where

x1 = (p∗2)
β2−β1 , (A23)

x2 =

[
(−β2)

1− β2
p∗2

]β2−β1

. (A24)

(Case 1) p∗2 ≤ p0: Since p∗2 ≤ p0 is equivalent to u0 < x1, gc(u0) = g1(u0) > 0, which
in turn implies u0 < u+ from (A13) and (A14). Thus, g2(u) attains the maximum at u = u+.
From Corollary A1, the smallest non-negative majorant of g2(u) is

G2(u) =


gc(u), 0 < u ≤ u0,
g1(u), u0 < u ≤ u+,
g1(u+), u > u+.

(A25)

The concavity of G2(u) can be checked from the concavity of gc(u), (A13) and (A14), and
the smooth pasting conditions. V2(p) in (29) is obtained from Theorem A1.

(Case 2) p∗2 > p0: Since u0 > x1 in this case, g′c(u0) = g′1(u0) ≤ 0, and thus u0 ≥ u+

from (A13) and (A14). The maximum of g2(u) is given by u = x1. Since g2(u) is concave
for 0 < u < x1, the smallest non-negative majorant is obtained from Corollary A1 as

G2(u) =
{

gc(u), 0 < u ≤ x1,
gc(x1) u > x1.

(A26)

Theorem A1 now proves V2(p) in (30). �
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Appendix A.4. Proof of Theorem 3

Noting that K can be rewritten as

K =
β1

2(β1 − 1)

(
θ

1− A/B0
− 1− θ

A/B0
+ 1
)

,

clear ∂K/∂x > 0 for x ∈ {λ, A, I}. For x ∈ {λ, I}, θ → 0 when x → 0 and θ → 1 when
x → x. From 0 < A < B0, we observe that limx→0 K < 0, and limx→x K > 1, which proves
the desired result for x ∈ {λ, I}. Case x = A is also easy to show since limA→0 K = −∞
and limA→A K = ∞.

The remaining case is x = σ2. From (28), K > 0 if and only if σ2 > σ2
m, where

σ2
m = (ρ − µ)

[
λI

(1−A/B0)2 +
1
2

]−1
. For σ2 > σ2

m, ∂K/∂σ2 > 0 since, as σ2 increases, θ

increases, while β1 decreases. Noting that θ → 1 as σ2 → σ2, lim
σ2→σ2 K > 1 as before.

This completes the proof for σ2. �
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