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Abstract: Uncertainty in wind power is often unacceptably large and can easily affect the proper
operation, quality of generation, and economics of the power system. In order to mitigate the
potential negative impact of wind power uncertainty on the power system, accurate wind power
forecasting is an essential technical tool of great value to ensure safe, stable, and efficient power
generation. Therefore, in this paper, a hybrid intelligent model based on isolated forest, wavelet
transform, categorical boosting, and quantile regression is proposed for deterministic and probabilistic
wind power prediction. First, isolated forest is used to pre-process the original wind power data
and detect anomalous data points in the power sequence. Then, the pre-processed original power
sequence is decomposed into sub-frequency signals with better profiles by wavelet transform, and
the nonlinear features of each sub-frequency are extracted by categorical boosting. Finally, a quantile-
regression-based wind power probabilistic predictor is developed to evaluate uncertainty with
different confidence levels. Moreover,the proposed hybrid intelligent model is extensively validated
on real wind power data. Numerical results show that the proposed model achieves competitive
performance compared to benchmark methods.

Keywords: wind power forecasting; wavelet transform; categorical boosting; probabilistic predictor

1. Introduction

Wind energy, as a low-carbon and renewable energy source, is a feasible and promising
key solution to alleviate the current climate change dilemma. At present, wind power is
growing rapidly around the world, and the total installed capacity of worldwide wind
power has reached 837 GW [1]. However, wind power generation always shows peaks
and strong fluctuations due to weather conditions. The randomness and intermittency
of wind power brings great challenges to large-scale wind power grid connection, stable
operation of power systems, and economic dispatch [2]. To alleviate the potential negative
impact of wind power’s characteristics on the electrical energy system, an effective solution
is to properly incorporate probabilistic predictions of wind power generation into the
decision model [3]. Therefore, accurate and reliable prediction results are important to
reduce the operation risk and cost of wind power dispatch uncertainty and to improve
system reliability with high wind power penetration [4].

Traditionally, the methods commonly used in wind power forecasting are generally
divided into three categories: physical methods, statistical methods, and machine learning
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methods. Physical methods are based on physical principles to simulate energy conversion
processes and use meteorological parameters such as temperature, barometric pressure,
wind speed, and wind direction and altitude to build predictive models [5,6]. Unlike
physical methods, statistical methods use statistical models to learn the linear relationships
existing in historical data, for instance, using Kalman filtering [7] or auto-regressive moving
average (ARMA) [8]. Although these two methods have promising applications in wind
power prediction, they still have certain limitations. The physical model is often time-
consuming, complex, and computationally expensive and is more suitable for mid-to-
long-term wind power forecasting, with data sources including long-term average wind
maps or numerical weather prediction (NWP) [9]. The statistical method often relies on
strong linear relationships that require the exclusion of morbid data points, and its model
performance is significantly degraded in wind power forecasting with strong volatility
and high randomness [10]. Machine learning, as a powerful data processing tool, has been
applied to a wide range of fields such as the energy trading market [11] and power grids [12]
and also plays a crucial role in wind power forecasting. Conventional machine learning
methods include the K-nearest neighbors algorithm (KNN) [13], support vector regression
(SVR) [14], decision tree (DT) [15], multilayer perceptron (MLP) [16], etc. Unfortunately,
conventional machine learning methods for wind power prediction have difficulty dealing
with the increasingly extensive data associated with high-dimensional large-scale wind
power generation and suffer from under-fitting and dimensional catastrophes [17]. More
specifically, these conventional machine learning methods are capable of producing reliable
predictions with limited amounts of time-series data, but their predictive accuracy tends to
diminish as the amount of data grows.

Recently, deep learning has been introduced into wind power prediction as a branch
of machine learning to extract nonlinear high-dimensional features. Deep learning methods
generally include recurrent neural networks (RNNs) [18], convolutional neural networks
(CNNs) [19], deep belief networks (DBNs) [20], long short-term memory neural networks
(LSTMs) [21], deep reinforcement learning (DRL) [22], etc. Experimental results indicate
that the accuracy of wind power prediction based on deep learning is superior to that of
traditional machine learning methods. This is because the deep learning model has better
feature representation ability that can extract hidden sophisticated nonlinear relationships
and meaningful features from large amounts of data. Nevertheless, deep-learning-based
wind power prediction models are not always flawless due to their large number of
parameters, high running costs, and relatively high maintenance workload when updating
parameters in real deployments [23]. Categorical boosting (CatBoost), one of the best
machine learning models, has achieved competitive performance in different types of tasks
compared to deep learning. It is well known that CatBoost is an algorithm for gradient
boosting on decision trees and can greatly reduce the training convergence time [24,25].
Further, CatBoost has been successfully applied to time-series prediction, such as weather
forecasting [26], short-term electricity spot prices [27], wind and rainfall [28], and traffic
flows [29]. The superiority of CatBoost in time-series forecasting leads to its increasing
application in wind power prediction.

However, a single CatBoost model may not be sufficient to handle large amounts of
wind power data containing complex nonlinear relationships and hidden features. It is
quite imperative to explore more hybrid intelligence schemes to improve the accuracy
of CatBoost-based models in the field of wind power forecasting. It is noteworthy that
boosting algorithms are increasingly popular in feature selection and processing, and hybrid
models have been shown to solve complicated wind energy prediction problems [30].
Under these circumstances, a natural extension is that if CatBoost takes into account
better time-dependent features, more accurate wind power predictive performance can be
explored in this paper. Consequently, we initially propose a hybrid intelligent model base
on isolation forest, wavelet transform (WT), and CatBoost for deterministic wind power
prediction. Herein, isolation forest is used as an outlier detection tool to eliminate the
morbid data points in the raw wind power, thus ensuring the smoothness of the processed
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data. WT is used to decompose a single wind power sequence to various sub-sequences,
which are then fed into the CatBoost model to improve the prediction accuracy. Even
though deterministic prediction can provide some valuable information to power system
participants, errors in deterministic wind power forecasting are completely unavoidable
due to the uncertainty of meteorological data. To allay these concerns, a quantile-regression
(QR)-based probabilistic predictor is developed to assess the wind power uncertainty at
different confidence levels. The main contributions of this paper are described below:

• To obtain more meaningful training features, isolation forest is introduced to detect
morbid data points of wind power, and WT is utilized to extract multi-level time-
frequency features from wind power sequence data.

• To reduce errors in deterministic wind power forecasting, a new hybrid intelligent
model is initially constructed by isolated forest, WT, and CatBoost to accurately predict
wind power.

• To reasonably evaluate the uncertainty of wind power, a probabilistic predictor based
on QR is developed to generate prediction intervals at different confidence levels.

The remainder of this paper is organized as follows: In Section 2, a new hybrid
intelligent model is proposed for deterministic wind power forecasting. In Section 3,
we detail the quantile-regression-based probability prediction module and performance
criterion. In Section 4, we present the simulation experiment results. Finally, we conclude
this paper in Section 5.

2. The Proposed Hybrid Intelligent Model for Wind Power Prediction

In this section, a new hybrid intelligent point model consisting of isolated forest, WT,
and CatBoost is proposed to reduce errors in deterministic wind power forecasting, as seen
in Figure 1. The submodules in the proposed hybrid model are analyzed and discussed in
detail below.

2.1. Isolated Forest

In general, anomalous data may appear in wind power sequence data obtained by the
control center due to wind farm failures or communication delays. To reduce overfitting
of these data by the training model, it is quite necessary to process these outliers. Thus, a
score-based isolation forest [31] is used to detect outliers, and this works on the principle
that outliers can be isolated by segmenting them with fewer random features than normal
points. The score-based outlier detection method for wind power is described as follows:

s(x, ψ) = 2−
E(h(x))

c(ψ) (1)

where s(·) is an outlier function that measures whether a record x is an outlier, E(h(x))
denotes the average value of h(x) from a collection of isolation trees, and c(ψ) is used to
normalize h(x) as follows:

c(ψ) =


2H(ψ− 1)− 2 ψ−1

ψ , ψ > 2
1, ψ = 2
0, otherwise

(2)

where H(i) is the harmonic number, which can be estimated by H(i) = ln(i) + 0.5772156649 [32].
In Equation (1), anomaly score s is monotonic to h(x). If outliers of sample x are processed,
lower scores (outliers) of wind power data can be excluded manually according to a preset
anomaly proportional coefficient.
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Figure 1. The main steps of the prediction process for the proposed model.

2.2. Wavelet Transform

Typically, raw wind power data series involve characteristics such as nonlinearity and
dynamics, manifested by spikes and high volatility. It is worth noting that these charac-
teristics are one of the main factors affecting the prediction accuracy of wind power [33].
WT, which decomposes the wind speed data into more stationary components, is an effec-
tive solution for reducing the effects of high fluctuations in wind power. Discrete wavelet
decomposition is generally favored for its efficiency in providing the right information to
extract multi-level time–frequency features from a time series by decomposing the time
series into low- and high-frequency sub-series. Here, discrete WT is used to decompose the
processed data (after outlier detection), specifically as follows:

Wavelet(m, n) = 2−
m
2

T−1

∑
t=0

g(t)φ[(t− n2m)/2m] (3)

where g(t) is the signal to be decomposed, φ(·) is the mother wavelet, and m and n are the
translation and scaling variables, respectively. In this paper, the Mallat algorithm, as a fast,
discrete WT algorithm, is utilized to decompose the original wind power sequence. We
choose the 4th-order Daubechies wavelet (Db4) as the mother wavelet function to provide a
balance between wavelength and smoothness. After this, the original wind power sequence
can be decomposed into different sub-series at different frequency levels via WT.
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2.3. Categorical Boosting

Boosting is an ensemble learning method that reduces the training error by combining
several weak learners into a single powerful learner [34,35]. CatBoost, as one of ensemble
learning methods, is a new deep learning algorithm based on the gradient boosting decision
tree (GBDT), which has many improvements in overcoming model overfitting and handling
parallelism [24]. CatBoost uses an ordered boosting algorithm to improve the fitting ability
and accuracy of the model. Additionally, it uses a symmetric tree-based decision tree
algorithm, which makes it more effective in dealing with high-dimensional sparse data [36].
Further, it is an effective solution for regression tasks and can handle categorical features
well. Considering these benefits, Catboost is selected as the learning model in this paper
for ultra-short-term wind power forecasting.

For categorical feature processing, an efficient target-based statistics (TS) algorithm is
adopted by CatBoost [27]. The ordered target statistics based on average label values can
be described as follows:

xi
k =

∑xj∈Dk
[xj

k = xi
k] · yj + a · p

∑xj∈Dk
[xj

k = xi
k] + a

(4)

where [xj
k = xi

k] = 1 if xj
k = xi

k and is 0 otherwise, D is the dataset, and xk = [x1
k , · · · , xm

k ]
denotes the feature vector of the kth sample. Dk = D/{xk} = {(xk, yk)}k=1,··· ,n is a
randomly ordered dataset, excluding xk; p, a > 0, and yi ∈ R are the prior value, the
corresponding weight, and the target value, respectively. Note that TS can estimate the
expected target value of each category in an effective way.

As shown in Figure 1, after data preprocessing through the isolation forest, the pro-
posed point prediction module based on WT-CatBoost achieves higher prediction accuracy
and lower over-fitting.

3. Probabilistic Wind Power Prediction and Performance Criterion

Due to the chaotic nature of the weather, the wind power sequence always shows
peaks and strong fluctuations. These characteristics highly affect the accuracy of wind
power prediction. Generally speaking, if probabilistic prediction of wind power is properly
incorporated into decision-making models, the operating risk and cost of wind power
dispatch uncertainty can be greatly decreased, and meaningful information can be provided
to power system participants [2]. Aiming at this, we propose a probabilistic predictor
for wind power to assess uncertainty at different confidence levels. The details of the
probability prediction module and performance criterion are given below.

3.1. Quantile-Regression-Based Probabilistic Forecasting

In this subsection, we construct a probabilistic wind power prediction model by quan-
tile regression (QR) in combination with the previous deterministic hybrid prediction model.
It is worth mentioning that QR is introduced by [37] without making any assumptions
about the shape of the wind power distribution to be predicted.

The purpose of QR is to approximate the conditional distribution of a random vari-
able by means of quantiles and to estimate the uncertainty of wind power with different
confidence levels based on a linear mapping between the predicted and actual values of
the conditional distribution. Specifically, the goal is to minimize

β̂τ = argmin
β

N

∑
j=1

ρτ

(
yj − f (β, xj)

)
(5)

where N is the size of datasets, β is a parameter vector to optimize, (xi, yi) denotes a pair
of vector, and ρτ(·) is the nominal absolute function, defined as follows:
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ρτ(u) =
{

τu, if u ≥ 0,
(τ − 1)u, if u < 0.

(6)

where τ denotes the quantile probability level. Once the parameter β̂τ is estimated, the
uncertainty forecasting results in different quantiles, expressed as

ŷτ,j = f (β̂τ , xj) (7)

where ŷτ,j is the τth quantile estimated using the QR method. We note that QR estimates
each quantile individually. From a set of quantities, the prediction intervals under different
nominal coverages are obtained. The (1− α)× 100% confidence level prediction interval at
time t is generated by using the the τ = 1− α

2 quantile as the upper bound and the τ = α
2

quantile as the lower bound [38]. These are defined by

PI(1−α)×100%(t) =
[

I(t)τ= α
2
, I(t)τ=1− α

2

]
(8)

where PI(1−α)×100% is the confidence level prediction interval and I(t)τ= α
2

is calculated by
Equation (7). For instance, PI80%(t) is estimated by the two extremes quantiles, i.e., α = 0.2,
I(t)τ=0.1 and I(t)τ=0.9.

3.2. Implementation of the Proposed Hybrid Intelligence Model

In order to mitigate the adverse effects of these characteristics on the accuracy of wind
power prediction, this paper proposes a new hybrid intelligence method for probabilistic
wind power forecasting based on isolated forest, WT-CatBoost, and QR. In brief, the
proposed hybrid model consists of a data pre-processing module, a deterministic point
prediction module, and a probabilistic prediction module, as seen in Figure 1. More
precisely, the data preprocessing module is used to smooth the training data, and isolated
forest is used to detect these outliers. These outliers, nulls, and missing values in the
original wind power sequence are filled using a linear interpolation method. After this,
WT is applied to decompose the pre-processed original power sequence into well-profiled
high- and low-frequency signals, and the meaningful features of each sub-frequency are
extracted by CatBoost. Then, QR is introduced as a non-parametric method to estimate
these uncertainties in wind power generation. Wind power prediction intervals with
different confidence levels are generated using the QR method. Finally, accurate and
reliable deterministic and probabilistic wind power prediction results can be fed into power
system operation and control.

3.3. Performance Criterion
3.3.1. Errors for Point Prediction Performance

Generally, the assessment of point prediction performance is measured by comparing
the error between the actual and predicted values. In this paper, three evaluation metrics,
mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage
error (MAPE), are selected to validate the predictive performance of the proposed hybrid
model. They are as follows:

MAE =
1
T

T

∑
t=1
|Pa

t − P f
t | (9)

RMSE =

√√√√ 1
T

T

∑
t=1

(
Pa

t − P f
t

)2
(10)

MAPE =
1
T

T

∑
t=1

|Pa
t − P f

t |
Pa

t
(11)
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where T is the number of test samples and P f
t and Pa

t are the predicted and actual value, re-
spectively, corresponding to the tth sample. It is known that a smaller MAE/MAPE/RMSE
of a prediction model indicates better prediction performance and vice versa.

3.3.2. Errors for Probabilistic Performance

Here, the prediction interval coverage probability (PICP) and average interval sharp-
ness (AIS) are used to evaluate the probability prediction performance [39]. By definition,
from Equation (8), the predicted values are expected to lie within the constructed prediction
interval with a specific probability (1− α)× 100%. The PICP is used to assess the ratio
of the true values that fall within the upper and lower bounds of the prediction interval.
Essentially, the PICP serves as a measure of the coverage probability of the prediction
interval, which is defined as

PICP =
1
T

T

∑
t=1

cα
t × 100% (12)

cα
t =

{
1, Pa

t ∈ PI(1−α)×100%(t)
0, Pa

t /∈ PI(1−α)×100%(t)
(13)

where cα
t is the indicator of PICP. Theoretically, PICP ≥ (1− α)× 100% indicates that the

prediction interval is reliable; otherwise it is an invalid interval.
AIS is a metric that provides comprehensive evaluation of coverage and interval width.

It also offers an average measure of interval sharpness. It is defined as follows:

AIS =
1
T

T

∑
t=1


−2αδα

t − 4[Lα
t − Pa

t ], Pa
t < I(t)τ= α

2
−2αδα

t , Pa
t ∈ PI(1−α)×100%(t)

−2αδα
t − 4[Pa

t −Uα
t ], Pa

t > I(t)τ=1− α
2

(14)

where I(t)τ=1− α
2

and I(t)τ= α
2

are, respectively, the upper bound and lower bound of the
prediction interval. The prediction interval width δα

t = I(t)τ=1− α
2
− I(t)τ= α

2
. We note that

the larger AIS in the prediction interval indicates better predictive quantiles.

4. Numerical Results and Analysis

Due to the lesser impact of meteorological parameters on ultra-short-term wind power
prediction compared to long-term prediction, this paper proposes a direct prediction
method for wind power prediction that does not consider meteorological features such
as wind speed, wind direction, temperature, etc. In this section, the proposed hybrid
intelligence model is comprehensively evaluated based on actual historical wind power
data from a wind farm in China. Therefore, the simulation data results in this section
are obtained from the same wind farm data. The data cover the period from January
2020 to December 2021 with 15-min resolution. The entire wind power prediction dataset
is divided into two types of sets: a training dataset and a test dataset. Two test weeks,
1–7 February 2021 (Case 1) and 1–7 July 2021 (Case 2), are taken as the test datasets in
order to take into consideration seasonal differences, and the rest of the data constitute the
training dataset. To more objectively evaluate the deterministic prediction performance
of wind power with multiple temporal resolutions, this section presents six prediction
ranges from 15 to 90 min. We consider eXtreme gradient boosting (XGBoost) [34], Tree [15],
SVR [14], and a back-propagation neural network (BPNN) [40] as benchmark methods to
demonstrate the feasibility of the proposed hybrid intelligent method. Furthermore, the
probabilistic prediction performance of wind power at different confidence levels is present
in the next subsection. The proposed QR-based hybrid method is sufficiently compared
with the XGBoost+QR, SVR+QR, and Deep AR [41] methods.
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4.1. Outlier Detection Based on Isolated Forest

To validate the effectiveness of isolated forest in the data processing module, we
evaluate the effect of isolated forests on the predictive performance of the proposed hybrid
intelligence model, where a 15-min-ahead test dataset is used. In Figure 2, we show the
MAPE results for the isolated forest at different outlier ratios, and the marked points
indicate the minimum values. In the plots, the optimal anomaly ratios for Case 1 and Case
2 are 0.04 and 0.02, respectively. In both cases, the best outlier ratios are greater than 0,
indicating that 4 percent and 2 percent of outliers in the prediction process are overfitting
during the training process. If these detected outliers are eliminated in the training data,
the prediction accuracy of the proposed method can be improved. The ratio of outliers
corresponding to the minimum MAPE value in Case 2 is smaller than that in Case 1, which
is due to environmental factors at different time stages. This indicates that more original
features need to be retained during model training to mitigate underfitting.

In Figure 3, three benchmark outlier detection methods, including 3Sigmia [42], Box-
plot [43], and DBSCAN [44], are tested to demonstrate the effectiveness of isolated forest.
To be fair, the test conditions of the three benchmark outlier detection methods are the
same as those of the isolated forest. In the figure, the MAPE values for isolated forest in
the two cases are 0.039896 and 0.051425, respectively. Compared with 3Sigmia, Boxplot,
and DBSCAN, the MAPE of the isolated forest method in Case 1 is reduced by 0.000659,
0.000815, and 0.000014, respectively, and Case 2 by 0.000727, 0.001405, and 0.00238, respec-
tively. From these results, the isolated forest method shows higher anomaly data handling
capability in different cases compared to the three benchmarks. This is mainly due to
the fact that isolated forest can build a local model through sub-sampling, reducing the
impact of swamping and masking on the model effect. Therefore, the isolated forest used
in the data processing module can effectively handle high-dimensional continuous data
and improve the prediction performance of the proposed hybrid intelligence model.

Figure 2. The MAPE results of isolated forest for different outlier ratios.

Case 1
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P
E
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Figure 3. The MAPE results for different outlier detection methods.

4.2. 15-Min-Ahead Prediction Results

Figures 4 and 5 show the 15-min-ahead prediction results for the four benchmark methods
and the proposed model for Case 1 and Case 2. The red and black lines in Figures 4 and 5
represent the predicted and actual power curves, respectively. It is clear that the prediction
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curve of the proposed method is very close to the actual curve. This means that the proposed
hybrid method has more convincing prediction results than other comparative methods.
Table 1 presents the 15-min-ahead prediction results for both cases. From Table 1, it can be
seen that the MAPEs of the proposed method are 0.0399 and 0.0514 for Case 1 and Case
2, respectively, with a mean value of 0.0457. The mean MAPEs for the four benchmark
methods for the two test cases are 0.1126, 0.1265, 0.1410, and 0.1139, respectively. Compared
with XGBoost, Tree, SVR, and BPNN, the average MAPE of the proposed method has been
decreased by 0.0669, 0.0808, 0.0953, and 0.00682, respectively. Similarly, the MAE index has
been, on average, decreased by 1.7083, 2.0069, 2.3732, and 1.7415, respectively, and the mean
RMSE has been decreased by 2.4376, 2.7660, 2.9518, and 2.4858, respectively. Obviously, the
proposed method exhibits the best performance, followed by XGBoost, BPNN, Tree, and
SVR in that order.

Table 1. Performance evaluation for the 15-min-ahead predicted results.

Methods
Case 1 Case 2 Average

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Proposed 1.2947 1.8313 0.0399 1.0684 1.7028 0.0514 1.1816 1.7671 0.0457
XGBoost 3.1223 4.2845 0.0957 2.6575 4.1248 0.1295 2.8899 4.2047 0.1126

Tree 3.4286 4.5733 0.1061 2.9484 4.4929 0.1468 3.1885 4.5331 0.1265
SVR 3.5099 4.6770 0.1213 3.5996 4.7609 0.1608 3.5548 4.7189 0.1410

BPNN 3.1764 4.3475 0.0978 2.6698 4.1583 0.1301 2.9231 4.2529 0.1139
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Figure 4. The 15-min-ahead wind power forecasting results of different prediction models for Case 1.
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Figure 5. The 15-min-ahead wind power forecasting results of different prediction models for Case 2.

4.3. Multi-Step-Ahead Prediction Results

Then, we further investigate the multi-step prediction performance of the proposed
model and perform simulation and analysis on Case 1 and Case 2. The prediction steps
range from 30 min to 90 min with an interval of 15 min. Table 2 presents the MAE and
RMSE metrics for different prediction methods in 30-min-ahead prediction. It is clear
from Table 2 that the proposed method has a significant performance improvement over
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the benchmark methods. Compared with XGBoost, Tree, SVR and BPNN, the MAE has
been, on average decreased by 2.6715, 3.0414, 3.2161, and 2.6484, respectively, and RMSE
by 3.7198, 4.2468, 4.2123, and 3.6835, respectively. It turns out that the proposed hybrid
intelligence method also has good performance in 30-min-ahead prediction.

Figures 6 and 7 show the mean MAPEs of Case 1 and Case 2 over different forecast
ranges, respectively. As can be seen from the figure, the MAPEs of the proposed method
increase with the increase of the prediction range. This is because the longer forecast range
reduces the feature correlation and thus increases the uncertainty of wind power forecasts.
Compared with other benchmark methods, the MAPE of the proposed method is the
smallest in all prediction horizons, which indicates that the proposed hybrid method has
the best prediction performance. Therefore, it can be proved from the multi-step forecasting
results that the proposed method has more excellent and robust forecasting performance.

Table 2. Performance evaluation for the 30-min-ahead predicted results.

Week Indexes
1–7 February 2020 1–7 July 2020 Average

MAE RMSE MAE RMSE MAE RMSE

Proposed 1.9561 2.7355 1.7032 2.6381 1.8296 2.6868
XGBoost 4.8045 6.4742 4.1977 6.3391 4.5011 6.4066

Tree 5.2411 7.1790 4.4980 6.6882 4.8710 6.9336
SVR 5.1523 6.9257 4.9391 6.8726 5.0457 6.8991

BPNN 4.6884 6.3173 4.2677 6.4232 4.4780 6.3703
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Forecasting horizons 
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Figure 6. The MAPE statistics for different forecasting horizons in Case 1.
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Figure 7. The MAPE statistics for different forecasting horizons in Case 2.

4.4. Probabilistic Prediction Results

In this subsection, to fully demonstrate the overall advantages of the proposed hybrid
intelligent method, we choose XGBoost+QR, SVR+QR, and Deep AR as three benchmark
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methods, where PICP and AIS are adopted to evaluate the wind power probabilistic
prediction results. Figures 8 and 9 present the 30-min-ahead prediction interval with
80% confidence level obtained from the proposed hybrid method in Case 1 and Case 2,
respectively. In the plots, the red dashed line is the actual wind power and the light blue
area is the wind power prediction interval. It can be seen that the actual power is within
a larger percentage of the constructed lower and upper bounds. The actual power line,
lower boundary, and upper boundary are very similar in shape. Further, it can be clearly
seen that the line trends in each plot have strong fluctuations, showing the nonlinear and
non-stationary characteristics of wind power in different cases.
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Figure 8. The 30-min-ahead prediction interval with 80% confidence level obtained from the proposed
hybrid method in Case 1.
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Figure 9. The 30-min-ahead prediction interval with 80% confidence level obtained from the proposed
hybrid method in Case 2.

Table 3 presents the 30-min-ahead probabilistic ACP and AIS at 80% confidence level
in these two cases. We note that the PICP shows the reliability of the prediction interval
and that the prediction interval is considered reliable when the PICP is higher than a given
confidence level. As shown in Table 3, all benchmark methods and the proposed method
except SVM are valid for all cases. Compared with XGBoost+QR, SVR+QR, and Deep AR,
the AISs of the proposed method in Case 1 are reduced by −3.5857, −3.9511, and −3.6536,
respectively, and in Case 2 by −3.2374, −4.3922, and −3.1260, respectively. The AIS results
show that the proposed hybrid intelligence approach has better prediction interval quality
than other benchmark methods, which is due to the fact that the larger the AIS, the better
the prediction quality.

Furthermore, we study the AIS performance under different confidence levels in
both cases. The AIS curves of the proposed and benchmark methods at confidence levels
ranging from 32 to 98% are shown in Figures 10 and 11. For Case 1, the AIS results for all
three benchmark methods are close to each other. For Case 2, SVM+QR has the worst AIS
performance, while the other two benchmark methods have similar AIS performance. Ap-
parently, in both cases, the proposed hybrid intelligence method performs best at different
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confidence levels. These results show that the proposed method performs excellently in
probabilistic wind power prediction and will be very attractive in practical applications.

Table 3. The 30-min-ahead probabilistic ACP and AIS at 80% confidence level in these two cases.

Case Metric XGBoost+QR SVR+QR Deep AR Proposed

Case 1
PICP 100% 100% 100% 100%

AIS −6.1008 −6.4662 −6.1687 −2.5151

Case 2
PICP 100% 68% 100% 100%

AIS −5.1985 −6.3533 −5.0871 −1.9611
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Figure 10. The AIS statistics under different confidence levels in Case 1.
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Figure 11. The AIS statistics under different confidence levels in Case 2.

5. Conclusions

In this paper, a new hybrid intelligent model based on isolated forest, wavelet trans-
form, categorical boosting, and quantile regression is proposed for deterministic and
probabilistic wind power forecasting. Isolated forest is used to detect anomalous data
points to smooth the wind power sequence, and its effectiveness is verified by compar-
ison with three benchmark outlier detection methods. Wavelet transform is applied to
decompose the wind power sequence into well-profiled high- and low-frequency signals,
categorical boosting is exploited to extract meaningful features of wind power, and quan-
tile regression is developed to evaluate the uncertainty with various confidence levels.
Then, the proposed hybrid method is sufficiently validated and analyzed on real wind
power data from China. Compared with the XGBoost, Tree, SVR, and BPNN methods,
the deterministic prediction results from 15 min to 90 min show that the proposed hybrid
method has better deterministic prediction performance. In addition, the proposed method
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also shows good probabilistic prediction performance at different confidence levels com-
pared to the XGBoost+QR, SVR+QR, and Deep AR methods. These experimental results
demonstrate that the proposed hybrid intelligent model is an excellent solution to the
wind power prediction problem. In the future, the proposed hybrid model will be of great
attraction and practical application in power systems.
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DBN Deep belief network
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CatBoost Categorical boosting
WT Wavelet transform
QR Quantile regression
TS Target-based statistics
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