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Abstract: This work analyzes and compares the differences in efficiency between supercapacitor
constant-current and constant-power charging under the same boundary conditions, i.e., charging
from the same initial voltage to the same final voltage in equal charging times in both variants.
Similarly, supercapacitor constant-current and constant-power discharging are compared under
the same boundary conditions, i.e., discharging from the same initial voltage to the same final
voltage in equal discharging times for both variants. The study included calculations and virtual
simulations based on the most frequently used equivalent RC model of supercapacitors. As a
result, theoretical calculations and simulations with the RC model confirmed that constant-current
charging/discharging is more efficient than constant-power charging/discharging. The results show
that this difference is usually not higher than 1%. Practical experiments confirm an almost equal
efficiency of both strategies, but it was difficult to validate exactly such small, theoretically calculated
differences. Overall, from a practical point of view, the two charging/discharging methods can be
considered as close, and nearly equal in terms of efficiency.

Keywords: energy storage; energy efficiency; DC grid; supercapacitors; constant power

1. Introduction

DC voltage is widely used, as most electrical energy consumers are supplied by
DC current, e.g., lighting, motor drives, etc. [1]. Three-phase AC motors are most often
supplied via a DC link starting with an AC-DC rectifier and ending with a DC-AC inverter.
In addition, DC lines reduce the number of conversion stages, such as AC-DC converters
and filters. These advantages are contributing to the development of DC microgrids.
Moreover, a regenerative electric drive connected to the DC grid can supply power to
other consumers connected to the same DC grid during its deceleration mode [2]. Energy
efficiency can be significantly improved by installing energy storage systems (ESS) on the
DC grid. If no other consumer requires regenerated energy at the moment, it is economical
to store this energy in ESS for re-use when needed instead of dissipating it in heat [3].

In the last two decades, so-called ultracapacitors or supercapacitors (SCs) have been
increasingly used for electrical energy storage in many high-power applications due to
their much higher capacitance compared to conventional capacitors, allowing them to
store significantly larger amounts of energy [4,5]. While batteries still have a higher energy
density, SCs have a higher power density due to which they can be charged and discharged
relatively rapidly. SCs are therefore useful for applications such as electric vehicle drives,
which regenerate electrical power during braking mode, and this regenerated power can
be stored for re-use in the next acceleration mode, thus reducing the full consumption of
electricity from a power supply substation in the case of public electric transport connected
to an overhead grid [6]. Power recovery is topical also in equipment used in the production
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industry, including industrial robots [2,7,8]. In the above mentioned situations, the use of
SC ESS is an optimal choice to reduce energy consumption.

In practice, bidirectional DC-DC converters connected between microgrid DC bus
and SC ESS ensure these charging/discharging processes. Certain types of converters are
designed to provide a constant charge/discharge voltage but tend to have limited ranges
of usable voltage values. Larger differences between the source voltage and the SC circuit
voltage might lead to higher current peaks, thus reducing the efficiency [9,10]. Several
papers summarize control methods for different applications: [11–13], for electrical vehi-
cles [14], and for DC microgrid application [15–18]. Most common control techniques other
than constant-voltage control are constant-current and constant-power control methods,
as SCs are quite commonly used in constant current and constant power charging and
discharging applications [19,20]. Therefore, the focus of this paper is SC constant-current
and constant-power charging and SC constant-current and constant-power discharging.

In planning the implementation of an SC ESS, preliminary calculations must be carried
out to predict its performance under the given conditions and whether it will be able to
fulfil its energy storage and supply tasks. The corresponding calculations and/or virtual
simulations are carried out using SC mathematical models. The most widely used, the
so-called RC model, is the simplest but does not guarantee complete accuracy, which is
why various other models have been developed [21]. In [22], SC models are classified into
four categories: electrochemical, equivalent circuit, intelligent and fractional order [23].
It is also worth mentioning models such as the Zubieta model [24], Faranda model [25]
and two RC branches’ circuit model [26,27]. In [28], a comparison of the accuracy of three
different models—RC circuit, two-branch circuit and multi-branch circuit—was made and
it was found that the simplified RC model shows higher error compared to the other more
complex models. A closer look at the result graphs suggests that the RC circuit model is
slightly over 5% more inaccurate than the other two models. Therefore, the simplified RC
circuit model can be considered as an acceptable model for planning and calculation of
large SC ESSs [29] and many other applications.

Unlike SC constant-current charging/discharging, the analysis of the constant-power
charging/discharging processes involves more complex differential equations. Therefore,
various studies have been conducted on the operation of SCs’ constant-power modes. For
example, refs. [30–32] describe the process of SC constant-power discharging by calculat-
ing the electrical parameters—current, internal voltage, external voltage etc.—using the
Lambert W function in real time. The research was performed with theoretical calculations
and simulations based on an RC circuit.

Nevertheless, a detailed comparison of SC constant-current charge/discharge and
constant-power charge/discharge under the same boundary conditions, that include ini-
tial SC voltage, final SC voltage, charge time and discharge time based on the RC circuit
model, has not been made in the literature so far. The insights gained from this work can
therefore be useful for both researchers and engineers. The article presents fundamental
research supported with simulations and experiments proving that, for an RC circuit, charg-
ing/discharging an SC with constant current is more efficient than charging/discharging
with constant power when both options have the same boundary conditions, but this dif-
ference is typically less than 1% and varies with both the chosen boundary conditions and
the internal resistance of the SC. As SCs are widely used globally, this difference, although
numerically small, can have a certain impact on both the overall energy consumption and
the lifetime of separate SC cells.

2. Conditions for Supercapacitor Charging and Discharging Comparison

Deciding to compare the charging of an SC circuit from a specified initial voltage to a
specified final voltage at a strictly defined time with constant current and constant supplied
power, an assumption might arise even prior to such experimental comparison that both of
these charging variants should be identical in terms of efficiency, since the charging condi-
tions for both options are the same: the voltage at the beginning of charging; the voltage at
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the end of charging; the time of charging. The same assumption might also arise prior to
comparing a SC circuit discharging with constant current and constant power under equal
discharging conditions. Through calculations and experimental simulations, the present
work describes the rationale for proving that constant-current charging is not identical in
terms of efficiency to constant-power charging, and constant-current discharging is not
identical in terms of efficiency to constant-power discharging.

For the calculations and their confirmatory simulation results, a simplified equivalent
model of a SC circuit was used—the RC circuit shown in Figure 1, consisting of a capacitor C
simulating the full capacitance and a resistor R simulating the full active internal resistance.
In RC circuits, there is often another resistor in parallel with C to simulate self-discharge
losses [33], which are relevant over longer time periods, so this was not considered in
further work. Although capacitance decreases and resistance increases during the lifetime
of SCs, these parameters were assumed to be constant during any given charge/discharge
cycle. The actual electrical processes of the SC differ slightly from the simplified RC circuit
due to various electrical, chemical, and thermal processes. However, from the operation
graphs of different SC models in [28], it can be concluded that the error of the RC model
compared to more complex and accurate models is generally slightly higher than 5%. It was
therefore decided to use an RC circuit model for all calculations and virtual simulations.
Before starting the work, a certain SC cell with known R and C needs to be selected, based
on which the corresponding simulations will be performed.

Calculations, simulations, and experiments were performed on a SC circuit consisting
of 20 series-connected SC cells Maxwell BCAP0450 P270 S18 that will be used as energy
storage for a 48 V DC microgrid. According to the manufacturer’s technical documen-
tation, the capacitance of one such cell is C = 450 F, internal resistance R = 2.8 mΩ and
the maximum voltage VC = 2.7 V. Therefore, for a circuit with 20 series-connected cells,
C = 22.5 F, R = 0.056 Ω and VC = 54 V, respectively. Comparisons between two SC charging
methods—constant-current and constant-power charging—were made by charging the
SC circuit from the initial voltage VC1 to the final voltage VC2 at equal time durations t.
Afterwards, comparisons between the two SC discharging methods—constant-current and
constant-power discharging—were made by discharging the SC circuit from the initial
voltage VC2 to the final voltage VC1, that was previously the case before charging, at equal
time duration t, at which the charging was previously performed. Experimental computer
simulations of the charging/discharging of the given SC circuit were performed using the
Matlab/Simulink environment, entering pre-calculated input parameters.

The initial state-of-charge voltage of the SC circuit was assumed to be half of the
maximum, i.e., VC1 = 27 V, and the first task was to charge this voltage with constant current
up to VC2 = 54 V in t = 25 s. The next task was to discharge the SC circuit from 54 V to 27 V in
t = 25 s. Description and explanation of how to calculate the constant charging/discharging
current is provided. The same SC circuit will then be charged/discharged under the same
conditions but with constant supplied or input power in the case of charging and with
a constant consumed or output power in the case of discharging. The method with its
description of how the values of the required constant supply power can be calculated as
a function of the planned charging time duration, and the method with its description of
how the value of the required constant discharging consumed power can be calculated
as a function of the planned discharging time duration, are also presented. Comparisons
of the efficiencies of these two charge/discharge methods at different charge/discharge
time durations are described further, ultimately concluding that charging/discharging
capacitors with constant current and charging/discharging capacitors with constant power
are not identical processes in terms of energy storing/discharging efficiency. In the final
part, practical charge/discharge experiments were performed on the SC circuit in question
with slightly different conditions and the experimental results were compared with the
results of idealized simulations.
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3. Supercapacitor Charging and Discharging with Constant Current

The total capacitance of all the individual cells of an SC series circuit can be equiva-
lently replaced by a single capacitor C, the total resistance of all the individual cells can
be replaced by a single resistor R, and Figure 1 shows the charging and discharging pro-
cesses in such an RC circuit. Constant electrical parameters, such as charging/discharging
currents IC, are denoted by capital letters, while variable parameters are denoted by lower
case letters. The voltage drop VR caused by internal resistance R and current flow is a
constant value for constant charge/discharge current IC. In the corresponding Matlab
model, charging and discharging are simulated using a block diagram like that in Figure 1,
but with a current source connected in series, for which the current is set. The current of
this source is positive in case of SC charging and negative in case of SC discharging.
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Figure 1. Representations of SC circuit constant current charging and discharging processes using an
equivalent RC circuit.

When charging, the current flows towards C, so the potentials on R and C are in the
same direction. When discharging, the current flows away from C, due to which C can
be considered as an energy source, so the potentials on R and C are in opposite directions.
Considering this, it follows that, when measuring the voltage across a real SC circuit, a
voltmeter that is connected in parallel will, in the case of SC charging, indicate a voltage
value of VSC that is VR higher than the actual value of the SC circuit voltage VC. On the
other hand, at the end of the charging process, the voltmeter will immediately indicate the
actual value of the SC circuit voltage VC, as shown in Figure 2.
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Therefore, in the diagram of the charging process in Figure 1, the voltage value is:

vSC = vC + VR. (1)

In the case of SC discharging, the voltage in parallel to the SC circuit will be equal
to VSC that is VR lower than the actual value of the SC circuit voltage VC. At the end of
the discharging process, the voltmeter will immediately indicate the actual value of the
SC circuit voltage VC, as shown in Figure 3. Therefore, in the diagram of the discharging
process in Figure 1, the voltage value VSC is:

vSC = vC −VR. (2)
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Sometimes the value VSC is called the external voltage of the SC circuit, which is the
sum of VC and VR for charging and the difference between VC and VR for discharging, but
the actual voltage VC is called the internal voltage of the SC circuit [30].

To calculate the constant current with which the SC circuit must be charged to increase
its voltage from VC1 to VC2 at a certain time t, the formula for the definition of capacitance
C can be used, where q is the electric charge applied to the SC circuit and ∆V is the voltage
variation at time t as the difference between VC2 and VC1:

C =
q

∆V
=

ICt
VC2 −VC1

. (3)

From Equation (3), the formula for calculating the corresponding constant charging
current can be derived:

IC =
C(VC2 −VC1)

t
. (4)

With Equation (4), it can be calculated that the given SC circuit must be charged with
24.3 A constant current to charge it from 27 V to 54 V. In the computer model, the current
source is given a constant current during the charging process, calculated by (4), while
during the discharging process the current of the same numerical value has a minus sign,
meaning the opposite direction of flow.

From simulation result graphs in Figure 2, it is visible how, at constant charging
current, the internal voltage VC increases linearly. Since the voltage VR is constant all the
time, the external voltage VSC is higher than VC by the same value all the time during
charging. The total charging power p, which is the sum of successfully stored power pC
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and lost power pR, increases linearly during the charging time and is always higher by the
same value than pC.

To calculate the efficiency of the charging process, it is necessary to know both the
energy successfully stored and the total energy delivered during charging. If an SC circuit
with capacitance C is charged from an initial voltage VC1 to a final voltage VC2 in time t,
then the stored energy EC can be calculated using the expression:

EC =
C
(
V2

C2 −V2
C1
)

2
. (5)

Since the charging current IC is constant all the time, the power lost due to the internal
resistance R of the SC is also constant. Therefore, the energy that is lost during the whole
charging process duration can be calculated by the formula:

ER = I2
CRt. (6)

The total energy ESC fed to the SC circuit during the charging process consists of the
stored energy EC calculated by (5) and the lost energy ER calculated by (6):

ESC = EC + ER. (7)

The full efficiency of the charging process is calculated as the energy stored in EC
divided by the total energy fed to the SC circuit:

ηc =
EC
ESC

. (8)

In the discharging process, unlike in the charging process, the initial voltage of the
SC circuit is higher than the final voltage, so for discharging time duration t the constant
discharging current is calculated by the same Equation (3), obtaining a current with the
same numerical value as in the charging case but with minus sign indicating that the current
flows in the opposite direction. SC circuit constant current discharge process simulation
diagrams are shown in Figure 3 and, if the results are compared with those from Figure 2,
it is visible that the charging and discharging processes are like mirror images.

The energy that is lost during the discharging process is calculated using the same
Equation (6), while the energy ES that successfully reaches the consumer is calculated as
the difference between the total energy EC, discharged from the SC circuit, and the lost
energy ER:

ES = EC − ER. (9)

The full efficiency of the discharging process is calculated as the energy ES divided by
the energy EC:

ηd =
ES
EC

. (10)

The full efficiency of the charging/discharging process, when the charge from VC1 to
VC2 and the following discharge from VC2 to VC1 occur at equal times, can be calculated as
the energy ES of Equation (9) divided by the energy ESC of Equation (7):

ηt =
ES

ESC
. (11)

During the simulation, the curves of the instantaneous values of the energy charging
and discharging efficiencies calculated by Equations (8) and (11) can be plotted as shown in
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Figure 4. It is also possible to obtain the instantaneous curve of the power storing efficiency,
which can be calculated with the expression:

ηPch =
Pc

Pc + PR
. (12)
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The instantaneous curve of power discharging efficiency in real time is obtained by:

ηPdis =
Pc − PR

Pc
. (13)

Although the main values of interest are the energy storage efficiency at the very end of
the charging process and the energy discharge efficiency at the very end of the discharging
process, Figure 4 shows visually how the power and energy storing and discharging
efficiency changes during SC circuit charging and discharging, respectively. At the start
of the charging process, power and energy storage efficiencies are at their lowest points
but gradually increase thereafter. At the start of the discharging process, the power and
energy discharge efficiencies are at their highest points but gradually decrease thereafter. It
is visible that the full efficiency of the discharging process is slightly lower than the full
efficiency of the charging process. The fact that the charging and discharging processes
are not identical in terms of efficiency is because the total energy that is discharged during
the discharging process corresponds to the energy that is successfully stored during the
charging process, and some of this energy is lost during discharge due to the internal
resistance R. In the case of charging, the lost energy is compensated by taking more energy
from the source, thus ensuring that charging is completed after the scheduled time t.
Mathematically, it can also be verified that the magnitude of this difference in efficiency
depends on the internal resistance R.

4. Supercapacitor Charging and Discharging with Constant Input Power

In this charging case, the only constant parameter is the input power P, denoted by a
capital letter in Figure 5. The other parameters, such as charging current IC, voltage drop VR,
internal voltage VC and external voltage VSC are variables denoted by lower case letters.
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Therefore, the constant total power fed to the SC is equal to the sum of the successfully
stored power pc and the lost power pR:

P = pc + pR. (14)

For the charging case, the corresponding power balance equation is:

P = vcic + i2c R. (15)

During charging, the relationship between the current ic and the capacitance C is:

v′c(t) =
ic
C

. (16)

Using Equation (15) to transform Equation (16), the differential equation obtains:

RC2v′c(t)
2 + Cvcv′c(t)− P = 0. (17)

Dividing Equation (17) by the capacitance C obtains:

RCv′c(t)
2 + vcv′c(t)−

P
C

= 0 (18)

The solution of the quadratic Equation (18) is:

v′c(t) =
−vc ±

√
v2

c + 4RP
2RC

. (19)

The correct version of Equation (19) is with a plus sign before the square root. This
can be resolved by comparing Equation (19) with Equation (16), since the charging current
must be positive. Next, the differential equation for calculating the charging time t can be
derived from Equation (24):

dt =
2RC

−vc +
√

v2
c + 4RP

dvc (20)

The formula for calculating the charging time t is derived by integrating Equation (20),
if the voltage VC changes from VC1 to VC2 over the time duration t under the condition that
VC1 < VC2, resulting in the expression:

t =
C
4P

V2
C2 −V2

C1 + VC2·
√

4RP + V2
C2 −VC1·

√
4RP + V2

C1 + 4RP·LN

VC2 +
√

4RP + V2
C2

VC1 +
√

4RP + V2
C1

 (21)

According to Equation (21), there is no problem in calculating the charging time t for a
known constant power P, initial voltage VC1 and final voltage VC2. The formulation of the
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problem statement for the given situation would be how long it would take the SC circuit
voltage to increase from VC1 to VC2 if a constant power P were applied to it. However, the
next option of interest is to calculate the required power P fed to the SC circuit at a known
charging time t, initial voltage VC1 and final voltage VC2. The formulation of the problem
statement for the given situation would be as follows: what constant power P must be
fed to the SC circuit to charge it from VC1 to VC2 during time duration t? Equation (21)
is transcendental, so the formula for calculating the power P cannot be derived directly
from it. Regarding the discharge case Equation (32) that is rather similar to Equation (21),
reference [30] describes how other parameters, such as current iC voltages vC, vR, etc., can be
calculated in real time using the Lambert W function, but not the constant P depending on
specified time t. One option for solving the power P is to use a mathematical computation
program such as Wolfram since, by inputting Equation (21) with corresponding values of
the known parameters, the numerical value of power P is solved. The second option is
to make a table of the results of solving Equation (21) at different powers P, because then
the corresponding power P can be found for the planned charging time t. For example, an
array of charging times t can be formed where the power P varies from 750 W to 9000 W in
steps of 0.1 W. At these values of P, charging takes place from approximately 33.6 s to 3.6 s,
and Figure 5 shows the time curve versus the constant power P supplied to the SC circuit.

Both in the table of P and t arrays and in the t diagram of Figure 6, it is possible to
find the specific charging time t of interest and then read the corresponding power P. For
a given power step change of 0.1 W, there is also some small error in the solution. To
reduce this error, the step change in P should be reduced even further, bringing the results
closer to absolute accuracy. For example, looking for the power P at time t = 25 s, the actual
value of the charging time found is approx. 25.0012 s as shown in Figure 7, and the power
P = 1018.3 W corresponding to this time value is also selected. However, the error in this
case is very low, being only a thousandth of a second.

Energies 2023, 16, x FOR PEER REVIEW 9 of 20 
 

 

charging time t, initial voltage VC1 and final voltage VC2. The formulation of the problem 

statement for the given situation would be as follows: what constant power P must be fed 

to the SC circuit to charge it from VC1 to VC2 during time duration t? Equation (21) is tran-

scendental, so the formula for calculating the power P cannot be derived directly from it. 

Regarding the discharge case Equation (32) that is rather similar to Equation (21), refer-

ence [30] describes how other parameters, such as current iC voltages vC, vR, etc., can be 

calculated in real time using the Lambert W function, but not the constant P depending 

on specified time t. One option for solving the power P is to use a mathematical computa-

tion program such as Wolfram since, by inputting Equation (21) with corresponding val-

ues of the known parameters, the numerical value of power P is solved. The second option 

is to make a table of the results of solving Equation (21) at different powers P, because 

then the corresponding power P can be found for the planned charging time t. For exam-

ple, an array of charging times t can be formed where the power P varies from 750 W to 

9000 W in steps of 0.1 W. At these values of P, charging takes place from approximately 

33.6 s to 3.6 s, and Figure 5 shows the time curve versus the constant power P supplied to 

the SC circuit. 

Both in the table of P and t arrays and in the t diagram of Figure 6, it is possible to 

find the specific charging time t of interest and then read the corresponding power P. For 

a given power step change of 0.1 W, there is also some small error in the solution. To 

reduce this error, the step change in P should be reduced even further, bringing the results 

closer to absolute accuracy. For example, looking for the power P at time t = 25 s, the actual 

value of the charging time found is approx. 25.0012 s as shown in Figure 7, and the power 

P = 1018.3 W corresponding to this time value is also selected. However, the error in this 

case is very low, being only a thousandth of a second. 

 

Figure 6. Time necessary to charge SC circuit from 27V to 54V according to the supply power. 

  

Figure 6. Time necessary to charge SC circuit from 27 V to 54 V according to the supply power.

Since the Equation (21) contains sub-root expressions, there is a limited range of valid
values of power P, which can be determined by writing a system of inequalities:{

4RP + V2
C2 ≥ 0

4RP + V2
C1 ≥ 0

(22)

Solving the Equation (22), the range of definition of the power P values becomes:

P ≥ −
V2

C1
4R

. (23)
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There is no purely mathematical limit to positive values of P, but there is a limit
up to a certain negative value of the power P. However, in the case of charging, this is
apparently not the case, as a negative fed power would already mean a discharge. In the
case of discharge, which will be described further, the ranges of definition of the sub-root
expressions will be more relevant. The example in Figure 7 shows the simulation results of
charging the SC circuit for 25 s with the predetermined constant power P = 1018.3 W.

Since a constant power P is fed to the SC circuit during the entire charging time t, the
total energy fed to the SC circuit is calculated as the product of power P and time t:

ESC = Pt. (24)

The stored energy EC is known in advance, as it is calculated using the same Equation (5).
Therefore, the lost energy ER is calculated as the difference between ESC and EC, while
the full efficiency of the charging process is calculated using the same Equation (8). The
efficiency of real-time power storage is calculated using the same Equation (12).

In the case of SC discharging, a consumer connected to the SC circuit is assumed to
consume a constant power P, as shown in Figure 8, where this consumer is equivalently
replaced by a current source. Variable parameters in lower case letters are the same as those
in the SC charging case earlier.
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Figure 8. Representation of SC circuit constant-power discharging process using an RC circuit.
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As a result, the constant power consumption P corresponds to the difference between
the total discharged power pc and the lost power pR:

P = pc − pR. (25)

For the discharging case, the corresponding power balance equation is:

P = vcic − i2c R. (26)

During the discharging process, there is the following relationship between the current
ic and the capacitance C:

v′c(t) = −
ic

C
. (27)

Using Equation (27) to transform Equation (26), the following differential equation
can be obtained:

RC2v′c(t)
2 + Cvcv′c(t) + P = 0. (28)

Dividing Equation (28) by the capacitance RC2 obtains:

v′c(t)
2 +

vc

RC
v′c(t) +

P
RC2 = 0. (29)

The solution of the quadratic Equation (29) is:

v′c(t) =
−vc ±

√
v2

c − 4PR
2RC

. (30)

The correct version of Equation (30) is with a plus sign before the square root. This can
be resolved by comparing Equation (30) with Equation (27), as the discharge current should
be as low as possible to increase efficiency. Next, the differential equation for calculating
the discharging time t can be derived from Equation (30):

dt =
2RC

−vc +
√

v2
c − 4PR

dvc. (31)

The formula for calculating the discharging time t is derived by integrating the Equa-
tion (36), if the voltage VC changes from VC2 to VC1 over the time duration t under the
condition that VC2 > VC1, resulting in the expression [30,32]:

t =
C
4P

V2
C2 −V2

C1 + VC2·
√

V2
C2 − 4PR−VC1·

√
V2

C1 − 4PR− 4PR·LN

VC2 +
√

V2
C2 − 4PR

VC1 +
√

V2
C1 − 4PR

 (32)

It should be noted that, even though there is a discharge, the Equation (32) assumes
that the power P is positive. The formulation of the problem statement for the given
situation would be how long it would take the SC circuit voltage to decrease from VC2 to
VC1 if a consumer, connected to this SC circuit, consumes a constant power P. However,
the next option of interest is to calculate the constant power P that must be consumed by a
consumer to decrease the SC circuit voltage from VC2 to VC1 during time duration t. As
with Equation (21), the same conclusions can be drawn that the formula for calculating the
power P cannot be derived directly from Equation (32), so the same two options exist with
the use of a mathematical computing program or the use of a pre-calculated table of time t
and P values.

In the case of constant charging/discharging current, it is a fact that, after charging the
SC circuit with a certain current at time duration t from the initial voltage VC1 to the final
voltage VC2, it can then be discharged with the same current at the same duration t from
voltage VC2 to VC1, as shown in Figures 2 and 3. On the contrary, the SC circuit cannot
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be discharged from VC2 to VC1 in time t at the same power as it was previously charged.
It was clarified that, in the case of constant charging/discharging power, only one of the
parameters—time t or power P—can be equal to the corresponding parameter from the
charging process.

If the discharging process is planned to last the same duration t as the charging
process, then the consumer’s constant power is lower than the constant power stored
during the charging process. On the other hand, if the discharging process is planned
to occur at the same constant power as the charging process, then the discharge is faster.
Figure 9 shows the comparative curves of the charging/discharging times versus a constant
charging/discharging power, and it is visible that the difference between the charging
and discharging times increases with increasing power value and decreasing comparative
charging/discharging time. The green curve in Figure 9 becomes a red dashed curve at
one point (325.4 W) meaning that, at further powers of P in Equation (32) the values of the
sub-root expression with VC2 emerge as negative, so the red dashed curve corresponds to
the real parts of the complex numbers in the results for Equation (32), but in general this is
an undefined region of power P values at given discharge conditions.
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For testing reasons, the computer model can be set to one of the red line discharge
powers and, if the simulation is run, it will simulate a discharge for a while, but at some
moment the simulation will stop with an error message. Thus, from Equation (32), the
range of valid values of the maximum constant discharging power can be determined by
first writing the following system of inequalities:{

V2
C2 − 4RP ≥ 0

V2
C1 − 4RP ≥ 0

(33)

Solving Equation (33), the range of definition of power P values becomes:

P ≤
V2

C1
4R

. (34)

The point with the green curve ending and the red dashed curve beginning corre-
sponds to the result of Equation (34) in the case with an equal sign. Although the red-dashed
curve in Figure 9, which is the real part of the complex results of Equation (32), looks like a
symmetrical continuation of the green curve, in fact it is not possible to discharge the SC
circuit to the required voltage of 27 V with these red-zone powers.
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Simulation of the SC circuit discharging at a constant power of 4000 W for 5 s was
tried and Figure 10 shows that discharging occurs for a while, but the simulation hangs
when the VC is discharged to approx. 30 V. Before the simulation stops, the current ic and
the total discharged power pc start to increase rapidly while the voltage vc starts to decrease
rapidly, and therefore it can be concluded that at such low voltages the SC circuit is no
longer able to provide the increasing total discharge power pc that is necessary to provide
the 4000 W required constant power P, so the simulation hangs. In a real situation, the
consumer’s power would no longer be constant and would start to decrease according to
the SC’s capability.
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Figure 11 shows the simulation results of discharging the SC circuit for 25 s from
VC1 = 54 V to VC2 = 27 V with constant successfully consumed power P = 949.5 W.
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Since, during the discharge process the SC circuit feeds a consumer with a constant
power P, which is considered as successfully discharged power, the successfully discharged
energy can be calculated as the product of the power P and the time t:

Es = Pt. (35)

The total discharged energy EC is known and is calculated by Equation (5), so the
efficiency of the discharging process can be calculated by Equation (10). The full efficiency of
the charging/discharging process is calculated using Equation (11). The power discharging
efficiency is calculated using the same Equation (13). Figure 12 shows the real-time variation
of power and energy storing/discharging efficiency.
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5. Efficiency Comparison of Constant-Current and Constant-Power
Charging/Discharging Strategies

Further, the efficiencies for constant current charging and constant power charging,
the efficiencies for constant current discharging and constant power discharging, and the
full charging/discharging cycle efficiencies of these two methods will be compared in
detail. The corresponding calculations will be made for the same SC circuit under the same
conditions, assuming that it is charged from 27 V to 54 V and then discharged back to 27 V
for the same time duration as charging. According to the manufacturer’s information, the
recommended maximum short-time peak current of the SC element in question is 240 A.
Therefore, the cases of 1 s, 2 s and 3 s charging/discharging will not be considered in order
to keep the charging discharging current below 200 A for efficiency improvement, since,
according to Equation (4), the constant charging/discharging currents at these durations are
above 200 A. Charges of 4 s to 30 s and discharges of the same durations with a change step
of 1 s will be considered. Figure 13 shows the curve of charging/discharging current values,
calculated by Equation (4), as a function of equal charging and discharging durations.

The initial discharging time with the constant consumer’s power is 7 s, because in
Equation (32) the sub-root expressions with VC2 come out negative for charging times that
are less than 7 s, so they do not have valid power, as described before with reference to
Figure 9. As visible in Figures 16 and 17, the constant current discharging case is noticeably
more efficient compared to the charging case from Figures 14 and 15.

Although not very significantly, the results in Figure 14 show that charging with
constant current is more efficient than charging with constant input power, and Figure 15
shows the percentage differences, which range from approx. 0.1 to 0.25%. This percentage
difference is larger for faster charges and lower for longer charges.
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Figure 17. Constant-current and constant-power discharging efficiency differences versus time.

Figure 18 shows how the charging/discharging efficiency of constant current is higher
than the charging/discharging efficiency of constant power charging/discharging and
Figure 19 shows the exact numerical differences. At faster charges this difference is higher
and at longer charges the difference gradually decreases.
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Figure 18. SC circuit charging/discharging efficiency comparison for constant-current and constant-
power charging/discharging strategies.

The described charging efficiencies of constant current and constant power vary during
charging time. For example, Figure 20 shows a comparison of the power storing efficiencies
at the previously simulated charges for an SC circuit from 27 V to 54 V over 25 s. The
variant with constant current charging has a higher efficiency at the start of charging while
the efficiency of constant consumer’s power variant increases more quickly until it exceeds
the efficiency of constant current charging at a certain point.
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Figure 20. Power storing efficiencies for constant-current and constant-power charging.

Looking at Figure 21, constant-current charging has a higher energy storing efficiency
throughout the charging period. Although the energy storing efficiency of constant charging
power increases quite rapidly and at the end of charging almost approaches the efficiency
of the constant current variant, the latter still has higher total efficiency, shown in the last
point of the graph.

Energies 2023, 16, x FOR PEER REVIEW 18 of 20 
 

 

 

Figure 20. Power storing efficiencies for constant-current and constant-power charging. 

Looking at Figure 21, constant-current charging has a higher energy storing efficiency 

throughout the charging period. Although the energy storing efficiency of constant charg-

ing power increases quite rapidly and at the end of charging almost approaches the effi-

ciency of the constant current variant, the latter still has higher total efficiency, shown in 

the last point of the graph. 

 

Figure 21. Energy storing efficiencies for constant-current and constant-power charging. 

Figure 22 shows a comparison of the power discharge efficiencies when discharging 

from 54 V back to 27 V in 25 s. Although, at the beginning of the discharge, the efficiency 

of the constant-power discharge variant is higher than that of the constant-current dis-

charge variant, its efficiency decreases more rapidly over time until it falls below the effi-

ciency of the constant-current discharging. 

 

Figure 22. Power discharging efficiencies for constant-current and constant-power discharging. 

Figure 21. Energy storing efficiencies for constant-current and constant-power charging.

Figure 22 shows a comparison of the power discharge efficiencies when discharging
from 54 V back to 27 V in 25 s. Although, at the beginning of the discharge, the efficiency of
the constant-power discharge variant is higher than that of the constant-current discharge
variant, its efficiency decreases more rapidly over time until it falls below the efficiency of
the constant-current discharging.
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Looking also at Figure 23, at the beginning of the discharge the efficiency of the
constant power variant is higher, but at the very end it becomes lower.
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After finding that charging the SC circuit with a constant current is more efficient than
charging with a constant supplied power, and that discharging the SC circuit with a con-
stant current is more efficient than discharging with a constant power, it was decided to test
how this difference varies with the internal resistance R of the SC circuit. In the calculations
and simulations carried out so far, the internal resistance R was 0.056 Ω, corresponding to
the 20-cell series circuit under consideration, according to the information provided by the
manufacturer, but now a comparison of the differences in efficiencies will be made when
charging the same SC circuit from 27 V to 54 V for the same 25 s at different internal resis-
tance R, varying from 0 Ω to 0.14 Ω in changing steps of 0.004 Ω. Manufacturers provide
the information in the datasheets of SC cells that they have a lifetime of approximately
one million charge/discharge cycles, during which the capacitance decreases by 20–25%
and the internal resistance R increases by 100% of the initial one. Besides, high operating
temperatures caused by rapid charge/discharge cycles can significantly accelerate their
deterioration but, in further comparisons, the capacitance of a single SC cell will remain the
same C = 22.5 F. In the case of constant-current charging/discharging, the corresponding
current is the same 24.3 A for all resistances R from the mentioned range. For constant-
power charging, the corresponding power at each R is found separately with the help of
Equation (21) and results in 948.15 W to 1069.1 W. For constant-power discharging, the
corresponding power at each R is found separately with the help of Equation (32) and
results in 948.15 W to 896.2 W. According to the results of the further calculations, both
charging and discharging with constant current are more efficient in any case, except when
no internal resistance is assumed, i.e., R = 0, because in this case both strategies have equal
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100% efficiency for both charging and discharging. In practice the case of zero internal re-
sistance is impossible, because any SC will have some internal resistance. It can be logically
concluded that the findings on higher efficiency of constant-current charging/discharging
are true for any SC cell model with known C and R, and not only for the particular SC cell
model considered in this work.

Figure 24 shows that, at lower internal resistances the difference between constant-
current and constant-power charging is lower, while at higher internal resistances this
difference gradually increases, and the same is visible for discharging. It is visible that
the differences are more significant in the case of discharging than charging and Figure 25
shows the exact percentage numerical values. The most obvious differences are visible
when comparing the efficiency of the full charging/discharging cycles.

Looking at the numerical differences in efficiency shown in Figure 25, it can be con-
cluded that constant-current charging and discharging is only marginally more efficient
than constant-power charging/discharging because the differences are significantly below
1%. That is why, from a practical point of view, both charging/discharging methods can
be considered relatively equivalent in terms of efficiency. The calculations and results
obtained confirm that, in terms of efficiency, both mathematically and physically, charging
a capacitor with constant current is not identical to charging it with a constant power
supplied to its input, just as discharging a capacitor with a constant current is not identical
to discharging it with a constant power.
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6. Experimental Charging/Discharging of Supercapacitors and Comparison of
Measurement Results with Simulation Results

In the previous chapters, the simulations and calculations were based on an RC circuit
model equivalent, which is simplified but often used in the design of SC energy storage
systems, as in terms of precision its results do not differ much from more accurate and
complex SC models. Nevertheless, it was decided to perform a constant-current charging
and discharging of a real SC circuit, as well as a constant-power charging and discharging,
to check if it is easy to verify the previously described theoretical calculations and their
results, considering that the difference in efficiencies was found to be lower than 1%.

The same 20-cell SC series circuit will be charged using a power supply source that
can supply either constant current or constant power, and discharged using an electronic
load that can consume either constant power or constant current. Due to the maximum
operating current of the available electronic load being 30 A, the charging/discharging
conditions will be different: the initial minimum voltage of the circuit will be VC1 = 27 V and
the final maximum voltage will be VC2 = 50 V, while charging and discharging times will
be 30 s each. The experimental measurements were compared with the simulation results
and the corresponding 20-cell circuit is shown in Figure 26. The electronic load EA-ELR
91500-30 was used in discharging mode, while the DC power supply EA-PSI 9550-60 was
used in charging mode to provide load. Experimental waveforms were obtained using a
Yokogawa DLM6054 oscilloscope and TA018 current probe.

In previous calculations and simulations of an RC circuit for the methods described,
the determination of the parameter R should not rely only on the total internal resistance of
SCs, but the conductive traces of the board can also have significant resistance, which in this
case was found to be 46 mΩ using a micrometer. The resistance of the wires connecting the
SC circuit to the power supply source in case of charging and to the electronic load in case
of discharging is 6.3 mΩ. Both additional resistances were added to the internal resistance,
so the total resistance to be used in the equivalent RC circuit for further calculations and
simulations is R = 108.3 mΩ. The calculation of the constant charging/discharging current
is not affected by R since it is calculated by Equation (4) and is IC = 17.25 A. For constant-
power charging, using the new R in Equation (21) and obtaining the corresponding curves
as in Figures 6 and 9, the corresponding power at 30 s is found to be 697.1 W. Accordingly,
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with constant-power discharging, using the new R in Equation (32), the corresponding
power at the 30 s is found to be 630.6 W.
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Figure 26. SC charging/discharging test circuit and other equipment.

Figures 27–30 show the results of the experimental measurements together with the
simulation results in the same planes, and the oscilloscope measurements have some signal
fluctuations due to electronic load switching actions, which make the curves not as smooth
as in the simulations.
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Figure 27. Experimental measurement and simulation diagrams of SC constant-current discharging.
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Figure 28. Experimental measurement and simulation diagrams of SC constant-current charging.
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Figure 29. Experimental measurement and simulation diagrams of SC constant-power discharging.
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Figure 30. Experimental measurement and simulation diagrams of SC constant-power charging.

The experimental results show that, when discharging with both constant current and
constant power, the discharge is still a little faster, as the final voltage after 30 s is slightly
lower than the simulated and planned 27 V, but the differences are insignificantly small.
A similar conclusion can also be drawn for experimental charges where the voltages after
30 s are slightly above the planned and simulated 50 V. Nevertheless, these statements
are based on the visual differences between the expected results and the actual measured
results shown by the graphs. In order to gain a more precise view of the accuracy of the
measurements, the root-mean-square error (RMSE) method was used over a 30 s period,
which in Figures 27–30 ranges from 0.5th to 30.5th second. The corresponding formula for
calculating the root mean square for either SC current or SC external voltage is:

RMSE =

√
∑n

i=1(xi − yi)
2

n
(36)

In Equation (36), xi is the expected measurement result, yi is the actual measured
result and n = 75,000 is the number of measurements taken within 30 s. In each case for
Figures 27–30, the RMSE of both SC current and SC external voltage was calculated with
Equation (36) and the results are shown in Table 1.
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Table 1. SC current and external voltage RMSE values of charging and discharging processes.

Measurement Constant-Current
Discharging

Constant-Current
Charging

Constant-Power
Discharging

Constant-Power
Charging

SC current RMSE (A) 0.58 1.28 0.72 1.18

SC external voltage
RMSE (V) 0.62 0.91 0.8 0.72

The smaller and closer to zero the RMSE is, the more accurately the measurements
match the expected results, but slight numerical deviations can be seen in Table 1 above. In
each case, one of the reasons for this inaccuracy might be the use of a simplified RC model
for theoretical calculations and simulations. The second reason for the differences is that
the exact capacitance of the SC circuit might differ by some amount from the calculated one
because the capacitance of the capacitors decreases with time. Capacitance reduction can
be relevant for both constant-current and constant-power charging/discharging, where the
capacitance value is used to calculate the respective charging/discharging current and the
respective charging/discharging power. The third reason is that the total internal resistance
of the SC circuit might differ by some amount from the calculated one, because internal
resistance of capacitors increases with time.

Moreover, the capacitance and internal resistance of individual SCs may also have
changed unevenly over time, as voltage balancing circuits do not always work ideally
enough to ensure equal voltages on each cell. Therefore, both before and after the charges
and discharges, the voltages on each individual SC cell were also measured with a voltmeter
to check how evenly the total circuit voltage was distributed across the individual SCs, and
some shifts were also detected as a result. As visible in Figures 31 and 32, there is a sort of
symmetry in the voltage shifts after every four following SC cells. Different balancing plates
might have different characteristics, but in the given situation the maximum differences
between two separate SC cells are between 0.04 V and 0.06 V.

Using the RMSE method, the average errors of the voltage values on an individual
SC cell were calculated for each of the cases shown in Figures 31 and 32, assuming that
the entire SC circuit voltage is the sum of the measured individual cell voltages, while the
voltage of a single cell should be the circuit voltage divided by the number of cells. Table 2
shows the corresponding results, and it is visible that the voltage deviations are not high.
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Table 2. SC single cell voltage RMSE values in different cases.

Case RMSE Value (V)

RMSE before the first discharge 0.012
RMSE after constant-current discharge 0.015

RMSE after constant-current charge 0.015
RMSE after constant-power discharge 0.015

RMSE after constant-power charge 0.016

Comparing experimental and simulation results, it can be concluded that constant-
current and constant-power charging/discharging methods are nearly similar in terms of
charging/discharging SC circuit in the planned time, but there are still some inaccuracies
due to the reasons mentioned. Therefore, such practical experiments produce results that
are approximately identical to the simulation results. Hence, it is very difficult to clearly
verify in a practical way the previously gained conclusion that constant-current charg-
ing/discharging is more efficient than constant-power charging/discharging, especially if
the difference is less than 1%.

7. Discussion

The basic methods to charge capacitors are constant-current charging and constant-
power charging. Similarly, capacitors can be discharged at constant current and constant
power, understanding that in the former case the consumer connected to the capacitor
consumes a constant current and in the latter case it consumes constant power. Initially,
it may be thought that the two charging methods—constant-current and constant-power
charging—should be identical in terms of efficiency, while also the two discharging
methods—constant-current and constant-power discharging—should be identical in terms
of efficiency, in cases where each method charges an SC circuit from a certain initial voltage
to a certain final voltage within a specified time and then discharges it to the previous
voltage during the same time duration. Detailed comparisons confirmed that, in any
case, constant-current charging/discharging is more efficient than constant-power charg-
ing/discharging under the same boundary conditions when a supercapacitor equivalent
replacement RC model is used, as the basis for the calculations. However, these differ-
ences in efficiency, which vary also with the internal resistance R of the capacitors, are
significantly lower than 1% for the cases considered in this work. To gain this finding, it
is necessary to choose a certain supercapacitor cell with known R and C to perform the
corresponding calculations. In fact, apart from the particular supercapacitor cell considered
in this work, the finding is true for any supercapacitor cell with known R and C, since
the same calculating formulas could be used. Different supercapacitor cells with their
R and C might differ in the amount by which constant-current charging/discharging is
more efficient than constant-power charging discharging and this can be calculated by the
equations derived in this paper.
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Since the differences in efficiencies of the two methods are so small, both can be
considered nearly equal from a practical point of view in certain applications, but in some
applications even such a small difference can be substantial. The main novelty of this work
is the finding and fundamental justification that, in an RC circuit, charging a capacitor
with constant current is not completely identical in terms of efficiency to charging it with
constant power under the same boundary conditions. The same conclusion can be drawn
for discharging a capacitor with constant current and discharging it with constant power.
The two methods are identical in terms of efficiency only if the internal resistance R of the
capacitors equals zero, but this is not possible in a real circuit.

Precise experimental validation of the findings on the differences in charge/discharge
methods on a real supercapacitor circuit is difficult, as a real supercapacitor slightly differs
from a simplified RC circuit for several electrical, thermal and chemical reasons and precise
R and C are not known. Nevertheless, the simplified RC model is the most commonly
used model globally for the planning of supercapacitor energy storage systems, since,
according to previous studies, the operation of the simplified RC circuit differs by slightly
above 5% from the operation of more complex models closer to the real supercapacitor.
This inaccuracy is small enough for the RC model to be used in the designing of large-
scale supercapacitor systems, but too high for a real supercapacitor circuit to validate the
theoretical findings from an idealized RC circuit described in this work.

Despite of small differences, the finding that constant-current charging is more efficient
than constant-power charging could be seen as more significant from a practical point of
view, in the sense that such simple constant-current or constant-power SC charging occurs
more frequently than constant-current or constant-power discharging. For example, when
charging SC from a microgrid or solar panels, it might be worth preferring constant-current
charging. In case of regenerated energy storage in the SC system of an electric vehicle, both
the charging current and power are usually variable, but it is possible to set a maximum
charging current for the SC system, meaning that the SC charges at constant current and the
remaining regenerated energy is dissipated in braking resistors. As for the discharge case,
consumers, such as electric vehicles, for example, most often consume variable power and
current. SC discharging strategies often discharge SCs in proportion to the power demand
of the electric transport. Nevertheless, it is also possible to set the SC to supply the vehicle
with a certain constant current or a certain constant power while the vehicle is moving, and
the remaining part is taken from the grid.

As constant-current charging/discharging is more efficient than constant-power charg-
ing/discharging under the same boundary conditions, it means that the second case has
more wasted energy, causing the SCs to heat up more, thus contributing to their ageing.
On the one hand, due to the difference in efficiencies below 1%, it can be assumed that, for
episodic charging/discharging, the SCs wear out similarly in both methods. However, look-
ing at the long term over the whole service life of the SC cell, it follows that this difference
might slow down the ageing of the SC cell if such charge/discharge cycles with constant
current are to be performed continuously. Therefore, if an SC cell is charged/discharged
many times at a constant current rather than at a constant power, then it will serve longer
by the amount by which the efficiency of the constant current method is higher than that of
the constant power.
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