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Abstract: A bi-objective joint optimization planning approach that combines component sizing and
short-term operational planning into a single model with demand response strategies to realize
a techno-economically feasible renewable energy-based microgrid is discussed in this paper. The
system model includes a photovoltaic system, wind turbine, and battery. An enhanced demand
response program with dynamic pricing devised based on instantaneous imbalances between surplus,
deficit, and the battery’s power capacity is developed. A quantitative metric for assessing energy
storage performance is also proposed and utilized. Emergency, critical peak pricing, and power
capacity-based dynamic pricing (PCDP) demand response programs (DRPs) are comparatively
analyzed to determine the most cost-effective planning approach. Four simulation scenarios to
determine the most techno-economic planning approach are formulated and solved using a mixed-
integer linear programming algorithm optimization solver with the epsilon constraint method in
Matlab. The objective function is to minimize the total annualized costs (TACs) while satisfying the
reliability criterion regarding the loss of power supply probability and energy storage dependency.
The results show that including the DRP resulted in a significant reduction in TACs and system
component capacities. The cost-benefit of incorporating PCDP DRP strategies in the planning model
increases the overall system flexibility.

Keywords: variable renewable energy resources (VREs); demand response program (DRP); power
capacity-based dynamic pricing (PCDP) DRP; loss of power supply probability (LPSP); energy storage
dependency (ESD); critical peak pricing (CPP) DRP

1. Introduction

The electric power system is experiencing tremendous transformation globally to
meet the rising electricity demand and combat greenhouse emissions. Due to its low
operational costs and emission-free nature, adopting renewable energy has been crucial
for achieving carbon neutrality in electric power grids. Variable renewable energy sources
(VREs), mainly wind and solar, currently comprise most of the world’s electricity sources
due to their abundant resource potential and local availability [1,2]. However, due to
their intrinsic variability, the widespread incorporation of VREs has imposed massive
complexity in the power systems’ capacity sizing and operational planning [3]. With the
limited capacity of the ESS to smoothen out the surplus or deficient power in the energy
system, it is complicated to balance power demand and supply at high-time resolutions.
Due to VREs’ limited dispatchability, the need to improve the power system planning
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approaches and incorporate more flexible resources and technologies to enhance system
elasticity and flexibility is becoming increasingly important [4]. Flexibility is the power
system’s capacity to balance electricity supply and demand when highly variable energy
resources are incorporated [5]. Notably, ESS provides the necessary temporal support
to offset the variabilities of VRE, and dispatchable power plants a quick ramping up
generation supplement in times of low wind and solar [6]. The transmission networks offer
geographical smoothing to balance the supply and demand in the system [7,8]. Demand-
side management strategies regulate the FDRs to address the mismatch between the load
demand and power output of the VREs [9]. Thus, including demand response strategies in
a joint long-term component sizing and operation planning model is essential to realize a
high VREs-based power system.

The recent innovative grid concept has injected more intelligence into grid manage-
ment practices, especially in the face of changing load patterns and the proliferation of
energy supply from renewable energy injection [10]. Thus, existing grid infrastructures are
well equipped with information and communication technologies for real-time monitoring
and prompt control of power system equipment. As a result, the incorporation of smartness
into grid infrastructures is now making the concept of demand-side management (DSM) a
vital component of the electricity infrastructures of many nations all over the world [11].
While DSM is a broad concept, demand response programs (DRP) are underlying energy
market strategies whereby consumers’ electricity consumption behaviors are tactically
altered regarding the time of demand for using their flexible loads [12]. The specific goal of
demand-side management is to ensure that the most suitable and economically viable oper-
ating conditions are achieved based on the information on the available supply (generating)
capacity, the demand (load) requirements, and the energy market dynamics per time. Thus,
specific changes in customers’ electricity usage patterns are achieved by utility companies
providing some incentivization through friendly tariff packages such as flexible payments
and lucrative prices for altered load demand patterns and the consequently consumed
electricity units. With an appropriately designed DRP scheme, the effective grid planning
and operation cost resulting from additional generation and transmission capacity expan-
sion towards meeting increased load demand can be grossly reduced [13]. Fundamentally,
existing DRP models can be classified as either rate/price-based or incentive/event-based
demand response models under which there are different DRP types, namely day-ahead
pricing (DHP), critical peak pricing (CPP), time of use (TOU), real-time pricing (RTP),
etc. [14,15].

Demand response programs (DRPs) are a crucial enabling framework in maintaining
the power grid’s reliability and stability through electricity market participation. DRP
operation strategies provide a mechanism for controlling or rescheduling flexible power
demands to increase or decrease capacity during specific periods, for example, to take
advantage of high VRE generation or lessen peak demand in the system [16]. As mentioned
above, these techniques make it possible to incorporate large amounts of VREs into the
power network in the most economical way possible [17]. Depending on the motivation
strategies of the DRP adopted, the subscribed customers (both residential [18] and indus-
trial [19]) are enticed to regulate the power consumption of their flexible demand resource
when the total power generation is insufficient and vice versa. Through rebates or incentive
payments, consumers are rewarded for reducing their peak demands or shifting part of
their daily energy consumption from peak to off-peak hours. As substantiated in numerous
literature, the most efficient approach to implementing an effective DRP is that it influences
most consumers to participate in real-time power-dispatching transactions, ensuring that
the system’s overall efficiency and stability are improved [20]. The DRPs have numerous
potential benefits in all aspects of power system planning, i.e., operation planning [21] and
long-term capacity and expansion planning [22]. By implementing a well-devised DRP to
utilize the installed capacity optimally, it is possible to postpone investing in additional
new generating units, delay non-essential network upgrades, etc. Hence, it is essential to
incorporate DRP strategies into the operation and capacity planning models. Moreover,
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implementing suitable demand response (DR) programs and load shifting techniques can
enhance the technical performances of energy system networks towards resolving potential
overvoltage issues in the network [23].

Many economic and technical power system planning studies in the literature con-
sider multi-stage or segregated planning models: long-term investment models as well as
operation or unit commitment models to determine the optimal operation planning and
demand side management to determine the best electricity market operation strategies with
varied simulation time frames [24]. At the long-term investment level, the planning model
specifically handles the capacity planning of the generation and transmission components
and provides requisite insights into every possible future scenario and the techno-economic
consequence of various technologies on the power system, which often serves as a bench-
marking tool for policymakers to make optimal investment decisions [25]. However, these
models often consider a considerably extended time frame, i.e., 5–25 years, disregarding
short-term constraints, which is crucial in power system operation planning with a high
penetration of VREs. The outcome of such models may often give oversimplified con-
clusions that adversely affect the planning decisions that often undervalue the potential
benefits of flexible resources while overestimating the system’s VRE capacity as their power
output is time-dependent. On the other hand, studies on short-term system planning con-
sider generation scheduling (economic dispatch) and electricity market strategies on a high
temporal resolution (for a few seconds to days), making it feasible to capture the dynamics
and manage the variability of the VREs and load demand for increasing the renewable
energy penetration level. Moreover, optimizing capacity planning for renewable energy
systems with demand response programs can help achieve cost savings by strategically
shifting electricity consumption to periods of lower demand or higher renewable energy
generation. Consequently, effective capacity planning ensures the adequate generation and
reliability of supply at a reasonable service cost.

The authors in [26] discussed the impact of the co-planning of DR with component siz-
ing on the feasibility of hybrid renewable energy systems for an isolated remote community
in Northern Canada that primarily relies on fossil fuels. This study emphasizes the impor-
tance of integrating demand response strategies to maximize the techno-economic benefits
of the system using a fuzzy inference system. In [27], a new structure called an off-grid
integrated energy system (OIES) for meeting the energy demands of specific customers was
proposed using a mixed-integer quadratic constrained programming (MIQCP) model. A
key observation in this work is that different segregated models were deployed to achieve
the specific aspects of work before combining their outputs for different configurations;
this study does not consider the effects of demand response. In [28], a planning model that
considers the influence of price-based and incentive-based demand response strategies
on capacity allocation in a grid-connected integrated energy system is proposed using
the least cost minimization approach with mixed-integer linear programming. This study
highlighted the benefits of demand response regarding economic savings and the effect
on the environment considering emissions. The authors in [29] presented a methodol-
ogy for planning and operating a hybrid renewable energy system (HRES) for effective
energy management. The energy management strategies are developed to minimize op-
erating and environmental costs while meeting the electricity demand and adequately
considering future generation and demand response. Research studies have revealed that
incorporating short-term operation limits in the long-term investment planning model
significantly mitigates the shortcomings of the above-segregated models using soft-linking
techniques [30,31].

In [32], a systematic review of integrated resource operation, planning, and design
for off-grid energy systems was presented. The authors highlighted the need for and the
complexity involved in simultaneous investment planning and operational scheduling for
techno-economic efficiency. The integrated implementation of demand response (DR) in
microgrid planning using the concept of bottom-up microgrid planning for encouraging
energy end-user participation is presented in [33]. In earlier work, we developed a com-
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prehensive planning and operation framework for an efficient energy supply system for
isolated microgrid applications; this study presented the concept of the whole integration of
capacity planning and operation scheduling with different demand response strategies [34].
In that framework, a single model that combined integrated capacity sizing and operational
planning, considering various demand-side management strategies, was achieved based
on the least cost approach using MATLAB’s mixed-integer linear programming algorithm.
However, economic load re-modeling using demand-side management strategies based
on power imbalances in the system and economic scheduling of the available generation
outputs can be considered to achieve a more optimally techno-economic efficient energy
supply system. Hence, this study proposes an integrated model that considers the strategic
introduction of the short-term operational details into an optimal component planning
model for the significant uptake of renewable energy resources. Based on the available
generation capacity of the VREs, the impacts of appropriately devised demand response
programs (power capacity-based dynamic pricing—PCDP) on the reliability level of the
microgrid and the corresponding effects on the energy storage dynamics are estimated.
The design and operation procedure of the proposed joint model addresses the economic,
technical, and time-related dynamics of the system components and VREs’ variability. This
collaborative planning and scheduling approach provides additional flexibility measures
for managing the variability of the VREs and the load demand towards achieving the most
techno-economically feasible grid-independent renewable energy-based microgrid. Thus,
the specific contributions of this work are itemized as follows:

• A joint bi-objective optimization planning approach that incorporates capacity sizing
and operational planning into a single objective model with the inclusion of demand
response strategies in realizing a feasible VREs-based power system is proposed
and investigated.

• The cost-benefit advantage of considering CPP DRP, EDRP, and PCDP DRP in de-
termining the most effective techno-economic planning pathways for achieving a
zero-carbon grid-independent VREs-based microgrid is compared.

• An energy storage dependency (ESD) assessment metric that quantitatively evalu-
ates and indicates the reliance of a VREs-based microgrid system on energy storage
systems to satisfy the load demand at a pre-determined reliability index is proposed
and investigated.

• An enhanced time-based PCDP DRP program is devised that schedules the flexible
demand resources to offset the surplus and deficit power imbalances in a VREs-based
microgrid system is formulated and investigated. The PCDP DRP technique provides
the necessary flexibility from the demand side to mitigate the variability of VREs’
output power and the load demand, thereby guaranteeing a cost-effective optimal
planning approach for a grid-independent VREs-based microgrid is realized.

The remaining parts of this paper are organized as follows: Section 2 presents the
system modeling and methodology; Section 3 provides a detailed formulation of the flexible
demand resources and modeling of demand response programs. Problem formulations
and optimization models are discussed in Section 4. The simulation parameter specifica-
tions and the case study description are given in Section 5, while Section 6 discusses the
simulation results. Finally, Section 7 concludes the work.

2. System Modeling and Methodology

Figure 1 shows the proposed system model for a grid-independent VREs-based micro-
grid. The proposed system model comprises the BESS, WT, and PV systems.
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Figure 1. Proposed system configuration model.

2.1. Wind Turbine, WT

A WT system’s power at a specific time (h) depends on the instantaneous speed (u)
at the installed hub height above ground level. Thus, utilizing the piece-wise function
illustrated in Equation (1), the total power output of the WT (Pw(h)) for a particular hub
height, and wind turbine model can be calculated as follows [35]:

Pw(h) =


Pc

w ×
u(h)3−u3

ci
u3

r−u3
co

vci ≤ v ≤ vr

Pc
w ur < u ≤ uco

0 u < uci, u > uco

(1)

where Pc
w is the installed wind turbine’s power capacity size and uco, uci, and ur, are the

cut-out, cut-in, and rated wind speeds, respectively.

2.2. Photovoltaic, PV

Solar irradiance (GI(h)), temperature (T(h), derating factor (φpv), and temperature
coefficients (Tstc) are the primary determinants of the power output (Ppv) of a PV system.
Equation (2) gives the power output of the PV system as shown below [36]:

Ppv(h) =
(

GI(h)
Gstc

× [1 + αp(T(h)− Tstc)]

)
× Pc

pv × φpv (2)

where Pc
pv is the installed capacity size of the PV system.

2.3. Battery Energy Storage System, BESS

The charging and discharging power that can be transferred to or withdrawn from the
battery to achieve a match between the load demand and generation at any given time (h)
is determined by the initial state of charge (SOC(h− 1)) and the designed BESS capacity
constraints. Equation (3) describes the BESS state of charge (SOC(h)) at any given time as a
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function of the BESS characteristics and the discharging and charging power. The BESS
capacity constraints are represented in Equations (4) and (5).

SOC(h) = SOC(h− 1)(1− Sb) + Pc
b (h)× ηc

b −
Pd

b (h)
ηd

b
(3)

SOCmin = 0.1× Ec
b (4)

SOCmax = 0.9× Ec
b (5)

The BESS self-discharge rate is Sb. Pd
b (h) and Pc

b (h) are the discharging and charging
power from and to the BESS at any given time (h), respectively. ηc

b and ηd
b are the charging

and discharging efficiencies of the BESS. Ec
b is the installed capacity of the BESS.

2.4. A Joint Component Sizing and Operation Planning Approach for a VREs-Based Microgrid
System with or without DRP Consideration

Figure 2 illustrates the flowchart of the proposed joint capacity and operation plan-
ning methodology for a grid-independent VREs-based microgrid with and without the
consideration of DRP strategies. The BESS operates in tandem with the DRP to ensure a
steady power supply to the load demand at all times by addressing the power imbalances
in the system during periods of insufficient or excess VREs generation.

start

Load demand, economical, metrological 
data, price and equipment parameters 

Optimization initialization

Capacity planning and operation 
optimization using MILP

(Ppv+Pwt)>PL
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END
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Figure 2. The flowchart for the microgrid planning with demand-side management.
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The system operates optimally when the total VREs generation output power equals
the system load demand. The electricity price is maintained at the pre-set values, and the
FDRs are not adjusted to sustain this state of operation. However, whenever the total VREs’
output power exceeds the load demand: the DRP operation is triggered through price
motivation announced by the utility to remedy the mismatched power in the system by
lowering the electricity price so that electricity consumers are motivated to use all surplus
power in the system; otherwise, the excess energy is sent to the BESS once all the FDRs’
capacity has been exhausted. To prevent overcompensation and power imbalances in the
system, the price is only altered or decreased to an optimal price that will ensure that
enough devices are shifted equivalent to the surplus power and maintained at the chosen
optimal price to not destabilize the system.

Similarly, whenever the total VREs’ output power is in deficit supply, the DRP is
triggered through price adjustment to remedy the mismatch by increasing the electricity
price, so consumers decrease their usage. Additionally, BESS discharges to suffice the
power deficit cannot be managed by the DRP alone. It is worth noting that only optimized
price adjustments are implemented to guarantee that only sufficient FDRs are mobilized or
demobilized, which is equivalent to the system’s surplus or shortage of power, to avoid
the overpricing of the electricity customers or over-compensation of the system’s power
imbalances. Any other power imbalance occurrences in the system outside the operating
envelopes described above will violate the system components’ price, reliability, and/or
any other operation limitations. Thus, such a system will be deemed sub-optimal, and
therefore, it must be redesigned.

3. Demand Response Programs and Flexible Demand Resource Modeling

Demand response is a demand-side management strategy generally used in operation
planning to balance the power demand and supply. The system operator can therefore
harness sufficiently dispatchable FDRs to provide the necessary operational flexibility.

3.1. Flexible Demand Resource Modeling and Economic Load Model

DRP models generally consider two electrical demand types: namely inelastic and
elastic loads. Electric loads, such as water pumps and dishwashers, refer to electrical
demand in which their usage time can be changed from one period to another. On the other
hand, inelastic loads are electrical loads whose operation and usage time are fixed. The
inelastic load can be further classified as adjustable or non-adjustable; heating, ventilation,
and air conditioning are generally considered adjustable, while lighting and other critical
loads are non-adjustable. It is important to take note that flexible demand resources
(P f lx

L (h)) are taken as the total of the elastic load and adjustable load demands. Thus, the
total system load PL(h) can be represented as below:

PL(h) = Prigid
L (h) + P f lx

L (h) (6)

The price elasticity of demand (ξpr(x,x)) defines the correlation between the change
in the electricity demand due to a change in the price of electricity [37]. As elaborated in
Equations (7) and (8), the electricity price change during any period x or y will result in
a proportionate change in electricity demand (δPL(x) or δPL(y)) in the xth or yth period
and vice versa: this implies that the amount of load demand during all periods (H) is
impacted by hourly electricity price variation in the price variation in both the xth and the
yth periods, as described as follows:

ξpr(x,x) =
P f

r (x)
PL(x)

.
∂PL(x)

∂P f
r (x)

; ∀x, y ∈ H (7)

ξpr(x,y) =
P f

r (x)
PL(x)

.
∂PL(y)
∂Pr(y)

; ∀x, y ∈ H (8)
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where ξpr(x,x) and ξpr(x,y) are the single-period and multi-period price elasticities of demand,

respectively. Furthermore, P f
r is the selected electricity reference price.

3.2. Emergency Demand Response Program (EDRP)

EDRP is a demand response type based on utilities offering incentive payments
(rebates) to consumers for decreasing or curtailing their loads during reliability-triggered
occurrences in the system. However, the load demand curtailment by the users is purely
voluntary, and there is no associated penalty for non-compliance with the requirement. The
implementation of the EDRP and its impact on the final load demand profile is elaborated
as follows:

Pedrp,drp
L (x) = PL(x)

{
1 + ξpr(x,x)

[Pedrp
r (x)− P f

r (x) + pdedrp(x) + psedrp(x)]

P f
r (x)

+
H

∑
y=1,y 6=x

ξpr(x,y)
[Pedrp

r (y)− P f
r (y) + pdedrp(y) + psedrp(y)]

P f
r (y)

} ; for all x, y ∈ H (9)

where Pedrp
r (x) and Pedrp

r (y) are the new EDRP price of electricity for the xth period and the
yth period, respectively. psedrp(x) and psedrp(y) are the penalties, while the pdedrp(x) and
pdedrp(y) are the incentives payments to the EDRP DRP subscribers for failing or complying
with DRP requirements, respectively.

3.3. Critical Peak Pricing

CPP is a type of demand response usually employed at times of potential critical
system loading, particularly when the load demand surpasses all the generators’ total
power output, to lessen power systems’ stress and improve the system’s efficiency. The
implementation of CPP is devised to encourage consumers to time shift electricity usage
from peak load demand periods to lower system load demand. The CPP scheme will
pre-set fixed electricity rates for each period of different system loading levels in advance:
off-peak and peak periods rates. Based on the designed CPP pricing scheme, the electricity
consumer will be motivated to time shift usages from one period to another, and the final
load demand will be as described in the following equation:

Pcpp,drp
L (x) = PL(x)

{
1 + ξpr(x,x)

[Pcpp
r (x)− P f

r (x) + pdcpp(x) + pscpp(x)]

P f
r (x)

+
H

∑
y=1,y 6=x

ξpr(x,y)
[Pcpp

r (y)− P f
r (y) + pdcpp(y) + pscpp(y)]

P f
r (y)

} ; for all x, y ∈ H (10)

where Pcpp
r (x) and Pcpp

r (y) is the set CPP price of electricity for the xth period and the
yth period, respectively. pscpp(x) and pscpp(y) are the penalties, while the pd(x)cpp and
pdcpp(y) are the incentive payments to the CPP DRP subscribers for failing or complying
with DRP requirements, respectively.

3.4. Power Capacity-Based Dynamic Pricing Demand Response for Grid-Independent Microgrids

The proposed PCDP DRP is an enhanced time-based DRP that is designed to offer
flexible electricity price rates that change continuously based on the differences between
the anticipated electricity demand, the total VRE generation output, and the maximum
power capacity of the BESS while prioritizing the rescheduling of the available flexible
demand resources at any given time. Unlike other price-based DRPs, primarily based on
pre-defined prices at fixed periods or where rates are based on the time of use, such as CPP
or EDRP DRP, the proposed PCDP DRP offers an instantaneous time-variant electricity
price based on the actual load demand–generation power imbalance in the system. This
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scheme provides variable pricing as in other real-time pricing proposed in [31]; however,
the differences are based on the mismatch between the power balance status, the available
shiftable load demand capacity, and the BESS’s power charging or discharging capability.
The electricity price change (δPpcdp,drp

r ) based on PCDP DRP implementation is devised
such that the FDR is scheduled as a contingency to suffice the deficit or consume the surplus
power before charging or discharging the energy storage system, respectively. The price
variation also depends on the SOC of the ESS and its charging and discharging power
capability, as elaborated in the following equation:

δPpcdp,drp
r (h) =


Pg(h)−PL(h)

δP f lx,max × (P f
r − Pmax

r );
{

Pg(h)− Ppcdp,drp
L (h) + SOCmax−SOC(h)

ηd
b

}
≤ 0

Pg(h)−PL(h)
δP f lx,min × (P f

r − Pmin
r );

{
Pg(h)− Ppcdp,drp

L (h) + (SOC(h)− SOCmin)× ηc
b

}
≤ 0

0; Otherwise

(11)

The electricity price restraining conditions during over-generation and under-generation
scenarios while keeping track of the SOC of the ESS are illustrated in Equation (11). These
two conditions ensure that the electricity price variation is always continually optimized.
Whenever a shortage or surplus generation is detected in the system, the electricity price
will increase or decrease, respectively, until an optimal price is reached and clipped, even
though the electricity price’s upper or lower constraints have not been attained or violated.
These restraining conditions ensure that consumers and system operators are safeguarded
against excessively high electricity prices or system load-generation imbalances in the
aforementioned scenarios. The new electricity price due to the PCDP DRP pricing scheme
implementation can be expressed as follows:

Ppcdp,drp
r (h) = P f

r + δPpcdp,drp
r (h) (12)

The final PCDP DRP responsive and economic load model is given by:

Ppcdp,drp
L (x) = PL(x)

{
1 + ξpr(x,x)

[Ppcdp
r (x)− P f

r (x) + pdpcdp(x) + pspcdp(x)]

P f
r (x)

+
H

∑
y=1,y 6=x

ξpr(x,y)
[Ppcdp

r (y)− P f
r (y) + pdpcdp(y) + pspcdp(y)]

P f
r (y)

} ; for all x, y ∈ H (13)

The notable advantage of the proposed PCDP DRP is that the consumers’ response
is purely elastic and voluntary. Its implementation mechanism is that the consumer only
time shifts their flexible demand response without affecting their overall energy usage;
the proportion of flexible demand resources considered is perfectly elastic. Thus, the total
energy demand before and after the implementation of the PCDP DRP is always equal, as
expressed in (14) below.

H

∑
h=1

Ppcdp,drp
L (h) =

H

∑
h=1

Prigid
L (h) +

H

∑
h=1

P f lx
L (h) (14)

4. Problem Formulation and Epsilon-Constraint Mixed-Integer Linear Programming

The solution of the formulated optimization problem is achieved using an epsilon-
constraint mixed-integer linear programming (ε−MILP) model, which determines the
optimal solution for the system. The epsilon-constraint methodology selects one objec-
tive ( f 1) as the main objective, and the other objectives are converted into constraints
( f 2, f 3, f 4, ..) [38]. The boundary setpoints for the ε constraints are then systematically
varied to obtain optimal solutions [39]. The ε-MILP is a widely used technique for solving
bi-objective optimization as a single-objective constrained problem. The superior charac-
teristics of the ε-constraint MILP optimization were shown and proved to be capable of
producing a credible and verifiable solution, as substantiated in the literature for various
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case studies involving VREs-based systems optimization, such as smart buildings [40], inte-
grated energy systems [40,41], remote islands [42], off-grid power systems, etc. Thus, this
study adopted the bi-objective optimization model for the microgrid’s capacity sizing and
short-term operating planning with or without considering the DRP while maximizing the
system’s reliability using the loss of power probability (LPSP). The optimization problem is
solved in the MATLAB environment.

The ε−MILP can be expressed as:

min: f 1(i, j) subject to


f2(i,j) ≤ ε

A · (i, j) ≤ b
Aeq · (i, j) = beq
lb ≤ (i, j) ≤ ub

(15)

where i and j are integers and continuous decision variables, respectively, representing
the optimal solution for the proposed system. The constraints are modeled as linear
and expressed as inequality A and equality Aeq matrices with their related beq and b
column vectors, respectively; ub and lb are the decision variables’ upper and lower decision
variables’ boundary limits. In this work, the optimization is accomplished using the
MATLAB® INTLINPROG toolbox.

4.1. Objective Function

The main objective is to minimize the total annualized costs (TACs), which entails
the initial acquisition (ICz), maintenance, replacement (RCz), and operating costs in both
the short-term and long-term component sizing planning time frame considering the
various prospects of demand response programs. Thus, the overall objective function of
the proposed microgrid configuration is as expressed below:

min : TAC =

{[
Z

∑
z=1

{
ICz +

y=Y

∑
y=1

(O&Mz + RCz)

(1 + d)y

}
× Cz

]
× CRF(d, Y)

}
+ f dr

op (16)

Subscript z indexes the zth system component and Cz denotes the optimum size of
each system’s component which is part of the decision variables to be determined by the
optimization program. d is the discount rate, and Y is the lifetime of the project. CRF(d, Y)
is the capital recovery factor, which is a function of the project lifetime Y and discount rate,
as elaborated below:

CFR(d, Y) =
d× (1 + d)Y

d× (1 + d)Y − 1
(17)

The discount rate d is computed from the annual interest rate i and inflation rate f
using Equation (18).

d =
i− f
i + f

(18)

The first term of (16) is the net present cost which comprises the capital costs and the
discounted replacement, and the yearly operation and maintenance costs considered over
the entire project lifetime of each system component. The capital recovery factor converts
the net present costs to the equivalent annualized costs, as illustrated in (17).

The second part of the objective function is the total annual operational cost associated
with the electricity market design scheme. Depending on the operational strategy of the
demand response option selected, the associated costs for the curtailment or short-term
rescheduling of the elastic load demand are given by:

f drp
op =

H

∑
h=1

δPc,drp
l (h)× pd(h) (19)
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where δPc,drp
l (h) is the curtailed load demand based on the nominated DRP strategy, and

pd(h) denotes the incentive payments or rebates received by the consumer as settlements
for adherence to load curtailment or the reduction requirements set by the utility or the
system operator.

4.2. Constraints

1. Power balance constraints:

Pw(h) + Ppv(h) + Pd
b (h)− Pc

b (h) = PL(h); without considering DRP (case 1)
Pw(h) + Ppv(h) + Pd

b (h)− Pch
b (h) = Pcpp,drp

L (h); considering CPP DRP (case 2)
Pw(h) + Ppv(h) + Pd

b (h)− Pc
b (h) = Pedrp,drp

L (h); considering EDRP DRP (case 3)
Pw(h) + Ppv(h) + Pd

b (h)− Pc
b (h) = Ppcdp,drp

L (h); considering PCDP DRP (case 4)

(20)

The total generated power at any given time (h) should always meet the expected
system load demand with or without DRP in all scenarios considered.

2. Battery constraints:

• The minimum and maximum boundary limits bound the state of charge of the
battery system.

SOCmin ≤ SOC(h) ≤ SOCmax (21)

• Equation (22) denotes the maximum discharging (Pd,max
b ) and charging power

(Pc,max
b ) limits of the battery system:

Pc
b (h) ≤ Pc,max

b during charging mode
Pd

b (h) ≤ Pd,max
b during discharging mode

(22)

3. Flexible demand resource constraints:

δP f lx,min
L (h) ≤ δP f lx

L (h) ≤ δP f lx,max
L (h) (23)

flexible demand resource (δP f lx
L ) rescheduling or reductions must not exceed the

maximum (δP f lx,min
L ) and minimum (δP f lx,max

L ) allowable capacities specified by the
DRP scheme chosen at any given time (h).

4. Set the electricity price constraint:

Pdrp,min
r ≤ δPdrp

r (h) ≤ Pdrp,max
r (24)

The new set price (δPdrp
r (h)) determined by the DRP pricing scheme must be within

the maximum (Pdrp,max
r ) and minimum (Pdrp,min

r ) allowable electricity price limits
specified by DRP at any given time (h).

5. ε constraint:
LPSP ≤ ε (25)

where LPSP is loss of power supply probability.

5. Parameter Specifications, Simulation Scenarios, and Demand Response
Pricing Schemes

The proposed methodology of the VREs-based microgrid is verified and validated
through a case study simulated on a grid-independent Kenyan microgrid for Marsabit
County, a diesel-powered system. The economic, financial, and technical specifications
of the components [43] and the hourly load demand are all site-specific and based on the
actual Kenyan situation, as presented in Table 1. The meteorological data (for 2.3369◦ N,
37.9904◦ E) were taken from [44,45].
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Table 1. Simulation parameters and specifications.

Economics [43]

Discount rate (%) 4
Project lifetime (years) 20
Planning time horizon (hours) 8760

PV System [46]

Capital cost (USD/kW) 1695
O&M cost (USD/kW/y) 26
Derating factor (%) 90
Lifetime (years) 20

WT Specifications [43]

Capital cost (USD/kW) 2030
O&M cost (USD/kW/y) 76
Lifetime (Years) 20
Cut-in wind speed (m/s) 4
Rated wind speed (m/s) 14.5
Cut-out speed (m/s) 25
Survival wind speed (m/s) 60
Wind shear coefficient 0.143

BESS Specifications [47–49]

Capital cost (USD/kWh) 330
Replacement cost (USD/kWh) 330
Round trip efficiency (%) 90
Lifetime (years) 10

Through modeling and various scenarios, this work aims to examine and determine the
best transition alternatives towards an optimal renewable energy-based system planning
from conventional generation (diesel), with and without considering the possibility of
DRP inclusion. The simulation outcomes of several DRP schemes’ implementation are also
compared to show the cost-benefit of each type of demand response. The four simulation
scenarios of the proposed system configurations are described below.

• Case 1: VREs-based microgrid system’s component sizing and operation planning
without considering any DRP (base case).

• Case 2: VREs-based microgrid system’s component sizing and operation planning
considering CPP DRP.

• Case 3: VREs-based microgrid system configuration considering EDRP DRP.
• Case 4: VREs-based microgrid system configuration considering PCDP DRP.

5.1. Flexible Demand Resources and DRPs Pricing Structure

The maximum capacity of FDR subjects to DRP is assumed to be 10% of the load
demand during each period for each DRP program (cases 2–4). The decision to choose
10% was made based on reported analyses from prior research [50]. The electricity pricing
scheme and tariff structures are derived based on the tariff settings established by the
Kenyan Energy Regulatory Commission [51]. This study’s reference electricity price P f

r
is 15.80 US cents per kWh, the flat rate for residential customers in the current Kenyan
electricity tariff structure. According to the Kenyan tariff structure [52], the following tariff
structures are assumed in this work:

• Case 1 adopts a flat pricing scheme (base case).
• In case 2, the CPP DRP pricing structure is considered. The load profile is divided into

two distinct price periods: a peak rate of 150% of the flat rate is enforced during the
peak load demand period (from 8 p.m. to 11 p.m.), while off-peak rates are considered
for the rest of the periods.
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• In case 3, the EDRP adopts a flat pricing structure, with consumers receiving an
incentive payment (50% of the references price) in exchange for any load reductions
when the system is under stress.

• In Case 4, the pricing structure is dynamic, with the maximum and minimum price
limits set to 20 and 10 cents per kWh, respectively.

Table 2 outlines the price elasticity of demand for different load conditions in the
system [53].

Table 2. Price elasticity of demand [53].

Peak Low-Peak Off-Peak

Off-peak 0.016 0.01 −0.1
Peak −0.1 0.012 0.016
Valley 0.012 −0.1 0.01

5.2. System Reliability and Energy Storage Dependency Metrics for VREs-Based Microgrid
Performances Evaluations

Under the various scenarios taken into account in this study, two evaluation indicators
are adopted: loss of power supply probability (LPSP) and energy storage dependency (ESD).

5.2.1. Loss of Power Supply Probability

LPSP is a reliability assessment criterion to ascertain the performance of the system
under study. LPSP is a ratio of the total amount of loss of power supply (LPS) to the total
amount of power demand as expressed below [54]:

LPSP =
∑H

h=1 LPS(h)

∑H
h=1 PL(h)

(26)

5.2.2. Energy Storage Dependency

This work proposes the ESD assessment metric for analyzing and assessing how
much the renewable energy-based system under investigation depends on energy storage.
Motivated by the grid dependency (GD) indicator previously examined in [55,56], the
proposed ESD criterion can be defined as the power system’s reliance on energy storage
to supply the load in the event of a VREs power supply deficit. Like the GD, the ESD has
a value ranging from 0 to 1 (or from 0% to 100%). If the ESD is zero, the system is thus
considered fully independent, and all the power supplied can be supplied to the load from
the renewable generating units without needing an energy storage system. The ESD of 1,
on the other hand, indicates that the system will rely entirely on energy storage to function,
and such a system is not feasible in practice. The following expression can be used to
evaluate the ESD of the system:

ESD =

(
∑H

h=1 Pd
b (h)

∑H
h=1 PL(h)

)
× 100% (27)

6. Results and Discussions

The following are the simulation results and analyses of the four cases under investi-
gation in this study;

6.1. Case 1: Component Sizing and Operation Planning without Considering Demand Response

In this case, the demand response program was not considered when simulating and
evaluating the microgrid component sizing and operation planning for the system under
study. As a result, the load demand must be met by the power generation output of the PV
and WT, and whatever deficit or surplus power remains in the system will be regulated
by the BESS. This scenario is considered the system’s base case. The optimum component
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size of the simulation under various reliabilities (LPSP = 0%, 2.5%, and 5%) and all related
costs are summarized in Table 3. Figure 3 shows the power dispatch of the various system
units’ contribution to meet the load demand at the LPSP = 0%. Figure 4 compares the BESS
utilization based on SOC at different levels of reliability (LPSP = 0%, 2.5%, and 5%).

Table 3. Optimum size of each system component, total annualized costs, and the percentage costs
for each component under varying system reliabilities’ requirements for case 1.

LPSP 0% 2.5% 5.0%

PV capacity (kW) 1230 1260 1260

% cost of PV/TAC 16% 19% 20%

WT capacity (kW) 1970 1910 1880

% cost of WT/TAC 39% 42% 44%

BESS size (kWh) 6400 5000 4400

% cost of BESS/TAC 45% 39% 36%

DRP operation costs (USD/year) 0 0 0

ESD 13% 12% 12%

TAC (USD/year) 5.17× 105 4.62× 105 4.37× 105

% change of TAC −11% −15%

The output power of the optimum system component sizes selected by the program
can meet the load demand per the expected system requirements (LPSP = 0%), as shown in
Figure 3. Since DRP is not considered, there are no costs related to the electricity market
operation. As can be seen, there is a direct correlation between ESD, total yearly costs,
reliability index, and system component size. Higher system reliability requirements
necessitate larger PV, WT, and BESS system component sizes, increasing the total system
cost (TAC). As per the results above, the BESS is the most expensive system component,
which is about 45% of the total annualized costs of the microgrid due to the system’s higher
dependency on ESS, as indicated by the high values of the ESD.
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Figure 3. Power dispatch profile of the various system units’ contribution to meeting the load demand
at the LPSP = 0% (Case 1).
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Figure 4. A comparison of the BESS utilization based on the state of charge at different levels of
reliability requirements (LPSP = 0%, 2.5%, and 5%).

6.2. Case 2: VREs-Based Microgrid System’s Component Sizing and Operation Planning
Considering CPP DRP

In this case, the potential benefit of CPP DRP on the capacity sizing and operation
optimization for microgrids is explored. The system components’ sizes and costs are
interrelated similar to case 1. The optimum component size of the simulation under various
reliabilities (LPSP = 0%, 2.5%, and 5%) and all related costs are summarized in Table 4.
Figure 5 shows the power dispatch of the various system units’ contributions to meet
the load demand considering CPP DRP at the LPSP = 0%. Figure 6 compares the BESS
utilization based on the state of charge at different levels of reliability (LPSP = 0%, 2.5%,
and 5%).

The simulation results show that the higher the reliability requirements are for the
system, the more expensive the system is, as depicted by the TAC values; this is because
the reliability index (LPSP) and total system costs (TACs) have conflicting goals. Similarly,
the more the system is dependent on ESS, the more expensive the system is; this is depicted
by the higher percentage values of the ESD, which translates into higher costs for the BESS,
as shown in Table 4.

Table 4. Techno-economic comparison and analysis of the system under study considering CPP DRP
at various reliability levels for case 2.

LPSP 0% 2.5% 5.0%

PV capacity (kW) 1260 1290 1230

% cost of PV/TAC (USD/year) 17% 20% 19%

WT capacity (kW) 1960 1900 1880

% cost of WT/TAC (USD/year) 41% 44% 45%

BESS size (kWh) 5700 4500 4200

% cost of BESS/TAC (USD/year) 42% 37% 36%

DRP operation costs/TAC (%) 0% 0% 0%

ESD 12% 12% 11%

TAC (USD/year) 4.92× 105 4.44× 105 4.28× 105

% change of TAC −10% −13%
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Figure 5. A comparison of the BESS utilization at different levels of reliability (LPSP = 0%, 2.5%, and
5%) based on the state of charge (case 2).
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Figure 6. Power dispatch profile of the various system units’ contributions to meet the load demand
considering CPP DRP at the LPSP = 0% (Case 2).

6.3. VREs-Based Microgrid System’s Component Sizing and Operation Planning Considering
EDRP DRP

In this case, capacity sizing and operation planning are simulated and evaluated while
considering EDRP at various reliability requirements. Table 5 summarizes the system
components’ sizes and related costs for the optimum microgrid configurations under
varying reliability requirements (LPSP = 0%, 2.5%, and 5%). According to Table 5, unlike
scenario 1 and 2, the total annualized costs (TACs) are composed of both expenses related
to the equipment sizing and the operation strategy of the demand response program
considered. In this case, the DRP operation costs are mainly due to incentive payments to
customers participating in the EDRP program. Figure 7 shows the power output dispatch
profile for the WT and PV and the BESS’s charging and discharging power. Figure 8
compares the BESS utilization at different levels of reliability (LPSP = 0%, 2.5%, and 5%)
based on the state of charge.
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Figure 7. Power output dispatch profile for the WT and PV and the BESS’s charging and discharging
power (Case 3).

Table 5. Techno-economic comparison and analysis of the system under study at various reliability
levels for case 3 considering EDRP DRP.

LPSP 0% 2.5% 5.0%

PV capacity (kW) 1280 1300 1210

% cost of PV/TAC 17% 19% 19%

WT capacity (kW) 1950 1900 1890

% cost of WT/TAC 40% 43% 44%

BESS size (kWh) 5400 4300 4100

% cost of BESS/TAC 39% 34% 34%

DRP operation cost/TAC (%) 3.8% 3.7% 3.6%

ESD 11% 11% 12%

TAC (USD/year) 5.00× 105 4.54× 105 4.39× 105

% change of TAC −9% −12%
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Figure 8. A comparison of the BESS utilization at different levels of reliability (LPSP = 0%, 2.5%, and
5%) based on the state of charge (case 3).
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6.4. VREs-Based Microgrid System’s Component Sizing and Operation Planning Considering
PCDP DRP

This simulation scenario examines the potential benefits of the proposed PCDP DRP
on capacity sizing and operation planning. Table 6 summarizes the system components’
sizes and related costs for the optimum microgrid configurations under varying reliability
requirements (LPSP = 0%, 2.5%, and 5%). The generation power output profile of the WT,
PV, and BESS contribution in meeting the microgrid load demand is shown in Figure 9.
Figure 10 compares the BESS utilization at different levels of reliability (LPSP = 0%, 2.5%,
and 5%) based on the state of charge.

Table 6. Techno-economic comparison and analysis of the system under study considering PCDP
DRP at various reliability levels for case 4.

LPSP 0% 2.5% 5.0%

PV capacity (kW) 1240 1220 1150

% cost of PV/TAC (USD/year) 18% 20% 19%

WT capacity (kW) 1990 1950 1920

% cost of WT/TAC (USD/year) 44% 47% 48%

BESS size (kWh) 4900 3900 3700

% cost of BESS/TAC (USD/year) 38% 33% 33%

ESD 10% 9% 9%

TAC (US USD/year) 4.64× 105 4.22× 105 4.08× 105

% change of TAC −9% −13%
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Figure 9. Shows the power output dispatch profile for the WT and PV and BESS’s charging and
discharging power at LPSP = 0% (Case 4).

From the results, a relaxation of the system reliability requirement from 0% to 2.5%
and 5% translates to a, respectively, 9% and 13% decrease in the total annualized costs
(TACs); this is due to load reduction by the consumers during times of peak load demand
and the power output of the generating units cannot meet the required capacity.

Furthermore, it is vital to note that the PCDP electricity pricing strategy is devised
such that the flexible demand resources are shifted in such a way as to minimize both the
shortage and surplus power in the system, thereby increasing the overall system efficiency.
Consequently, the PCDP DRP techniques guarantee that the mismatch between the total
output power of the VREs and the load demand is minimized; thus, the ESD is minimum
in all cases, resulting in a significant reduction in the BESS capacity requirement. Figure 11
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shows the new electricity price versus the power mismatch in the system due to the impact
of PCDP DRP program implementation.
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Figure 10. A comparison of the BESS utilization based at different levels of reliability (LPSP = 0%,
2.5%, and 5%) on the state of charge (Case 4).
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Figure 11. The new electricity price versus the power output mismatch in the system due to the
impact of PCDP DRP program implementation.

6.5. Techno-Economic Comparison for Each of the Scenarios Based on Demand Response Program
Options at Maximum System Reliability (LPSP = 0%)

The techno-economic benefits of each DRP in the long-term investment and short-term
microgrid planning for the proposed VREs-based system are assessed and analyzed in this
section for the four cases considered. The techno-economic comparison for each of the
cases based on DRP options at maximum system reliability (LPSP = 0%) is summarized in
Table 7.

Case 1 is the most expensive system compared to all four cases, with a total annualized
cost of USD 5.17× 105/year. Since there is no inclusion of demand-side management in this
case and the VREs’ power output cannot be dispatched or controlled, the battery energy is
the only flexible resource depended upon to address the mismatch between the generation
and the load demand. Thus, a BESS capacity of approximately 6400 kWh is needed to serve
the load demand as per the set reliability requirement, consequently, a high ESD value of
about 13%. It is worth noting that the BESS is the most expensive component amounting
to about 45% of the TAC; thus, the need for DRP to lessen the reliance of the BESS in the
system. Considering the DRP in case 2, the benefit of the CPP DRP results in a cost saving
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of approximately 5% of the total annualized costs compared to the reference case, from US
5.17× 105 (without DRP) to 4.92× 105 (with CPP DRP considered).

Table 7. Techno-economic comparison for each scenario based on demand response program options
at maximum system reliability (LPSP = 0%).

Case Case 1 Case 2 Case 3 Case 4

Type of DRP None CPP DRP EDRP DRP PCDP DRP

PV capacity (kW) 1230 1260 1280 1240

% change of PV - 2% 4% 1%

WT capacity (kW) 1970 1960 1950 1990

% change of WT - −1% −1% 1%

BESS capacity (kW) 6400 5700 5400 4900

% change in BESS - −11% −16% −23%

Total energy consumed (kWh/year) 9.91× 106 9.91× 106 9.91× 106 9.91× 106

Load curtailed (kWh/year) 0% −0.027% −0.024% 0%

Total cost of energy (USD/year) 1.57× 108 1.56× 108 1.57× 108 1.53× 108

DRP Operation Cost/TAC (%) 0.0% 0.0% 3.8% 0.0%

ESD(%) 13% 12% 11% 10%

Total annualized costs (USD/year) 5.17× 105 4.92× 105 5.00× 105 4.64× 105

% change of TAC - −5% −3% −10%

The cost reduction, in this case, is attributed to a drop in ESD requirement from 13% to
12%. Since the CPP DRP reduces the load demand from the maximum peak load periods
to off-peak periods, thus, a lower BESS size is required. Consequently, a BESS capacity of
5700 kWh is sufficient to meet the load demand per set system reliability, which is about
a 10% decrease in BESS size compared to the reference case. However, implementing the
CPP DRP results in a load curtailment of about 0.027% of the total load demand by the
consumers. This is because the CPP DRP penalizes the electricity consumers by enforcing
high pricing during peak periods; the electricity consumers are therefore compelled to
curtail or minimize their power consumption due to cutting down electricity costs, which
is an undesirable effect.

Compared to the reference case (case 1), the implementation of EDRP in case 3 has
various cost–benefits to long-term investment planning, as shown in Table 7. The resulting
load profile, due to the EDRP DRP adoption, yields a 2% decrease in ESD from 13% to
11% as the FDRs are being shifted from the high peak period with high ESS dependencies
to the low peak period where there are surplus generations from the VREs; this results
in a 3% decrease in the TAC compared to case 1. It is worth noting that compared to the
previous case of CPP DRP, the TAC is slightly higher due to the cost of running the EDRP
electricity market strategy, as the system operators have to pay consumers some incentives
for complying with the requirement to reduce energy consumption during EDRP peak load
periods. Furthermore, it could be observed that EDRP also results in a 0.024% reduction in
the overall load demand, which is also an undesired consequence.

The techno-economic aspect of PCDR DRP is noted to significantly impact both long-
term investment and operational planning. From the electricity consumer side, the DRP
participating clients have a cost savings of about 2.54% for an equal amount of consumed
energy compared to the reference case (case 1); since PCDP DRP gives the most considerable
cost saving compared to the two other cases (case 3 with EDRP and case 2 with CPP) and
the aggregate energy consumption equals the total demand of the base case, meaning that
there is no load demand curtailment; thus, this is the most preferred demand response
program. As a result of implementing the DPCP pricing scheme, consumers have sufficient
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motivation to shift their load demand profile from high electricity price periods to low
price periods, thereby fetching the lowest prices; thus, the overall cost saving compared to
the three other cases.

From a generation planning perspective, deploying the PCDP DRP program yields a
new load profile optimal for the day-to-day operation and long-term investment planning.
As the PCDP pricing scheme encourages consumers to time shift the FDRs from peak
load periods to coincide with peak periods of VREs generation, the system dependency
on the ESS is drastically reduced, thus resulting in a lower value of ESD of about 9%.
Therefore, the capacity of the BESS needed to balance the power mismatch in the system
is significantly reduced by 23%, and thus, the TAC is also reduced by 10%. Figure 12
demonstrates and compares the impacts of DRPs in decreasing the mismatch between
the surplus and shortage of power in the system due to the variability of VREs generated
power and load demand.
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Figure 12. A comparison of the impacts of DRPs in decreasing the mismatch between the surplus
and shortage power in the system due to the variability of VREs-generated power and load demand.

7. Conclusions

This paper proposed a joint bi-optimization planning approach for merging capacity
sizing and operation planning into a single model, with and without considering DRPs,
while maximizing the loss of power probability to realize a practicable VREs-based mi-
crogrid system. The primary objective is to determine the optimum size of the PV, WT,
and BESS, and the most suitable operative schedules to achieve an ideal operating strat-
egy that maximizes the designed components’ installed capacity and minimizes the total
annualized costs while maximizing the LSPS. An improved PCDP DRP with a dynamic
pricing technique devised to schedule FDR based on the system’s surplus and deficit power
imbalances at any given time is proposed and investigated. The proposed PCDP is con-
trasted against the classical EDRP and CPP DRP to validate its robustness and potential
benefits. Additionally, this work has proposed and validated a quantitative metric for
evaluating the designed energy storage capacity’s performances. Four simulation cases
were explored and solved using the epsilon constraint mixed-integer linear programming
algorithm on the MATLAB environment to ascertain the prospects of incorporating DRPs
in VREs-based microgrid planning and validate the proposed methodology’s potential
benefits. The e-constraint MILP optimization was selected based on its proven superior
capability of producing a credible and dependable solution with minimal computation
time and reduced modeling complexities. From the results, the cost-benefit advantage of
each DRP is verified to improve the system’s overall performance, and minimizing the
total annualized costs is undoubtedly exemplified. Moreover, the PCDP DRP is confirmed
to have superior cost-benefits in reducing the system costs compared to other DRPs due
to its ability to match the peak surplus power generation with the maximum attainable
capacity of FDRs and vice versa. Thus, from the findings of this work, the proposed
planning approach incorporating PCDP DRP indicates that the proposed methodology is
practicable, viable, and efficient in determining the most cost-effective planning approach
for a grid-independent VREs-based microgrid system.
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Nomenclature
LPSP Loss of power supply probability.
f Inflation rate (%).
i Annual interest rate (%).
d Discount rate (%).
ESD Energy storage dependency.
O&M Operation and maintenance.
pspcdp PCDP DRP penalty rates (US cents/kWh).
pdpcdp PCDP DRP incentive rates (US cents/kWh).
BESS Battery energy storage system.
PV Photovoltaic system.
WT Wind turbine.
VRE Variable renewable energy.
BESS Battery energy storage system.
Ec

b Installed capacity of the BESS (kWh).
SOCmax Maximum state of charge of BESS (kWh).
SOCmin Minimum state of charge of BESS (kWh).
ESS Energy storage system.
FDR Flexible demand resources.
DRPs Demand response programs.
CPP DRP Critical peak pricing demand response program.
EDRP DRP Emergency demand response program.
PCDP DRP Power capacity-based dynamic pricing demand response.
PL Electricity demand (kW).
P f

r Reference electricity price (US cents/kWh).
Pcpp

r CPP DRP electricity price (US cents/kWh).
Pedrp

r EDRP DRP electricity price (US cents/kWh).
Pc

pv Wind turbine’s power capacity (kW).
Pc

w Wind turbine’s power capacity (kW).
Ppv PV power output (kW).
Pw WT power output (kW).
Pg Instantaneous total VREs’ output power (kW).
Y project lifetime (years).
H total time period (hours).
h time period index (hour).
δP f lx

L instantaneous FDR capacity (kW).
δPmax

L maximum flexible demand resources capacity (kW).
δPmin

L minimum shiftable flexible demand resources capacity (kW).
GI incident solar irradiance (W/m2).
T temperature of PV module.
αp temperature coefficient of the PV module.
φpv derating factor of PV (%).
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