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Abstract: In recent years, inorganic perovskite solar cells (PSCs) based on CsPbI3 have made signif-
icant progress in stability compared to hybrid organic–inorganic PSCs by substituting the volatile
organic component with Cs cations. However, the cubic perovskite structure of α-CsPbI3 changes
to the orthorhombic non-perovskite phase at room temperature resulting in efficiency degradation.
The partial substitution of an I ion with Br ion benefits for perovskite phase stability. Unfortunately,
the substitution of Br ion would enlarge bandgap reducing the absorption spectrum range. To
optimize the balance between band gap and stability, introducing and optimizing the spatial bandgap
gradation configuration is an effective method to broaden the light absorption and benefit the per-
ovskite phase stability. As the bandgap of the CsPb(I1–xBrx)3 perovskite layer can be adjusted by
I-Br composition engineering, the performance of CsPb(I1–xBrx)3 based PSCs with three different
spatial variation Br doping composition profiles were investigated. The effects of uniform doping
and gradient doping on the performance of PSCs were investigated. The results show that bandgap
(Eg) and electron affinity(χ) attributed to an appropriate energy band offset, have the most important
effects on PSCs performance. With a positive conduction band offset (CBO) of 0.2 eV at the electron
translate layer (ETL)/perovskite interface, and a positive valence band offset (VBO) of 0.24 eV at
the hole translate layer (HTL)/perovskite interface, the highest power conversion efficiency (PCE)
of 22.90% with open–circuit voltage (VOC) of 1.39 V, short–circuit current (JSC) of 20.22 mA/cm2

and filling factor (FF) of 81.61% was obtained in uniform doping CsPb(I1–xBrx)3 based PSCs with
x = 0.09. By carrying out a further optimization of the uniform doping configuration, the evaluation
of a single band gap gradation configuration was investigated. By introducing a back gradation of
band gap directed towards the back contact, an optimized band offset (front interface CBO = 0.18 eV,
back interface VBO = 0.15 eV) was obtained, increasing the efficiency to 23.03%. Finally, the double
gradient doping structure was further evaluated. The highest PCE is 23.18% with VOC close to 1.44 V,
JSC changes to 19.37 mA/cm2 and an FF of 83.31% was obtained.

Keywords: CsPb(I1–xBrx)3; inorganic perovskite solar cells; gradient doping; SCAPS

1. Introduction

Organic–inorganic perovskite solar cells (PSCs) have simpler a manufacturing process,
lower cost and higher theoretical efficiency than silicon-based solar cells [1]. They also
have an excellent optical absorption capacity (>700 nm) [2], high absorption coefficients
(104~105 cm−1) [3], high carrier mobility (>100 cm2V−1s−1) [4], long diffusion lengths
(102~103 nm) [5] and low exciton binding energy (≈26 meV) [6]. Over the past decade,
the efficiency of perovskite solar cells has increased from 3.9% to 25.73% [7,8], but the
photo-instability and thermal instability of organic–inorganic perovskite solar cells have
also restricted the commercialization of perovskite solar cells [9–12].
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In recent years, cesium-based perovskite solar cells have attracted extensive attention
because of their inorganic stability and outstanding light absorption capacity [13–16]. Inor-
ganic halogen perovskite solar cells CsPbX3 (X = Cl, Br, I) have high thermal stability [17,18],
and the highest efficiency of inorganic halogen perovskite solar cells based on CsPbI3 has
reached 21.14% [19]. However, the black phase of the cubic perovskite structure α-CsPbI3,
whose bandgap (Eg) is 1.68 eV, is unstable at room temperature because of the small tolerance
factor [20]. It converts to a non-perovskite phase of δ-CsPbI3 (Eg = 2.8 eV), which is an indirect
band gap semiconductor [14,21], resulting in a weakened optical absorption capacity. By
incorporating an appropriate Br element concentration into CsPbI3 to form CsPb(I1–xBrx)3, the
tolerance factor can be effectively improved, reducing the α-CsPbI3 formation temperature
and the defect formation which can effectively inhibit non-radiative recombination to improve
open–circuit voltage [22,23].

As CsPb(I1–xBrx)3 PSCs can obtain a suitable bandgap by adjusting the I–Br ratio
to achieve spectral response conditions and can be better combined with solar cells of
other materials, inorganic perovskite is one of the candidate materials for tandem solar
cells. In recent years, further improving the conversion efficiency of inorganic perovskite
tandem solar cells has been an important research topic. At present, CsPb(I1–xBrx)3 all–
inorganic PSCs as the bottom cell of the layered solar cell have an efficiency of 23.21% [24],
higher than the efficiency of single all–inorganic PSCs. The maximum efficiency of single-
junction CsPb(I1–xBrx)3 PSCs can reach 21.14% [19]. The maximum efficiencies of CsPbI2Br,
CsPbIBr2, and CsPbBr3 are 17.8% [25], 12.05% [26] and 11.08% [27], respectively. With the
increase in Br content, the efficiency of all–inorganic PSCs continuously decreases. Because
Eg increases and larger energy band offset with the increase of Br content lead to a decrease
in the optical absorption range.

The advantage of the gradient bandgap structure is that it can optimize the interface
energy offset. The gradient bandgap structure can be used to set different doping con-
centrations on both sides of the material, ensuring that each interface can obtain a better
energy band alignment. At the same time, a built-in electric field can be formed within
the absorption layer. The appropriate direction of the built-in electric field can promote
the transfer of carriers, further improving the efficiency of PSCs. To further optimize the
performance of CsPb(I1–xBrx)3 PSCs, we attempt to introduce a gradient bandgap structure
into CsPb(I1–xBrx)3 PSCs to optimize the energy band and improve the open–circuit voltage.

In addition, while the organic hole transport layer can enable high efficiency in devices,
the organic hole transport material (HTM) is prone to decomposition and typically requires
additives (such as bistrifluoromethanesulfonimide lithium salt (LiTFSI) and Tributyl phos-
phate (TBP)) to assist, which can exacerbate device instability [28]. Therefore, this article
first attempts to optimize the organic hole transport layer (HTL) by selecting a suitable
HTM to improve device stability and reduce costs. Secondly, the influence of parameters of
the uniform doping absorption layer on the performance of PSCs is analyzed. Finally, the
gradient bandgap CsPb(I1–xBrx)3 PSCs are established to optimize the cell performance.

2. Device Simulation

The schematic structure of the simulated perovskite solar cell in this study is il-
lustrated in Figure 1 as Au/Spiro-OMeTAD/CsPbI3/TiO2/FTO using SCAPS which is
a one dimensional solar cell simulation program developed by the University of Gent,
Belgium. The thickness of each layer material is as follows: 170 nm 2,2′,7,7′-Tetrakis [N,N-
di(4-methoxyphenyl)amino]-9,9′-spirobifluorene(Spiro-OMeTAD), 750 nm CsPbI3, 25 nm
compact-titanium dioxide (c-TiO2) and 300 nm fluorine-doped tin oxide (FTO). In detail,
Au was used as a back contact, Spiro-OMeTAD as a p-type hole transport layer. CsPbI3
as a p-type absorber layer and c-TiO2 as an n-type buffer layer. FTO, as the front contact
electrode, is a type of fluorine-doped SnO2 transparent conductive glass. Considering
the interface recombination, two interface defect layers (IDLs) between the HTL/absorber
layer and the electron transfer layer (ETL)/absorber layer, named IDL1 and IDL2, were
considered in the simulated device. The Lambert Beer model was chosen as the optical
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model. Standard AM1.5G was used for incident spectrum. The incident light entered
from the FTO side. Under illumination, we can calculate the open–circuit voltage (VOC),
short–circuit current (JSC), fill factor (FF), power conversion efficiency (PCE) and other
parameters, such as the current–voltage (J-V) characteristic curve and spectral response.
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Figure 1. Schematic structure of the simulated perovskite solar cell.

Table 1 shows the main parameters of the materials in the model [29–36]. The series
resistance and shunt resistances were set to 3 Ωcm2 and 2150 Ωcm2, respectively. The elec-
tron and hole thermal velocities in each layer were set to 107 cm/s. The optical absorption
coefficient (α) curve can be calculated by the equation α = Aα (hν·Eg)1/2, where Aα = 105.
Apart from IDL1 and IDL2 having higher defect concentrations (Nt = 1015 cm−1), the other
parameters of IDL1 and IDL2 were consistent with the absorption layer. The defect type
was neutral. The defect distribution type of the absorption layer was Gaussian distribution.
The defect distribution type of the other layers was single. The variation of each parameter
in the absorbing layer is dependent on the value of x in CsPb(I1–xBrx)3. The linear law is
shown below, where the parameters of CsPbI3, CsPbBr3 and CsPb(I1–xBrx)3 were assumed
to be PI, PBr and Pdiop, respectively:

Pdiop = PI(1− x) + PBr (1)

Table 1. Main parameters of perovskite solar cell [29–36].

Parameter Name Spiro-
OMeTAD CsPbI3

Composition
Dependence

Law
CsPbBr3 TiO2 FTO

Thickness d (nm) 170 750 Uniform 750 25 300
Bandgap energy Eg (eV) 3 1.68 Linear 2.3 3.2 3.5

Electron affinity χ (eV) 2.45 3.95 Cubic
equation 3.3 3.9 3.9

Relative permittivity εr 3 10 Linear 7.3 9 9
Effective conduction band

density NC (cm−3) 2.2 × 1018 2.2 × 1018 Logarithmic 1 × 1019 1 × 1021 1 × 1021

Effective valance band
density NV (cm−3) 1.8 × 1019 1.8 × 1019 Logarithmic 1 × 1019 2 × 1020 1.8 × 1020

Electron mobility µn
(cm2V−1s−1) 2 × 10−4 30 Linear 10 20 20

Hole mobility µp

(cm2V−1s−1)
2 × 10−4 30 Linear 10 10 10

Donor concentration ND
(cm−3) - - - - 1 × 1018 2 × 1019

Acceptor concentration NA
(cm−3) 2 × 1018 1 × 1015 Uniform 1 × 1015 - -

Defect density Nt (cm−3) 1 × 1015 2.07 × 1014 Logarithmic 1.58 × 1013 1 × 1015 1 × 1015

The logarithmic law is shown below:

Pdiop = P(1−x)
I × Px

Br (2)
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The simulated perovskite solar cell structure is based on the experimental literature
of Yuqi Cui et al. [19]. In order to confirm the reliability of the device parameters used in
this work, the simulated J-V characteristic were compared to the experimental result of
the perovskite solar cell reported in reference [19] firstly. Figure 2 shows the simulated
result comparing to the experimental data. The results of the J-V characteristic curve
are similar to the result reported in the experimental literature [19] with VOC = 1.25 V,
JSC = 21.61 mA/cm2, FF = 78.13%, and PCE = 21.18%., indicating that the simulation
parameters used in this paper are valid.
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3. Results and Discussion
3.1. Influence of the Hole Transport Layer on Device Performance

In this section, we compare several commonly used inorganic HTMs and attempt
to replace Spiro-OMeTAD. The material parameters used in this section are shown in
Table 2 [37–40]. Figure 3 shows the J-V curves and quantum efficiency (QE) of different
HTMs. Meanwhile, the computational results of various materials are shown in Table 3.
By comparison, we can find that different HTMs have little effect on QE. This is because
HTL is located on the back of the solar cell, so HTL has a relatively small impact on light
absorption. The energy band plot (Figure 4) shows a good band arrangement between the
valence band of the CsPbI3 and the highest occupied molecular orbital (HOMO) of all hole
transport materials. By comparison, we can see that CZTS has the lowest VOC (1.12 eV),
which is due to the narrow bandgap of CZTS. Therefore, CZTS is not an ideal material for
CsPb(I1–xBrx)3 PSCs. Spiro-OMeTAD, CuI, and CuSCN exhibit similar efficiencies (21.18%,
21.22% and 21.25%, respectively). Although Spiro-OMeTAD and CuSCN have better band
alignment than CuI, both of them have the drawbacks of being expensive and having
low conductivity. Meanwhile, serious mutual diffusion between CuSCN and the absorber
layer restricts the further performance improvement of the device [41]. CuI has better
conductivity, higher carrier mobility and lower cost, so in the following work, CuI will
replace Spiro-OMeTAD as the HTM.
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Table 2. Material parameters of the proposed HTL [37–40].

Parameter Name Spiro-OMeTAD CuI CuSCN CZTS

Thickness d (nm) 170 170 170 170
Bandgap energy Eg (eV) 3 3.1 3.4 1.49
Electron affinity χ (eV) 2.45 2.1 1.9 4.1
Relative permittivity εr 3 6.5 10 7

Effective conduction band density
NC (cm−3) 2.2 × 1018 2.8 × 1019 1.7 × 1019 2.5 × 1020

Effective valance band
density NV (cm−3) 1.8 × 1019 1 × 1019 1.8 × 1018 2.5 × 1020

Electron mobility µn (cm2V−1s−1) 2 × 10−4 100 100 25
Hole mobility µp (cm2V−1s−1) 2 × 10−4 43.9 25 20

Donor concentration ND (cm−3) - - - -
Acceptor concentration NA (cm−3) 2 × 1018 1 × 1020 1 × 1018 1.7 × 1018

Defect density Nt (cm−3) 1 × 1015 1 × 1015 1 × 1015 1 × 1015
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Table 3. Cell performance of different HTMs.

Materials VOC (V) JSC (mA/cm2) FF (%) PCE (%)

Spiro-OMeTAD 1.25 21.61 78.13 21.18
CuI 1.26 21.61 77.94 21.22

CuSCN 1.26 21.61 78.09 21.25
CZTS 1.12 21.56 80.68 19.55
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3.2. Influence of CsPbI3 Perovskite Layer Parameters on Device Performance

For the CsPbI3 absorption layer, the band gap (Eg), electron affinity (χ), dielectric
constant (εr), conduction band effective density of states (NC), valence band effective
density of states (NV), electron mobility (µn), hole mobility (µp), defect density (Nt) and
other parameters of the material will change after doping with the Br element, and the
influence of these parameters on the device performance is also different. Therefore, this
section simulates the influence of each parameter on the device performance.

Figure 5 illustrates the relationship between device performance and various param-
eters, including thickness, NC, NV and Nt. As shown in Figure 5a,b, JSC increases with
increasing thickness. The reason is that the absorbing layer can capture more photons,
generating more electron–hole pairs, and increasing JSC. However, this also increases the
series resistance and internal energy consumption, leading to a decrease in VOC and FF.
When the thickness is too high, the device efficiency growth slows down. The reason is
that the series resistance will further increase and more carrier recombination will occur,
resulting in an increase in the recombination current. This also explains why JSC increases
slowly. Moreover, too thick an absorbing layer will increase manufacturing costs, so the
thickness should be controlled within approximately 750 nm. As shown in Figure 5c,d, an
excessive doping concentration can lead to more charge carriers being trapped by defects,
resulting in a decrease in VOC with increasing doping concentration. Due to the increase in
doping concentration, scattering and recombination increase, suppressing hole transport.
Therefore, selecting an appropriate doping concentration can improve the performance
of the cell. Considering the increase in cost caused by too low doping, Nt should be kept
within 1014 cm−3 in industrial production.

Energies 2023, 16, x FOR PEER REVIEW 6 of 16 
 

 

Table 3. Cell performance of different HTMs. 

Materials VOC (V) JSC (mA/cm2) FF (%) PCE (%) 
Spiro-OMeTAD 1.25 21.61 78.13 21.18 

CuI 1.26 21.61 77.94 21.22 
CuSCN 1.26 21.61 78.09 21.25 
CZTS 1.12 21.56 80.68 19.55 

3.2. Influence of CsPbI3 Perovskite Layer Parameters on Device Performance 
For the CsPbI3 absorption layer, the band gap (Eg), electron affinity (χ), dielectric 

constant (εr), conduction band effective density of states (NC), valence band effective den-
sity of states (NV), electron mobility (µn), hole mobility (µp), defect density (Nt) and other 
parameters of the material will change after doping with the Br element, and the influence 
of these parameters on the device performance is also different. Therefore, this section 
simulates the influence of each parameter on the device performance. 

Figure 5 illustrates the relationship between device performance and various param-
eters, including thickness, NC, NV and Nt. As shown in Figure 5a,b, JSC increases with in-
creasing thickness. The reason is that the absorbing layer can capture more photons, gen-
erating more electron–hole pairs, and increasing JSC. However, this also increases the se-
ries resistance and internal energy consumption, leading to a decrease in VOC and FF. 
When the thickness is too high, the device efficiency growth slows down. The reason is 
that the series resistance will further increase and more carrier recombination will occur, 
resulting in an increase in the recombination current. This also explains why JSC increases 
slowly. Moreover, too thick an absorbing layer will increase manufacturing costs, so the 
thickness should be controlled within approximately 750 nm. As shown in Figure 5c,d, an 
excessive doping concentration can lead to more charge carriers being trapped by defects, 
resulting in a decrease in VOC with increasing doping concentration. Due to the increase 
in doping concentration, scattering and recombination increase, suppressing hole 
transport. Therefore, selecting an appropriate doping concentration can improve the per-
formance of the cell. Considering the increase in cost caused by too low doping, Nt should 
be kept within 1014 cm−3 in industrial production. 

 
Figure 5. Influence of different parameters on cell performance: (a) thickness and (c) Nt; (b) effect 
of thickness on QE and (d) effect of Nt on total recombination. 
Figure 5. Influence of different parameters on cell performance: (a) thickness and (c) Nt; (b) effect of
thickness on QE and (d) effect of Nt on total recombination.

As shown in Figure 6a,b, with an increase in NC, the Fermi level decreases, which
leads to a reduction in the built-in electric field within the absorption layer. This reduction
is detrimental to the separation of charge carriers at the interface, resulting in an increase in
recombination current and a decrease in VOC. As shown in Figure 6c,d, NV has a similar
effect on cell performance to NC. With an increase in NV density, the Fermi level rises,
which leads to a reduction in the built-in electric field within the absorption layer. This
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reduction is detrimental to the separation of charge carriers at the interface, resulting in an
increase in recombination current and a decrease in VOC.
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In addition to the above parameters, Eg and χ have a more significant impact on PSCs
performance. Figure 7 shows the effect of Eg and χ on PSCs performance. The maximum
PCE is 22.12% when Eg is 1.68 eV and χ is 3.78 eV. However, not every pair of Eg -χ
data can be implemented in experiment. There is a fixed correspondence between them.
Therefore, such high-efficiency doping cannot be achieved in the experiment. As shown
in Figure 7, the increase in Eg leads to the increase in VOC. At the same time, because the
wider bandgap is not conducive to the light absorption (Figure 8a), the photon-generated
carrier will be greatly reduced, resulting in a sharp decline in JSC, and thus the reduction
of cell efficiency. The change of Eg and χwill lead to band offset, which is another cause
of PSCs performance change (Figure 8b). Take the valence band as an example, when
Eg = 1.68 eV and χ = 3.4 eV, the valence band of HTL is lower than the absorption layer and
a “spike” will be formed at the interface. When Eg =1.68 eV and χ =3.8 eV, the valence band
of the hole layer is higher than that of the absorption layer, and a “cliff” will be formed at
the interface. Excessive band offset will hinder carrier diffusion and lead to the incomplete
depletion of the absorption layer. The carrier cannot be collected during its lifetime, leading
to the increase in carrier recombination rate. Therefore, suitable Eg and χ can optimize the
energy band at the interface and improve the PSCs’ efficiency.
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3.3. Uniform Composition Configuration

The energy band of the absorption layer CsPb(I1–xBrx)3 is closely related to the x value.
According to the experimental results of Yuanzhi Jiang et al. [42], the variation curves of the
conduction and valence bands of CsPb(I1–xBrx)3 with x value can be obtained by polynomial
fitting (Figure 9) [42–45]. It can be seen from Figure 9 that with the increase in Br content,
both the bottom of the conduction band and the top of the valence band first increase and
then decrease before increasing again, but Eg keeps increasing. The relationship between x
values in the CsPb(I1–xBrx)3 absorption layer in this model and other parameters (energy
band, εr, NC, NV, µn and µp) has been shown in Table 1. As shown in Figure 10, the
effect of Br content change on the performance of CsPb(I1–xBrx)3 PSCs is simulated here.
The results show that when x = 0, the efficiency of CsPb(I1–xBrx)3 perovskite solar cells
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reaches 21.22%, VOC is 1.26 V, JSC is 21.26 mA/cm2 and FF is 77.94%. When the x value
gradually increases, the efficiency increases first, and reaches the maximum when x = 0.09,
VOC = 1.39 V, JSC = 20.22 mA/cm2, FF = 81.61% and PCE = 22.9%, and then the efficiency
starts to diminish. One reason is that an excessive energy band results in a reduced light
absorption range, which in turn leads to a decrease in JSC (Figure 11).
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The other reason is that when x = 0.09, the valence band offset (VBO) is 0.24 eV
(Figure 12a), and the conduction band offset (CBO) is 0.2 eV (Figure 12b). The band offset
is significantly better than x = 0.25, 0.5, 0.75 and 1. Compared with x = 0, although CBO
(−0.05 eV) increased, VBO (0.43 eV) decreased significantly. This makes the band offset
close to a reasonable range of 0–0.2 eV [46]. Therefore, the band matching is better when
x = 0.09, effectively reducing the carrier recombination rate inside the cell (Figure 12c), and
the PSCs efficiency reaches the maximum.
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3.4. Gradient Composition Configuration

Gradient doping can effectively improve the photoelectric conversion efficiency of
perovskite solar cells. Therefore, a similar doping method is applied to CsPb(I1–xBrx)3
perovskite solar cells in this study. Figure 13 shows two different types of gradient doping.
The Br doping density of the CsPb(I1–xBrx)3 absorption layer is controlled by the depth.
The x value changes linearly with the depth, so that the energy band changes accordingly.
The Eg increases with the increase in the x value, when the Br content of the absorption
layer/ETL (Xf) is higher than the Br content of the absorption layer/HTL (Xb). This is
called the pre-segregation structure; otherwise, it is called the post-segregation structure.

Energies 2023, 16, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 13. Two gradient doping types: (a) single-gradient doping and (b) double-gradient doping. 

When Xb is unchanged, the cell performance will gradually decay with the increase 
in Xf. This is because with the increase in Xf, the band gap of the absorption layer at the 
CsPb(I1–xBrx)3/ETL interface gradually increases, forming a pre-segregation structure, thus 
generating a built-in electric field in the absorption layer in the opposite direction, which 
is not conducive to the collection of carriers and aggravates the recombination of carriers. 
An increase in the reverse saturation current leads to a decrease in the conversion effi-
ciency. 

The black icon marked in Figure 14 is the position corresponding to the simulated 
optimal cell efficiency. When Xb = 0.17 and Xf = 0.08, the cell performance reaches its best, 
and VOC is 1.39 V, JSC is 20.22 mA/cm2, FF is 82.12%, and PCE is 23.03%. At this time, the 
bandgap of the rear interface Eg1 = 1.79 eV, and the bandgap of the front interface Eg2 = 
1.73 eV. The conduction band and valence band gradually rise from the front interface to 
the back interface, forming a post-segregation structure. A built-in electric field in the 
same direction is formed within the absorption layer, which enhances carrier separation, 
promotes carrier collection and reduces recombination, thus improving cell performance. 
Compared with uniform doping, QE decreases in single gradient doping (Figure 15a), 
which is because the increase in Eg makes carrier separation more difficult and reduces 
the light absorption capacity. Figure 15b shows the energy band after translation, and we 
calculated that the CBO of single gradient doping is 0.18 eV, and VBO is 0.15 eV. The CBO 
of uniform doping is 0.2 eV and VBO is 0.24 eV. The smaller band offset leads to a decrease 
in the carrier recombination rate (Figure 15c). 

 
Figure 14. Influence of single gradient doping on PSCs: (a) VOC, (b) JSC, (c) FF and (d) PCE. 

Figure 13. Two gradient doping types: (a) single-gradient doping and (b) double-gradient doping.

When Xb is unchanged, the cell performance will gradually decay with the increase
in Xf. This is because with the increase in Xf, the band gap of the absorption layer at the
CsPb(I1–xBrx)3/ETL interface gradually increases, forming a pre-segregation structure, thus
generating a built-in electric field in the absorption layer in the opposite direction, which is
not conducive to the collection of carriers and aggravates the recombination of carriers. An
increase in the reverse saturation current leads to a decrease in the conversion efficiency.

The black icon marked in Figure 14 is the position corresponding to the simulated
optimal cell efficiency. When Xb = 0.17 and Xf = 0.08, the cell performance reaches its best,
and VOC is 1.39 V, JSC is 20.22 mA/cm2, FF is 82.12%, and PCE is 23.03%. At this time,
the bandgap of the rear interface Eg1 = 1.79 eV, and the bandgap of the front interface
Eg2 = 1.73 eV. The conduction band and valence band gradually rise from the front interface
to the back interface, forming a post-segregation structure. A built-in electric field in the
same direction is formed within the absorption layer, which enhances carrier separation,
promotes carrier collection and reduces recombination, thus improving cell performance.
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Compared with uniform doping, QE decreases in single gradient doping (Figure 15a),
which is because the increase in Eg makes carrier separation more difficult and reduces
the light absorption capacity. Figure 15b shows the energy band after translation, and we
calculated that the CBO of single gradient doping is 0.18 eV, and VBO is 0.15 eV. The CBO
of uniform doping is 0.2 eV and VBO is 0.24 eV. The smaller band offset leads to a decrease
in the carrier recombination rate (Figure 15c).
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Jiang Jie et al. proposed a double-gradient doping structure to optimize cell perfor-
mance [47]. This kind of band structure is concave, high on both sides and low in the
middle, which can improve JSC. This structure is applied to the CsPb(I1–xBrx)3 absorption
layer (Figure 13b). A more appropriate band gap near the front surface of the absorption
layer can improve carrier transfer efficiency. Xf, Xb, LC and Xm represent the Br doping
concentration on the front surface, the Br doping concentration on the back surface, the
doping depth, and the maximum or minimum Br doping concentration inside the absorp-
tion layer, respectively. The impact of Xb and Xf on PSCs’ performance has been discussed
previously. Figure 16 shows the effect of LC and Xm on PSCs performance. When Xf = 0.07,
Xb = 0.15, LC = 600 nm and Xm = 0.17, PSCs performance reaches its highest (VOC = 1.44 V,
JSC = 19.37 mA/cm2, FF = 83.31% and PCE = 23.18%).
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Comparing single-gradient doping with double-gradient doping, QE decreases slightly
because the energy band is slightly larger (Figure 15a). The best efficiency of double-
gradient doping is 0.15% higher than that of single-gradient doping. The improvement
mainly focuses on the increase in VOC by 0.05 eV, the decrease in JSC by 0.85 mA/cm2

and the increase in FF by 1.19%. This is contrary to the experimental results of Jiang
Jie et al. One reason is that the sunlight is incident on the front interface, and the front
interface concentrations of single-gradient doping and double-gradient doping are not
much different, so the range of light absorption is almost constant. However, since the
doping concentration of the absorption layer reaches the maximum (Xm = 0.17) when
LC = 540 nm, LC is closer to the front interface (absorption layer/ETL), Eg = 1.79 eV.
Xb = 0.15, Eg1 = 1.77 eV, Xf = 0.07, Eg2 = 1.72 eV. It can be seen that compared with single-
gradient doping, the bandgap of double-gradient doping in the first half of the absorption
layer (LC—front interface) increases faster, while the bandgap of the second half (LC—back
interface) maintains a relatively high level. Previously, we analyzed that high bandgap
would make it difficult for low-energy long-wavelength photons to be excited, so the
absorption capacity of the absorption layer for long-wavelength light would be weakened
(Figure 15a), and the number of electron–hole pairs generated would be reduced, thus
leading to JSC weakening. Another reason is that in the second half, due to the difference in
bandgap, an electric field will be formed in an opposite direction of the in-built electric field,
which has a negative effect on the transmission of carriers. It can be seen from Figure 16
that when Xm <0.07 or Xm >0.25, the cell efficiency drops sharply. The reason may be
that too small a band gap will form a built-in electric field near the front surface in the
direction opposite to the built-in electric field in the absorption layer, which will increase
the carrier recombination rate at the interface, while too large a band gap will reduce
light absorption. The CBO and VBO of double gradient doping are 0.15 eV and 0.15 eV
respectively (Figure 15a,b). The band offset is decreased on the front surface, so the carrier
recombination rate on the front surface is reduced. VBO remains unchanged (Figure 15c).
So, the energy band is optimized to improve the efficiency.
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4. Conclusions

In this paper, a more accurate energy band variation plot of CsPb(I1–xBrx)3 PSCs
was recovered, and SCAPS software was used to study and optimize the CsPb(I1–xBrx)3
perovskite solar cells with gradient bandgap. For the first time, we studied the effects of
different HTM on PSCs performance, proving that a suitable HTL bandgap is important
for PSCs performance, and selected CuI with a better carrier generation rate as the hole
transport layer material. Second, we studied the influence of different parameters of the
absorption layer on the PSCs performance. We find that the thickness of ~750nm can
improve the optical absorption capacity while taking into account the efficiency and cost.
Too large NC and NV will cause the Fermi level to move away from conduction band
and valence band, resulting in VOC and efficiency loss. High Nt will lead to an increase
in the carrier recombination rate, so Nt should be controlled within 1014 cm−3. Thirdly,
the influence of uniform doping on PSCs performance was studied. We find that when
x = 0.09, there is a better matched band at HTM/perovskite interface (VBO = 0.24 eV and
CBO = 0.2 eV), with an efficiency of 22.90%. Finally, the influence of different types of
gradient doping on PSCs performance was studied. Through the comparison, we find that
although QE is slightly reduced by gradient doping, by adjusting the band, the band offset
can be optimized (CBO = 0.18 eV, VBO = 0.15 eV), and a post-segregation structure can be
formed to optimize carrier transport and increase efficiency (PCE = 23.03%). The energy
band is further optimized by double–gradient doping (CBO = 0.10 eV, VBO = 0.15 eV), and
the efficiency is increased to 23.18%.
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