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Abstract: In a context in which the connectivity level of last-generation vehicles is constantly on
the rise, the combined use of Vehicle-To-Everything (V2X) connectivity and autonomous driving
can provide remarkable benefits through the synergistic optimization of the route and the speed
trajectory. In this framework, this paper focuses on vehicle ecodriving optimization in a connected
environment: the virtual test rig of a premium segment passenger car was used for generating
the simulation scenarios and to assess the benefits, in terms of energy and time savings, that the
introduction of V2X communication, integrated with cloud computing, can have in a real-world
scenario. The Reference Scenario is a predefined Real Driving Emissions (RDE) compliant route,
while the simulation scenarios were generated by assuming two different penetration levels of V2X
technologies. The associated energy minimization problem was formulated and solved by means of a
Variable Grid Dynamic Programming (VGDP), that modifying the variable state search grid on the
basis of the V2X information allows to drastically reduce the DP computation burden by more than
95%. The simulations show that introducing a smart infrastructure along with optimizing the vehicle
speed in a real-world urban route can potentially reduce the required energy by 54% while shortening
the travel time by 38%. Finally, a sensitivity analysis was performed on the biobjective optimization
cost function to find a set of Pareto optimal solutions, between energy and travel time minimization.

Keywords: dynamic programming; vehicle-to-everything; real-world scenario; energy minimization;
ecodriving; speed optimization

1. Introduction

With climate change threatening the future of our environment and society, imple-
menting immediate and effective strategies to curb Greenhouse Gas (GHG) emissions is
the need of the hour. The transportation sector is one of the guiltiest parties, accounting for
35% of the worldwide energy consumption [1]. Since road vehicles, especially passenger
cars and road freight transport vehicles, account for 86% of the global share [2], global
regulatory targets and customer demand are pushing the automotive industry to develop
vehicles with improved fuel economy to reduce GHG emissions [3].

Along with GHG emissions, road congestion is a current problem for transport policy
at all levels. According to Joint Research Centre (JRC), the cost of road congestion in Europe
is estimated to be over €110 billion a year [4], not to mention the dramatic effects that
traffic has on the increased air pollution [5] and environmental noise [6]. This particularly
rings true in urban areas, where traffic lights, although being vital for allowing pedestrians
and competing flows of traffic to safely cross busy intersections, may lead to increased
congestion levels. Besides pollution and congestion, road safety remains a major societal
issue [7,8]: only in Europe, more than 19,000 people died on the roads in 2021 and, despite
being reduced by 31% compared to 2011 levels, these numbers should continue to fall [9].

In this framework, integrated with the feasible technical solutions aimed at improving
the efficiency of current propulsion systems [10], the mass adoption of Connected and
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Automated Vehicles (CAVs) may represent an opportunity to tackle the abovementioned
issues and could lead, in the next decade, to a major technological revolution in the mobility
sector [11], by improving energy utilization efficiency [12], traffic handling [13], and road
safety [14].

Creating systems in which information and communication technologies can be eas-
ily exchanged, namely Intelligent Transportation Systems (ITS) [15], can be particularly
beneficial in urban areas where connected vehicles, featuring Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) technologies [16], can have access to the Signal Phase and
Timing (SPaT) of traffic lights. This information can be directly transmitted to vehicles
through a Dedicated Short Range Communications (DSRC) technology [17] or may become
available by the traffic control center through cellular and Wi-Fi networks, namely Cellu-
lar Vehicle-to-Everything (C-V2X) [18]. The C-V2X potentiality could be further boosted
by a possible coupling with the new 5G mobile network [19] or joint use of DSRC and
C-V2X communications [20]. Alternatively, several studies have demonstrated that SPaT
information may be inferred via on-board cameras [20] and via crowdsourcing [21].

Traditional approaches focused more on signal control methods to enhance traffic
flow at signalized intersections, such as signal timing optimization [22], or actuated signals
application in real-world traffic [23] that could allow smoothing traffic oscillations and
decreasing vehicle waiting times at intersections. However, with the recent advances in ITS
technology that empower the vehicles to share information with the surrounding environ-
ment [24], more recent research has been focused on developing ecodriving algorithms, i.e.,
using the information to plan an optimal path and velocity trajectory so as to improve the
efficiency in energy utilization and traffic handling [25].

Some earlier works, like [26], demonstrated how upcoming traffic signal information
can be used by a vehicle’s adaptive cruise control system to reduce idle time at traffic lights
and fuel consumption, or developed algorithms for detecting and predicting the SPaT to
enable a Green Light Optimal Speed Advisory (GLOSA) system: i.e., a speed corrector
to avoid unnecessary halts at traffic lights [27]. In [28] the performance degradation of
the GLOSA system due to queuing effects and actual tracking driver errors is taken into
account, while in [29] the uncertainties of SPaT information due to varying patterns of
traffic lights are introduced. In the literature, several other applications of ecodriving
optimization have been shown: in [30] an algorithm that jointly adjusts vehicle speeds
at intersections and signal timings is proposed while in [31] the benefits of incorporating
near-term technologies in a predictive management strategy are assessed.

As formalized in [32], eco-driving can be regarded as an optimal control problem
where the drive commands are chosen to minimize the energy consumption for a given
trip, and, among the set of methods provided by the optimal control theory, some solution
techniques that are commonly employed are Model Predictive Control (MPC) and Dynamic
Programming (DP). MPC can be implemented as either an optimization problem consider-
ing the nonlinearities in the powertrain efficiency characteristics [33] or a computationally
less expensive linear optimization problem that only considers the vehicle kinematics [34].
DP [35], as proposed by [29] to optimize the velocity profiles for achieving automated
ecodriving, can provide an optimal result even for highly nonlinear problems, such as
ecodriving. However, the heavy computation burden of DP has made its use largely limited
to asserting an offline performance benchmark, and suitable simplifications are needed
to reduce the dimensionality of the optimization problem in real-time applications. For
instance, in [36] an algorithm derived from DP that can be real-time implementable is
proposed; authors in [37] propose an interesting pruning algorithm aimed at reducing the
optimization domain by considering only the portions of the traffic light’s green phases
that allow driving in compliance with the city speed limits; after defining some points of
interest, such as traffic lights, road curvatures, etc.; in [38] a variable step size is introduced
that drastically reduces the computation cost; authors in [39] propose a reduction of the
search grid by considering the maximum energy recuperation or the maximum battery
discharge capacity.
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Quite recently, in addition to traditional optimal control theory, Reinforcement Learn-
ing (RL) algorithms have also been studied for addressing the ecodriving problem [40].
For instance, authors in [41] propose a hierarchical RL algorithm that decides whether the
controlled vehicle should stop or pass at a traffic light and then performs the corresponding
longitudinal control accordingly, in [42] ecodriving strategies are developed that are based
on RL algorithms that are suitable for cases where little data on the traffic situation are
available, and in [43] a hybrid RL-based algorithm is proposed that considers both the
longitudinal acceleration/deceleration and the lateral lane changing. Moreover, since the
standardization and introduction of vehicular communication is still an ongoing process,
and it may take a while to reach a wide penetration rate of CAVs, a lot of research has
explored the safety of mixed traffic flow, i.e., CAVs mixed with human-driven vehicles,
which, as shown by [44] can be related to platoon size and penetration rate of CAVs.

From the powertrain control point of view, the increasing adoption of connected ve-
hicles can allow for simultaneously optimizing powertrain control and velocity profile.
Several studies have explored methods for optimizing the vehicle velocity profile for Bat-
tery Electric Vehicles (BEVs) as well as for Internal Combustion Engine Vehicles (ICEVs).
In [45], Dynamic Programming (DP) is used to optimize the velocity of a BEV, while
in [46], the fuel consumption reduction of a DP-based algorithm is assessed on a heavy-
duty ICEV. However, Hybrid Electric Vehicles (HEVs) and plug-in Hybrid Electric Vehicles
(pHEVs) can benefit the most from embedding them in an ITS, since the information
from the surrounding environment can be used to optimize their control strategies [47,48].
Vehicle-to-Everything (V2X) communication along with cloud computing adoption [49]
may enable a change of paradigm of the energy management problem: from an instanta-
neous optimization to globally minimizing it over the entire driver route [50]. For example,
in [51], a hierarchical ecodriving control using MPC under complex driving conditions is
designed for connected and automated HEVs where an intelligent driving scenario classifier
is devised to identify the driving scenarios.

In summary, many studies optimized vehicle speed by using MPC, RL methods,
or strategies derived from DP. All these strategies are inherently suboptimal and only
DP can provide the optimal solution, but the heavy computation burden of this strat-
egy has made its use largely limited to asserting an offline performance benchmark.
This paper aims to fill these gaps by proposing a preliminary study to assess the po-
tential of a system that could be integrated with cloud computing and interfaced with a
real-time implementable energy management strategy. With the recent advances in ITS
technology that could empower vehicles to share information with the surrounding en-
vironment, it seems feasible that the vehicles can have realistic information about speed
limits and Expected Time of Arrival (ETA). In this context, we propose a Variable Grid
Dynamic Programming (VGDP) that modifies the variable state search grid on the basis
of the V2X information allowing a drastic reduction in the DP computation burden by
more than 95% if compared to the standard optimization performed with a fixed grid.
These achievements make this algorithm more attractive for real-world applications, and
this work can represent a preliminary study that lays the basis for a controller that could
realistically consider the DP for online implementation. Figure 1 schematically describes
the proposed algorithm: by relying on a cloud computing architecture in which the vehicle
communicates its route and destination to a vehicle simulator offsite, the information
coming from the surrounding environment, e.g., traffic lights state, speed limits, distance
to travel, etc., is used to define a variable state space grid that allows a computationally
efficient optimization. The DP can thus define the optimal velocity profile, that the vehicle
should follow to optimize the time/energy trade-off. The major contributions of the paper
are the followings:

1. Exploiting information coming from the surrounding environment, e.g., traffic lights
state, speed limits, distance to travel, etc., to generate a variable state search grid
for the DP algorithm: the DP computation burden is reduced by more than 95% if
compared to the standard optimization performed with a fixed grid;
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2. Assessing the benefits that the introduction of V2V and V2I communication, inte-
grated with cloud computing, can have in a real-world route in terms of energy and
time savings. The Reference Scenario is a predefined Real Driving Emissions (RDE)
compliant route [52], while the simulation scenarios are generated by assuming two
different levels of penetration of V2X technologies. The simulations show that intro-
ducing a smart infrastructure along with optimizing the vehicle speed in a real-world
urban route can potentially reduce the required energy by 54% while shortening the
travel time by 38%;

3. Laying the basis for a cloud-based controller that could realistically consider DP for
online implementation: by communicating its route and destination to an offsite
vehicle simulator, a connected vehicle could be advised with the optimal velocity
profile to follow in order to optimize the energy/time trade-off.

The results of the proposed analysis must be considered as a benchmark since the
simulations are carried out for a simplified urban traffic network with vehicles in almost
free flow, i.e., without direct constraints related to the preceding or following vehicles,
but it can be conceptually extended to the case of multiple vehicles equipped with the
proposed algorithm. The rest of the paper is organized as follows. In Section 2, the virtual
test rig used for the simulations is introduced along with the description of the simu-
lation scenarios. Then, the ecodriving optimization problem is formulated in Section 3.
In Section 4, the results of the optimization algorithm are shown for the two different
scenarios. In Section 5, conclusions are summarized and further studies are provided.

V2X

Speed limits

Route

Traffic lights

൜
𝑣
𝑡

ሼ𝑎

States

Control

Input definition

Variable states grid definition

Speed grid Time grid

Dynamic Programming

Backward Forward

Optimal speed profile

Figure 1. Flowchart of the given algorithm: by relying on a cloud computing architecture in which
the vehicle communicates its route and destination to a vehicle simulator offsite, the V2X information
is used to define a variable state space grid that allows a computationally efficient optimization.
The DP can thus define the optimal velocity profile that the vehicle should follow to optimize the
time/energy trade-off.
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2. Case Study
2.1. Vehicle Model

The case study is a Mercedes E300de, a state-of-the-art diesel pHEV available in the
European market. Figure 2 schematically shows the powertrain layout and Table 1 summa-
rizes the main vehicle and powertrain characteristics. It features a P2 architecture where a
Euro 6d-temp 1950 cc diesel engine is integrated into a 90 kW Electric Machine (EM). Both
the ICE and the EM are connected, through a torque converter and a 9-speed automatic
transmission, to the rear axle. The vehicle was extensively investigated through an experi-
mental campaign, followed by the validation of a virtual test rig against the experimental
data, as explained in [53]. In this work, a simplified version of the vehicle model, relying on
a backward kinematic model [54] implemented in MATLAB was used. Moreover, since this
work presents a powertrain agnostic optimization (i.e., adaptable for each type of vehicle,
e.g., ICEV, HEV, pHEV, BEV), the minimization is performed on the energy.
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Figure 2. Powertrain layout: a diesel engine is connected through an auxiliary clutch (K0) to an EM.
Both the ICE and the EM are connected to the automatic transmission by means of a torque converter.

Table 1. Vehicle and powertrain main specifications.

Vehicle Curb Weight [kg] 2060
Power [kW] @ 100 km/h 14.9

Transmission Type 9-AT w/Torque Converter

ICE

Type Turbo Diesel
# of Cylinders 4

Displacement [cm3] 1950
Max Power [kW] 143
Max Torque [Nm] 400

Compression Ratio 15.5:1

EM

Type PM Synchronous Motor
Max Power [kW] 90
Max Torque [Nm] 440
Max Speed [rpm] 6000

Battery Type Li-NMC
Capacity [kWh] 37

2.2. Simulation Scenarios

Energy consumption significantly depends on the route characteristics. In this work,
in order to fully collect the variability coming from real-world mission profiles, an RDE-
compliant route [52] is chosen as a starting point. The RDE driving cycle is considered
as the Reference Scenario, without connectivity. As already described, CAVs technology
is largely based on the exchange of different types of data between vehicles (V2V) and
with the infrastructure (V2I). Two data types may be differentiated: time-invariant and
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time-variant ones. Time-invariant data, i.e., road network architecture, road elevation, road
slope, road speed limits, speed bumps, etc., can be accessed via a Geographic Information
System (GIS) server [55]. On the other hand, time-variant data, i.e., traffic information,
road closings, SPaT, etc., could be available only thanks to V2X communication. In this
study, it is assumed that both time-invariant and time-variant data can be available through
cellular/Wi-Fi networks to the vehicle and that the optimization problem can be solved in
a cloud domain. In this framework, the optimal velocity profile can be sent to the driver in
the vehicle domain. Starting from the RDE route, Scenario #1 and Scenario #2 were created.

2.2.1. Reference Scenario

The Reference Scenario represents a typical real-world mission profile. It is an RDE-
compliant route [52] conducted on public roads in the surroundings of the Italian city of
Turin. The route, shown in Figure 3, lasted approximately 92 min and was 96 km long.
The vehicle position was obtained from Portable Emissions Measurement System (PEMS)
and combined with a topographic map. In the simulation environment, the speed profile
and the vehicle stop of the Reference Scenario are imposed.

START

FINISH

Figure 3. Left: vehicle position obtained from PEMS and combined with a topographic map (Courtesy
of Google Maps). The route lasted approximately 92 min and was 96 km long. Right: vehicle speed
as a function of time divided into urban, rural, and highway sections.

2.2.2. Scenario #1

Scenario #1 was designed to assess the benefits that a global optimization can have on
the vehicle speed in a real-world mission profile, still respecting all the full stops imposed
by traffic and/or infrastructure. It was generated starting from the Reference Scenario and
introducing an intersection regulated by a stop sign every time the vehicle comes to a full
stop. The time that the vehicle should wait at each full stop was imposed equal to 23 s: the
average time that the vehicle is stationary at the stop signs and red lights in the Reference
Scenario. As detailed in Figure 4, a vehicle speed window was created where the optimizer
is allowed to range: the window’s upper and lower boundaries were thought to merge the
effects of speed limits and mild traffic conditions in a realistic scenario. Starting from the
speed of the Reference Scenario, the upper and lower boundaries are obtained by applying
a moving average over a section of 500 m ± 20 km/h, respectively. It should be noted that
the upper boundary never exceeds 135 km/h, and both the upper and lower ones merge
to zero whenever a full stop sign is introduced. As depicted in Figure 5, for Scenario #1,
it is assumed that the optimizer can have full access to all the time-invariant data and to
traffic information.
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Figure 4. Speed Boundaries: the upper and lower boundaries of the window were thought to merge
the effects of speed limits and mild traffic conditions in a realistic scenario.

Optimization 
Algorithm Road Speed 

Limit
Stop Signal 

Location 

Figure 5. Scenario #1: it was generated starting from the Reference Scenario and assuming an
intersection regulated by a stop sign every time the vehicle comes to a full stop.

2.2.3. Scenario #2

Scenario #2 was designed to assess the benefits that the introduction of a smart
infrastructure can have on Scenario #1. It was generated starting from Scenario #1 and
converting all the stop signs into traffic lights. When designing traffic lights, the quality of
the urban realm should be taken into account. According to [56], for urban areas, short cycle
lengths of 60–90 s are ideal. Moreover, supposing a minor intersection at each traffic light,
a 3:2 ratio is suggested for the amount of green time to improve pedestrian compliance and
decrease congestion on surrounding streets. Following these guidelines, in this work, the
traffic lights were modeled through square waves with a period and a duty cycle of 1 min
and 60%, respectively (the high period corresponds to the green phase). For the sake of
simplicity, only red and green phases were considered, while variability was introduced
by randomly assigning the initial phase. The speed boundaries coming from Scenario #1
were modified allowing a time-dependent upper boundary in correspondence with the
traffic lights, i.e., the upper boundary assumes the moving average value when the traffic
light has a green phase. As depicted in Figure 6, it is assumed that SPaT information is
deterministic and given; thus, the optimizer can have a priori access to both time-invariant
and time-variant data via V2I communication.
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Optimization 
Algorithm Road Speed 

Limit
Traffic Light 

Status

Figure 6. Scenario #2: it was generated starting from Scenario #1 and converting all the stop signs
into traffic lights.

3. Ecodriving Optimization

In this section, the algorithm for ecodriving is introduced. It takes advantage of V2X
communications and is designed for a simplified urban traffic network with vehicles in
free flow, i.e., without direct constraints related to the preceding or following vehicles. V2X
information can be used to improve the energy efficiency of a vehicle at two different levels:

• Route optimization: choosing the optimal route;
• Ecodriving: optimize the vehicle speed over the defined route.

This work focuses only on the second stage, i.e., ecodriving. The ecodriving problem
can be formalized as an optimal control problem, where the optimizer can access both the
vehicle’s Global Positioning System (GPS) coordinates (e.g., total trip length, road grade,
and speed limits) and V2X information (e.g., SPaT, traffic conditions). Since the position
of all the route features varies in a time-based perspective but remains fixed in a distance-
based one, it is beneficial to express the model equations in distance-based coordinates:
distance (instead of time) becomes the independent variable.

3.1. Optimal Control Problem

In the following, a formulation of the ecodriving problem in distance-based coordi-
nates is proposed:

J = Φ(x(l f ), l f ) +
∫ l f

l0
L(x(l), u(l), l) dl (1)

where J is the cost function, x ∈ Rn is the vector of the state variable, u ∈ Rm is the vector
of the control variables, l is the distance variable, L(x(l), u(l), l) is the instantaneous cost
function (the variable to be minimized depends on the optimization problem), and Φ(x(l f ), l f )
is the terminal cost. The cost function is minimized by choosing, in the distance interval [l0, l f ]
the optimal control law u(l) : [l0, l f ] ∈ Rm that leads to the minimization of the cost function.
The cost function defined in Equation (1) is subject to the following constraints:

G(x(l), l) ≤ 0

x(l) ∈ X(l)

u(l) ∈ U(l)

∀ d ∈ [l0, l f ] (2)

where G(x(l), l) ≤ 0 denotes a generic instantaneous constraint, while U(l) and X(l) are
the admissible control and state ranges. Since the main objective of the optimization is to
minimize the required energy along with the travel time, the cost function was defined
according to the following:

J =
∫ l f

l0
β

e f d(x(l), u(l), l)
E f d

+ (1− β)
t(x(l), u(l), l)

T
dl (3)

where e f d and t denote, respectively the energy and time demand at the single distance step,
while E f d and T denote, respectively, the energy and time demand along the entire cycle.
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β is a calibration factor that can be used to trade off between the vehicle energy demand
and the traveling time. The constraints for the specific problem concern the physical limita-
tions of the actuators (maximum deliverable power) and of the road infrastructure, e.g.,
speed limits and traffic lights stop. Additional limits regarding the maximum accelera-
tion and deceleration values were imposed to enhance the driver’s comfort in the vehicle.
As described in Table 2, the chosen state and control variables for Scenario #1 are vehicle
speed and vehicle acceleration, respectively; as for Scenario #2, since the SPaT is time-
dependent, the time must be added as a state variable. For speed, acceleration, and time
variables a discretization resolution of 1 km/h, 0.01 m/s2, and 0.5 s were used, respectively,
while a discretization resolution of 5 m was used for the independent variable, i.e., distance.

Table 2. State and control variables for Scenario #1 and Scenario #2.

Scenario #1 Scenario #2

State Variables Speed Speed, Time
Control Variables Acceleration Acceleration

3.2. Dynamic Programming

Dynamic Programming (DP) [35] was used by the Authors to solve the constrained
optimal control problem. DP was first introduced by R. Bellman in 1957 [57] and is based on
the concept of breaking up sequential decision problems into a finite number of manageable
problems wherein the combination of their solutions leads to the global optimal solution of
the entire problem. The minimization of the cost function defined in Equation (3) can be
expressed in terms of finding the optimal path from the initial location to the final location,
by moving backward across a set of discrete states, conventionally called “nodes”. Figure 7
sketches an example of how the DP algorithm works referred, for the sake of simplicity, to
Scenario #1 (only one state variable, i.e., vehicle speed).

100

85

90

75

Inf

71

66

70

68

8

6

7

10

12

Inf

Figure 7. Dynamic programming optimization process shown on Scenario #1: at each distance
marker, the DP algorithm finds the set of all feasible nodes (colored ones). Once the costs for all
the possible transitions have been computed by proceeding backward in the space domain, the DP
algorithm finds the path with minimal cost by moving forward.

At each distance marker in the spatial domain, the DP algorithm first finds the set of
all feasible nodes in terms of vehicle speed. Then, the energy demands corresponding to the
possible speed transitions are computed, and the constraints expressed in Equation (2) and
qualitatively described in Section 3.1 are imposed on the nodes search grid, by assigning a
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very large cost to the unfeasible transitions. Once the costs for all the possible vehicle speed
transitions have been computed by proceeding backward in the space domain, as Bellman’s
optimality principle states, it is possible to find the path with minimal cost by moving
forward. In this work, the open-source MATLAB code developed at ETH-Zurich [58] was
used: it solves discrete-time optimal control problems using Bellman’s DP algorithm.

3.3. Variable State Search Grid

As already reported in [59], the Achilles heel of discrete DP is the “curse of dimension-
ality”: in n-dimensional state and m-dimensional control spaces, the number of discrete grid
points rises exponentially with the dimensions of n and m [60]. The large computing power
needed for the global optimization algorithm has made its use, for the eco-driving problem,
largely limited to asserting an offline performance benchmark. This particularly rings true
for cases with numerous state variables, like Scenario #2 where time must be added as a
state variable increasing the computational burden. However, with the recent advances
in ITS technology that could allow vehicles to share information with the surrounding
environment, it seems feasible that the vehicles can have realistic information about speed
limits and ETA. In this context, a Variable Grid Dynamic Programming (VGDP) can be
introduced, which, considering the average traffic information and the estimated time of
arrival, reduces the space of the states to only those feasible, and allows for drastically
reducing the computation burden of this algorithm. Figure 8 shows the definition of the
variable grid in the urban section of Scenario #1. The variable speed grid was defined
according to the upper and lower boundaries, supposing that the vehicle can never exceed
those limits, while the variable time grid was defined allowing the optimizer to sufficiently
vary around a predicted time of arrival.

Figure 8. Variable state search grid: the variable speed grid was defined according to the upper and
lower boundaries, supposing that the vehicle can never exceed those limits. The variable time grid
was defined allowing the optimizer to sufficiently vary around an Estimated Time of Arrival (ETA).

The introduction of the variable state search grid is particularly relevant for Scenario
#2 (two control variables). As shown in Figure 9, it allows a reduction in the computa-
tional time of more than 95% if compared to the standard optimization performed with
a fixed grid, making this technique attractive for a vehicle communicating with a cloud
environment. It should be noted that a discretization resolution of 5 m was used for the
independent variable, i.e., distance: the higher the discretization resolution (smaller values),
the smaller the numerical errors inherently introduced by a discrete DP. Increasing the in-
terval chosen for the distance discretization, despite degrading the accuracy of the solution,
can be beneficial for the computational time: a preliminary investigation showed that a
10× increase in the distance step can lead to an 11× reduction in the computational time.
The computational times here shown refer to a workstation with the following specifica-
tions: Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz, 64 GB RAM.
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Figure 9. Scenario #2: computational time for the optimal control problem with a fixed state search
grid (grey) and a variable state search grid (light blue). The variable grid allows a reduction in the
computational time of more than 95%.

4. Results

In this section, the improvements in terms of energy consumption and travel time for
Scenario #1 and Scenario #2 are shown. Sections 4.1 and 4.2 show the results for the case
with factor β = 0.5 (see Equation (3)), i.e., the same weight is given to energy and travel
time in the cost function. Section 4.3, instead, shows a sensitivity analysis on the weighting
factor β. For Scenario #1, the vehicle speed was optimized over the entire selected route
in order to assess the performance of the optimization algorithm over different driving
patterns, i.e., urban, rural, and motorway. Instead, since most of the traffic lights are present
in the urban section, the results for Scenario #2 will be shown only in this case. Thus, the
achievable reduction in terms of time and energy reduction will be shown in the entire
driving cycle for Scenario #1 and only in the urban profile for Scenario #2.

4.1. Scenario #1

In this section, the optimization algorithm is applied to Scenario #1. This is aimed at
assessing the benefits that optimizing the vehicle speed can have in a real-world mission
profile, still respecting all the full stops imposed by traffic or infrastructure. Figure 10 shows
the optimized vehicle speed for Scenario #1 (blue line) compared to the Reference Scenario
(black dotted line). It seems that the optimizer chooses an almost constant speed only in
the rural section. In fact, in the urban and highway sections, the vehicle speed tends to
follow as much as possible the lower and upper boundaries, respectively. Figure 11 shows
a zoom on the urban section. As expected, Scenario #1 presents smoother accelerations and
decelerations if compared to the Reference Scenario, although always respecting the full
stops imposed by the infrastructure.

Figure 12 shows the achievable reductions in terms of travel time and energy for
Scenario #1 considering the entire route (see Figure 10). Nearly 30% of energy reduction can
be obtained while decreasing the travel time by almost 10%. These results are achievable
while still respecting all the full stops required by the infrastructure analogously to the
Reference Scenario. Note also that regenerative braking is not considered in this analysis,
so all the energy required for braking is considered lost.
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Figure 10. Scenario #1: optimized vehicle speed compared to the Reference Scenario on the RDE-
compliant route.

Figure 11. Scenario #1: optimized vehicle speed compared to the Reference Scenario on the urban
section of the RDE-compliant route.

Figure 12. Scenario #1: achievable reductions in terms of travel time and energy on the RDE-
compliant route.



Energies 2023, 16, 4121 13 of 19

4.2. Scenario #2

Since the a priori knowledge of traffic lights SPaT can have major benefits chiefly in an
urban environment, the optimization performed by the proposed optimizer will be shown
only in these conditions. As already described, Scenario #2 perfectly reproduces Scenario
#1 but replaces all the traffic stops with traffic lights. Figure 13 shows the vehicle position
as a function of time along with all the traffic light phases. The optimizer chooses the best
speed trajectory in order to cross all the intersections at a green light.

Figure 13. Scenario #2: vehicle position as a function of the time axis along with all the traffic light
phases. The optimizer chooses the best speed trajectory in order to cross all the intersections at a
green light.

As evident from Figure 14, since the SPaT information is communicated to the opti-
mizer, the vehicle speed is corrected over the entire route to never cross an intersection at a
red light. Differently from Scenario #1 (see Figure 11), where the vehicle speed often laid
on the upper boundary when the vehicle was not at an intersection, for Scenario #2, an
almost constant speed is preferred. The simulations show that a stop sign (or in general a
full stop of the vehicle) is detrimental to both the travel time and the energy required. In
fact, the deceleration and acceleration phases preceding and following the full stop of a
vehicle cause a major reason for energy loss that should be avoided.

Figure 14. Scenario #2: optimized vehicle speed compared to the Reference Scenario on the urban
section of the RDE-compliant route.
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A more granular analysis can be done by comparing the characteristic values of the
Reference Scenario with the speed profiles optimized by DP. Table 3 displays average and
max speed values, min and max acceleration values, and the total time in which the vehicle
is stationary during the urban section for all three cases analyzed. The higher vehicle speed
values allow reducing the time required for performing the selected route, while the lower
acceleration and deceleration values allow for drastically reducing the required energy.
The interval of time in which the vehicle is stationary at stops or traffic lights is comparable
for Reference Scenario and Scenario #1, while, in Scenario #2, thanks to the exploitation
of the SPaT information, the vehicle never crosses an intersection at a red light and thus
never stops.

Table 3. Characteristic values of Reference Scenario, Scenario #1, and Scenario #2 on the investigated
urban section.

Reference Scenario #1 Scenario #2

Avg. Speed [km/h] 42 54 49

Max Speed [km/h] 63 76 62

Max Acc. [m/s2] 3.11 1.96 1.96

Min Acc. [m/s2] −3.81 −1.96 −0.98

Standstill Time [s] 349 398 0

As shown in Figure 15, the introduction of smart infrastructure in the simulated
scenario leads to a significant reduction both in terms of travel time and energy. In an urban
environment, the energy required by the vehicle can be reduced by half while decreasing
the travel time by more than 35%. These findings quantify the maximum achievable
reductions in energy and travel time in a framework of connected vehicles able to exploit
V2X information in a smart infrastructure.

Figure 15. Scenario #2: achievable reductions in terms of travel time and energy on the urban section
of the RDE-compliant route.

4.3. Sensitivity Analysis

The sensitivity analysis on the weighting factor was performed to assess the impact
that the variation of the relative weights in the cost function can have on the results.
In Case 1 (β = 0.2) travel time is prioritized at the expense of energy. In Case 2 (β = 0.5)
the same weight is given to travel time and energy (results shown in Sections 4.1 and 4.2).
In Case 3 (β = 0.8) energy is prioritized at the expense of travel time. Figure 16 shows the
Pareto front between energy and travel time for both Scenarios #1 and #2 when varying the
value of the weighting factor, while Tables 4 and 5 provide more granularity by displaying
the numerical comparison of the effect of using different values of β.
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Figure 16. Pareto front between energy and travel time for both Scenario #1 and Scenario #2 when
varying the value of the weighting factor β.

Focusing on Scenario #1 (blue marks), for all three cases, the energy consumed to
perform the cycle is lower than the Reference Scenario one, mainly due to smoother
accelerations and increased cruise traveling time. However, for Case 3 (blue diamond), the
excessively conservative driving style, despite decreasing by half the required energy, leads
to an increase in travel time if compared to Cases 1 and 2. Focusing on Scenario #2 (red
marks), the sensitivity analysis reveals that the introduction of a smart infrastructure (such
as connected traffic lights) can further improve the trade-off between required energy and
total travel time. Moreover, the sensitivity analysis shows that the variation of the weighting
factor in Scenario #2 leads to a much more restrained variation in the energy/time trade-off:
prioritizing time does not jeopardize the benefits in terms of energy and vice versa.

Table 4. Scenario #1: numerical comparison of the effect of different β values on the energy consump-
tion and travel time.

Ref. Case 1 Case 2 Case 3

Energy [MJ] 9.3 8.3 6.6 4.7
−11% −29% −50%

Travel Time [min] 30 22 24 29
−26% −24% −1%

Table 5. Scenario #2: numerical comparison of the effect of different β values on the energy consump-
tion and travel time.

Ref. Case 1 Case 2 Case 3

Energy [MJ] 9.3 4.4 4.3 3.9
−53% −54% −59%

Travel Time [min] 30 18 19 21
−38% −38% −28%

5. Conclusions

Over the next decade, Connected and Autonomous Vehicles (CAV) technologies are
expected to become more commonly available on new vehicles. Although their ultimate
goal is to improve safety and convenience for customers, they can provide significant
information about the planned driver route and the surrounding environment. The knowl-
edge of this information can improve the energy efficiency of a vehicle while reducing,
at the same time, travel time. In this framework, this work assessed the benefits that the



Energies 2023, 16, 4121 16 of 19

introduction of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communica-
tion, integrated with cloud computing, can have in a real-world route in terms of energy
and time savings. The Reference Scenario is a predefined Real Driving Emissions (RDE)
compliant route, while the simulation scenarios were generated by assuming two different
levels of penetration of V2X technologies. The associated energy minimization problem
was formulated and solved by means of a global optimization algorithm, i.e., Variable
Grid Dynamic Programming (VGDP): relying on information coming from V2X, e.g., traffic
lights state, speed limits, distance to travel, etc., a variable state search grid was introduced,
which allows reducing the DP computation burden by more than 95%, if compared to the
standard optimization performed with a fixed grid. For the route evaluated in this paper,
numerical results showed that, in an urban context, introducing a smart infrastructure
along with optimizing the vehicle speed can potentially reduce the required energy by
54% while shortening the travel time by 38%. A sensitivity analysis was performed on the
biobjective optimization cost function to find a set of Pareto optimal solutions, between
energy and travel time minimization. The results of the proposed analysis must be consid-
ered as a benchmark since the simulations were carried out for a simplified urban traffic
network with vehicles in almost free flow, i.e., without direct constraints related to the
preceding or following vehicles, but can be conceptually extended to the case of multiple
vehicles equipped with the proposed algorithm. This work represents the first step of a
broader activity aimed at developing an integrated framework that can exploit remote
cloud computing and V2X information to enhance the fuel economy of HEVs. The cloud-
based controller can be used to generate an optimized target speed that can be followed
in real-time thanks to a low-level controller, such as an MPC or an AI-based algorithm.
It should be noted that a high discretization resolution was used for the independent
variable, i.e., distance: increasing the interval chosen for the distance discretization can play
a key role in making this technique realistically attractive for an online implementation
(a preliminary investigation showed that a 10× increase in the distance step can lead to
an 11× reduction in the computational time). Further work will be aimed at testing the
entire methodology in a cloud computing interface in order to evaluate its potential to
recalculate the optimal velocity profile in response to real-time road traffic information.
Moreover, future work will also consider platoon potentialities to address the practicality
and safety of more vehicles traveling together.
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GLOSA Green Light Optimal Speed Advisory
GHG Greenhouse Gas



Energies 2023, 16, 4121 17 of 19

GIS Geographic Information System
GPS Global Positioning System
HEV Hybrid Electric Vehicle
ICE Internal Combustion Engine
ICEV Internal Combustion Engine Vehicle
ITS Intelligent Transportation Systems
JRC Joint Research Centre
MPC Model Predictive Control
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