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Abstract: The home can be a complex environment to understand, as well as to model and predict,
due to inherent variability between people’s routines and practices. A one-size-fits-all approach does
not consider people’s contextual and institutional influences that contribute to their daily routines.
These contextual and institutional factors relate to the household structure and relationship between
occupants, as well as the working lifestyle of the occupants. One household can consume resources
and live quite differently compared to a similar size household with the same number of occupants
due to these factors. Predictive analysis of consumption data can identify this difference to create
household-specific modelling to predict occupant routines and practices. Using post-occupancy
data from the Fairwater Living Laboratory in Sydney that monitored 39 homes built in a green-
star community, this research has utilised machine learning approaches and a K-Means clustering
method complemented by t-distributed Stochastic Neighbour Embedding (t-SNE) to show how
households follow different daily routines and activities resulting in resource consumption. This
analysis has identified energy usage patterns and household groupings with each group following
similar daily routines and consumption. The comparison between modelling the precinct as a whole
and modelling households individually shows how detail can be lost when aggregating household
data at a precinct/community level. This detail can explain why policies or technologies are not as
effective as their design due to ignoring the delicate aspects of household routines and practices.
These household groupings can provide insight for policymakers to help them understand the
different profiles that may be present in the community. These findings are useful for net-zero
developments and decarbonization of the built environment through modelling occupant behaviour
accurately and developing policies and technologies to suit.

Keywords: residential consumption; energy management; behaviour; practices; energy; modelling

1. Introduction

The built environment contributes a significant portion of total energy consumption
worldwide, playing a major role in the transition to net zero. Household energy consump-
tion contributes to environmental issues with approximately 38% of the total US carbon
emissions generated by direct energy use from the residential environment [1]. Further
adding to the problem is the high variance in household energy consumption that makes
it difficult to reduce this impact across the population. The variance makes it difficult for
energy prediction and management systems, intermittent energy supply, and policymaking
to have a significant impact on reducing energy consumption.

Past research has estimated that up to 27% of current energy use can be saved through
energy efficiency measures [2]. This consists of a combination of technological advances and
behavioural changes [3]. This highlights the importance of understanding and influencing
the behaviour and routines of households to improve energy use and encourage energy
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conservation [4]. Energy and environmental policies have targeted behaviour change to
achieve household energy conservation [5]. This focus on behaviour or practice change is
due to the high potential impact when compared to some technological changes [6]. These
policies can influence energy conservation by changing the way energy is consumed within
the home without investing in expensive technology.

The energy consumed by a residential home is affected by the physical properties of
the house, the outdoor environment, and occupant behaviour, routines, and practices [7].
This outlines the complexity of the residential environment with a great deal of variation
between homes relating to each of these aspects. Estimating energy consumption can
be difficult as people have different comfort requirements, and ultimately, the thermal
environment and occupant practices influence the total energy demand of the home [7].
Previous research has categorised occupant behavioural patterns based on occupancy
status, the number of occupants, the location and activity of the occupants to estimate
energy demand [8]. However, this may differ between households due to contextual or
institutional factors, preventing a uniform understanding.

The residential sector faces the challenge of responding to demand and providing
energy for households with a large diversity of occupant behavioural patterns [9]. Ad-
ditionally, there are great financial barriers to large-scale monitoring, which restricts the
ability to measure these diverse patterns. Advancements in smart meter technology have
made this monitoring available to collect information to conduct occupant behavioural
modelling or load forecasting. This raises an additional challenge with big data analysis
that requires addressing [10,11]. A significant amount of research has been established to
develop smart energy management systems and energy-intensive building systems controls
(i.e., HVAC) [12,13]. Building modelling and automation systems have been developed
using time-series data to achieve HVAC energy efficiency, thermal comfort and improved
air quality [14,15].

Occupant behaviour has been studied extensively, relating people’s daily routines to
social and psychological theories to understand the repetitive nature of people’s lifestyles.
The concept of the Home System of Practice (HSOP) developed from the principles of Social
Practice Theory (SPT) describes how in the home environment, routines are created based
on occupants’ lifestyles and interactions, influencing the consumption of resources [16].
This paper utilises data analytical techniques to investigate the HSOP concept and identify
the different routines people follow when they are at home. The objective of the paper is
to evaluate whether homes within a precinct can be grouped based on their consumption
patterns to provide insight into moving away from a one-size-fits-all solution and towards
looking at the different consumer groups and developing a targeted solution for each of
the groups.

This addressed current gaps in the research, including the need to understand oc-
cupant routines and practices in a systematic framework, linking occupant behaviour
to socio-economic variables, and evaluating the role of the occupant in the effectiveness
of policies [17]. A published systematic literature review has identified there is a lack
of qualitative investigation of behaviour compared to the research into the quantitative
aspect of behaviour [18]. Past work has established smart energy management systems
and reviewed the potential of building system controls for energy-intensive activities (e.g.,
HVAC) [12,19]. This work focuses on the quantitative approach to smart energy systems
and modelling energy consumption using predictive models [14,15]. These models are
not built on using principles of HSOP and SPT and hence do not consider the complex
nature of occupant behaviour. Ref. [20] showed the potential of using these social theories
to complement the analysis from predictive models to evaluate energy usage patterns.

This paper will link the quantitative data with the qualitative data collected from
the Fairwater Living Laboratory, a four-year study in Australia. The paper will use these
data to identify household groupings within the Fairwater Living Laboratory that follow
similar daily routines and energy consumption profiles. This paper identifies potential
household groupings based on their energy behaviour and reinforces the influence of
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occupant behaviour on energy consumption. The findings contribute to the development of
smart energy management systems by demonstrating that the end user must be considered
during the design stage. This paper recommends adapting and changing the design and
operation of these systems based on user groups’ consumption patterns that naturally
occur within a residential energy system (i.e., precinct).

2. Theoretical Background

This section will review the social theories regarding the drivers of energy consump-
tion within the home with a focus on the influences of occupant behaviours on household
energy consumption. This will support the evaluation of the Fairwater Living Laboratory
precinct data.

2.1. Home System of Practice

The evolution of behavioural and psychological models and theories of consumers
have aimed to understand the behaviours of occupants at home. Some models and theories
include the Theory of Cognitive Dissonance [21], the Theory of Planned Behaviour [22],
and the Social Practice Theory (SPT) [23]. These models have been adopted by researchers
to explore household energy consumption routines and practices and identify factors
that influence this consumption [24–28]. From this, intervention strategies have been
developed, aimed at changing people’s energy use behaviour resulting in energy savings
and conservation [29–34].

These theories and models are used in this paper as backbones for the development
of the methodology and data analysis. Social Practice Theory aims to understand the
way energy is consumed within the home to explain the temporal aspects of residential
consumption [35]. This theory discusses how individuals live in a routinised way and
perform similar activities at similar times resulting in consistent energy consumption [36].
The theory can assist in identifying practices that relate to significant resource consumption
and understanding why people perform these practices in the way that they do [37–40]

The HSOP aims to provide an in-depth understanding of the interlocking relationships
between multiple systems of social practices within a home [16]. A household occupied by
several individuals can consist of many different routines and lifestyles that each individual
follows. Individuals perform daily practices sequentially, making up their typical daily
routines [16]. In some cases, the practices are shared among all the individuals within the
home, and in other cases, they can be specific to the individual.

2.2. Occupant Behaviour and Lifestyles (Variation/Fluctuation)

Occupants play an important role in the built environment, with many methodolo-
gies being developed to identify and evaluate behaviour [41–43]. The impact on energy
consumption is rather complex with many identified factors and determinants that range
between households [44]. The interrelationship between routines, practices and resource
consumption is linked back to the HSOP to explain the nature of the consumption.

The influence of occupant routines and lifestyles on the way energy is consumed
within the home has been investigated in many research articles [44]. The behaviour
of occupants can influence their consumption profiles differently resulting in variation
in consumption across households [45]. Within the literature, there is a focus on how
changes in occupant behaviour can impact their energy consumption [17,18,32,46]. The
underlying principle of this focus is to encourage occupants to follow lifestyles and change
their behaviour to positively influence the way they consume energy. However, a major
limitation is a challenge of achieving permanent change in behaviour, with many studies
observing occupants reverting to their normal behaviour patterns after some time [47].

The influence of behaviour and inherent variation in household energy consump-
tion results in the home environment being a complex system that is difficult to model.
Measuring energy consumption and developing typical consumption profiles for house-
holds [48,49] can make it possible to accurately model these environments [49,50]. This
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modelling can make assessments and predictions of energy consumption that can be useful
for policymakers [24,51]. Additionally, predictions and forecasting can assist household or
building energy management systems and increase the effectiveness of renewable energy
generation technologies. However, these models can vary in accuracy when they do not
consider varying occupant behaviours and lifestyles. The reasons for energy management
systems and automation not being as effective due to the lifestyles and behaviours of the
occupants are explored further in [52]

Other research has tried to develop behaviour models to quantitatively evaluate the
impact of occupant behaviour [18,53]. This reinforces the influence of occupant behaviour
on how energy is consumed within the residential sector. The analysis of the energy data
from four buildings in Seattle from 1987 to 2002 demonstrated the impact of different
lifestyles on energy consumption [54]. This is supported by the use of clustering analysis
to examine the effects of different behaviour patterns on energy consumption showing
significant attributes of the four clusters identified [18]. Further insight was provided by
considering occupants’ schedules and family types, and lifestyle changes such as increased
leisure time at home resulted in energy consumption changes [55]. These studies emphasise
the influence of occupant behaviour and how the resultant energy consumption can fluctuate.

2.3. Occupant Behaviour Identification and Classification

Personal information about households and their characteristics can assist in evalu-
ating behaviour patterns and classifications. Typically, this information includes gender,
age, number of children, marital status, employment status (including working days), and
income [7,29,49,53,56–59]. There are drawbacks to classifying behaviour on this informa-
tion alone because there is no guarantee that similar personal characteristics will result
in similar behaviour patterns [60]. It is difficult to classify behavioural patterns when
data are collected through monitoring and surveying as the more complicated human
characteristics such as personality, opinion, and emotional status are difficult to gauge
through surveys [61]. This previous work supports the complex nature of the household
environment and the uniqueness of each household in the way they live and consume energy.

Previous studies have been conducted that used clustering to recognise occupancy
patterns. Four working occupancy patterns were identified in office buildings using this
approach [62]. Occupant behaviour simulations have shown the link between the number
of occupants and the energy demand of thermal and ventilation services [49]. Secondly,
these simulations connected the use of artificial lighting, HVAC, and other appliances
to occupancy patterns [34,63,64]. This paper adopts this clustering approach to identify
common occupant behaviours in a residential precinct to evaluate whether households can
be grouped based on their typical consumption and behaviour patterns.

Table 1 provides a summary of the work conducted in the literature and identifies the
research gap that this paper aims to fill.

Table 1. Summary of the energy themes and past work related to this paper.

Energy Themes Work Done

Social

The social aspect of energy relates to understanding the way energy is consumed within the home and the
temporal aspects of this consumption. Past work has focused on developing models and understanding the
household practices that result in energy consumption. This has developed the Home System of Practice to
understand the household environment and occupants’ routines and lifestyles.

Technology

The development of technology and smart energy systems aims to provide a solution for energy supply in this
energy transition. Ideally, these systems influence the way energy is consumed through modelling occupant
behaviour and predicting their routines and lifestyles. However, these systems are limited in their
effectiveness and performance in influencing household energy consumption.

Research Gap
This paper explores these two energy themes by evaluating energy behaviours within a precinct and
identifying user groupings based on their consumption patterns. These findings are linked to management
systems and discuss the importance of human-centric designs that consider the behaviour of the occupants
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3. Methods

The following section describes the process undertaken in this paper, including the
strategy for data collection, and the calculation and analysis undertaken.

3.1. Living Laboratory

This paper uses data collected from the Fairwater Living Laboratory (FLL) project
based in the suburb of Blacktown, Sydney, New South Wales, Australia. This project was
developed to evaluate the effectiveness of ground source heat pumps in residential homes
to reduce energy consumption compared to typical heating and cooling systems. The FLL
consisted of a sustainable housing precinct that was awarded the top 6-star Green Star
Communities Rating under the Green Building Council of Australia’s accreditation scheme.
The precinct consists of 850 homes with 39 of the homes subjected to detailed monitoring
as a part of the study between 2019 to 2022.

This project used a multi-method approach that collected social and technical data of
the occupants to provide information on the way the occupants consumed resources. These
monitored homes were all owner-occupied and ranged between 2-to-5-bedroom houses.

Each home had its electrical energy use monitored at a circuit level, as well as the
indoor environmental conditions such as the indoor temperature and humidity. The circuits
that were monitored included the mains electricity, air conditioning, lights, power, oven,
solar inverter, battery (if applicable), water (if applicable), garage, and loft (if applicable).
These energy data were collected at 30 min intervals between 1 July 2019 to 1 January 2022.

3.2. Calculation Method

The energy data were used to identify groupings in the FLL based on the typical
daily energy profiles of the 39 homes. These profiles were then grouped based on their
shape and magnitude to evaluate whether homes within a precinct consume similar daily
energy profiles. This method of analysis aims to provide better insight into precinct energy
consumption compared to treating the precinct as a whole system. This assessment seeks
to show the information that is lost or hidden when assessing the precinct performance of
the whole system (aggregating household energy data) instead of breaking the precinct
into different systems (household groupings).

The paper followed a three-step assessment of the energy data collected from the FLL:

1. Statistical analysis

The analysis started by using simple statistical methods to show the difference in
energy consumption across households at a high level. The time series data were aggregated
into six categories: ‘Early Morning’ (00:00 to 05:00), ‘Morning’ (05:00 to 08:00, ‘Late Morning’
(08:00 to 12:00), ‘Afternoon’ (12:00 to 16:00), ‘Late Afternoon’ (16:00 to 19:00) and ‘Evening’
(19:00 to 00:00) to reduce the resolution and complexity of the data. The key metrics that
were used included mean and standard deviation for each defined period. The analysis
then focused on two households as case studies to gain a better understanding of the
findings from this method of analysis. This highlights the different insights that can be
gained from assessing the way energy is consumed at a precinct level and a household
level. Simplifying the data into these periods and aggregating the household energy data
into one dataset tells a high-level story of the precinct’s performance and the periods where
consumption is high and low. However, it lacks detail and understanding of occupant
patterns and lifestyles that are required when developing policies and energy technology.

2. k-Means clustering

The energy data collected from the study homes were analysed and assessed in two
ways. The first way involved aggregating and summing all the individual household energy
data into one dataset that represented the total energy consumption from the precinct as-
a-whole. This dataset was used as a baseline for this methodology to demonstrate the
patterns that can be identified from a precinct perspective. The dataset was analysed
through a K-means clustering algorithm to recognise these patterns. This technique is
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widely used in electricity analysis to identify variations in energy profiles and to forecast
consumption [31,33,44,46,48,53,65–67]. This unsupervised approach to grouping the data
into clusters aims to minimise the distance between all points of their cluster centre [68]. A
detailed explanation of this approach can be found in [69]. The K-means clustering steps
can be summarised below:

i. Select ‘k’ number of initial cluster centres.
ii. Calculate the distance of each data object to each cluster centre and assign data objects

to specific clusters that have the closest distance.
iii. Recalculate the centres for all clusters.
iv. Iterate steps ii and iii until the data object assigning does not change.

The downside to this approach is the selection of the number of initial cluster centres.
This selection can impact the outputs and interpretability of the results. This selection
can be performed in numerous ways with this paper using the NbClust package in R to
determine the best number of clusters [70]. The nature of the data allows for this analysis to
be complimented with visual inspections of the clusters to confirm each cluster is different
and unique. Each cluster for this paper represents a typical daily energy profile, so this
inspection focuses on the total amount of energy consumed and the magnitude and shape
of the peaks in the profile (if present).

The precinct aggregated dataset was assessed using this approach to evaluate the
typical daily energy profiles of the precinct (as shown in Figure 1). The number of clusters
identified indicates the variability of energy consumption throughout the study period with
a high number of clusters representing high variability. Each cluster relates to a specific
daily energy profile that is followed by the precinct. To relate this to the HSOP, each cluster
represents a precinct system of practice (PSOP) where peaks occur due to the majority of
households following the same set of collective practices. This is expected in some cases as
some practices are ingrained in people’s routines due to societal expectations and trends,
and common institutional rhythms resulting in common times of performing practices
and consumption behaviours throughout a precinct. For example, a common institutional
rhythm includes the typical 9 a.m.–5 p.m. working lifestyle that results in people leaving
their homes in the morning and returning in the late afternoon. Additionally, a societal
trend can include family dinnertime where food preparation and individuals come together
to consume food at a certain time of day. The commonality of these practices is evaluated
by this analysis of the precinct’s data and identifies the typical profiles that are observed.
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The second part of this analysis is focused on the individual household environments
that make up the precinct. In SPT, these environments are complex and contextual to the
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occupants, hence two different households can consume energy differently. This analysis
identifies these cases where households consume energy differently by identifying typical
daily profiles and assigning households into groups that follow similar daily profiles. The
following steps were followed to identify these groups:

i. Each household’s energy data were assessed using the k-Means approach as discussed
previously to recognise typical energy patterns for that household. This produces
typical patterns for every home in the study.

ii. These clusters (energy profiles) were aggregated into one dataset.
iii. This dataset was assessed by the k-Means approach to classifying these clusters into

groups.
iv. Each home was assigned to a group that contains their cluster (a home can be assigned

to multiple groups).

3. t-distributed Stochastic Neighbour Embedding (t-SNE).

Another approach to recognise patterns within the energy data is to use t-Distributed
Stochastic Neighbour Embedding [71]. This technique can visualise high-dimensional
data projecting high-dimensional data to 2 dimensions so that it can be plotted in a 2D
plane. The aim is to use a local neighbour-preserving projection: Two points that are close
in-high dimensional space will be still close in the projected 2D space. It can organise these
high-dimensional data points in a two-dimensional space so that data points that are highly
related by many variables are likely to be close to each other. The energy data collected are
in a high dimension, requiring t-SNE analysis to reduce this dimension and visualise the
data more clearly and understandably.

i. This analysis follows these iterative steps:
ii. Constructs a probability distribution on pairs in higher dimensions such that similar

data objects are assigned a higher probability and dissimilar objects are assigned a
lower probability.

iii. Replicates this probability distribution on a lower dimension (e.g., 2-dimensional
space) iteratively until the Kullback–Leibler divergence is minimised.

The Kullback–Leibler divergence is the measure of the difference between the proba-
bility distributions from Step i and Step ii.

For this analysis, the algorithm used the air-conditioning (AC) circuit dataset to
evaluate the energy patterns of the occupant’s heating and cooling practices. The AC circuit
was the focus of this analysis as the qualitative data collected (survey responses) from the
FLL provided insight into the heating and cooling practices conducted by the occupants.
This information is used alongside the AC energy data to identify groupings within the
FLL based on their AC usage and heating and cooling behaviours.

The dataset used included the indoor area of each home, the AC usage throughout
the year, and the self-reported behaviours and comfort levels of each occupant (e.g., their
self-reported comfort during the summer period). Additionally, the dataset was broken
down into summer and winter periods to assess whether groups can be identified based on
their winter and summer practices.

4. Results

The results section discusses each method of analysis described in the methodology
section separately. Each method assesses the energy data on a different level, with the
findings becoming more detailed as the method of analysis becomes more complex.

4.1. Statistical Analysis

The initial data analysis undertaken was a high-level analysis using a statistical ap-
proach to the precinct data to show the general trend in daily energy consumption. This
approach was used for two different homes as a case study to show the additional in-
sights by rolling down into household-specific analysis. This shows the variation between
households that could not be identified by the precinct analysis alone.
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4.2. Precinct Analysis

A simple statistical analysis approach to the energy data was used to show how energy
is consumed across the precinct. The mean consumption and relevant standard deviation
were calculated across the whole study period for each category as seen in Figure 2. This
shows when energy is typically consumed by the precinct and how this varied throughout
the study period. The consumption is high in the evening, almost double the consumption
of any other period of the day. However, the evening period observes a large standard
deviation showing that the energy consumption during this period can change significantly
depending on the day of the year, while the other periods had smaller standard deviations
demonstrating that there is less variability during these times of the day. The standard
deviation offers insight into how repetitively the precinct consumes energy. Hence, the
evening period can observe large fluctuations in the amount of energy consumed by the
precinct while the morning period observes smaller fluctuations.
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The simple diagram presented does not show much information relating to the de-
tails of the precinct’s energy consumption. The aggregated data do not provide much
insight into how energy consumption varies throughout the year, and it would not be
appropriate to develop energy management systems using this information. Addition-
ally, reducing the resolution of the data reduces the complexity of the data; however, it
removes any household-specific information and removes any contextual characteristics of
the energy data.

4.3. Household-Specific Analysis

Conducting a similar analysis of the household-specific energy data can provide
insight into the contextual characteristics of each household. An example of how energy
consumption can vary significantly between two households is shown in Figure 3, where
two households have been selected from the thirty-nine for use in this case study. House
A consumes less energy during the day with more consistency (low standard deviation)
compared to House B. The relevant household characteristics for these households include:
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Figure 3. Example of the statistical analysis for two households’ energy data (House A to the left,
House B to the right).

House A: One occupant works from home in a two-bedroom house with an internal
area of 265 m2. The occupant reported that the household was ‘too hot most of the time’
resulting in an ‘unbearable’ indoor environment.

House B: Four occupants with two people who work from home and two people
who are full-time students in a four-bedroom house with an internal area of 157 m2. The
occupants were more comfortable with their indoor environment.

The energy consumption is typically representative of the number of occupants in
the home with more occupants resulting in higher consumption. This is observed in these
two homes. House B has higher consumption during the day (Morning, Late Morning and
Afternoon), which can be linked to the lifestyles of the occupants, who are mostly home
during the week.

Even though House A is significantly bigger in the internal area than House B, House
A does not consume more energy. This demonstrates that the impact of the lifestyle of
each occupant has a greater impact on household energy usage than the physical aspects of
the home.

4.4. K-Means Clustering Analysis

This section discusses the results of the K-means clustering analysis from the energy
data starting with the clusters identified for the precinct data (aggregated energy data
from all households). The discussion continues with the clustering results for individual
households and the number of clusters identified for each home with an example household
to visualise the results. Lastly, the household clusters were assessed to identify common
energy profiles by comparing the clustering analysis for each household. The purpose of
this analysis is to show the possible household groupings that occur in the precinct based
on their typical energy profiles, as identified through the clustering analysis.

4.4.1. Precinct Clustering

The energy data from each household were aggregated and separated into daily
profiles. These profiles were evaluated using the K-means clustering approach to identify
the precinct’s typical daily energy profiles. This approach identified four clusters that
the precinct-as-a-whole followed throughout the study period. These clusters are shown
in Figure 4 and demonstrate the variation in energy consumption that is expected due
to seasonal changes. Clusters 1 and 4 align with the winter season, with the Fairwater
residents using the AC in the morning and evening. Clusters 2 and 3 align with the summer
season, with the AC being used only in the evening.
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Figure 4. K-Means result for the whole precinct using aggregated energy data from FLL. The black
lines represent the data objects that were assigned to that cluster and the red lines represent the
energy profile for that cluster. The four figures show the clustering algorithm identified four clusters
within the energy dataset representing four different energy profiles. Cluster 1 and 4 were found to be
representative of the winter season while Cluster 2 and 3 were representative of the summer season.

4.4.2. Household Clustering

The next step was to evaluate the variation in each home’s energy consumption
instead of aggregating the data to represent the precinct. Each dataset was manipulated
and subjected to the K-means clustering method to identify the typical daily energy profiles
of each home. This was conducted for each of the homes, which provided insight into how
energy was used differently across the precinct.

Additionally, the data were broken down into the monitored circuits associated with
the lights, AC, oven, general power, and the aggregation of all these circuits. This was
conducted to demonstrate which household practices are repetitive and routinised and
which practices vary significantly during the study period. These clusters per household
are summarised in Table 2.

The number of clusters provides insight into the variation of the energy consumption
from that specific circuit. A high number of clusters represent that the magnitude and
timing of circuit-specific energy consumption varies a lot throughout the study period.
For example, the analysis for House 1 identified 15 different clusters for the oven circuit
indicating the occupants use their oven in fifteen unique ways throughout the year. While
for House 22, the analysis only identified two clusters, showing the occupants follow
consistent routines when using their ovens.

This paper links the number of clusters identified by the algorithm to the routine
nature of the household. A small number of clusters describes a household that does not
vary in its routines and consistently consumes energy at the same time of day throughout
the study period.
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Table 2. Number of clusters identified by the K-means approach for each circuit for each study home.

House ID
Number of
Occupants

Mean Daily Consumption
(kWh)

Number of Clusters Identified

Total Energy Usage Lights Oven Power AC

1 1 11.5 3 4 15 2 12

2 2 15.8 4 7 8 4 9

3 3 14.1 3 4 7 3 4

4 3 30.6 3 2 11 2 4

5 5 26.5 3 6 11 3 7

6 4 11.8 2 8 10 2 8

7 3 16.9 2 4 15 2 8

8 3 13.9 5 2 7 14 4

9 4 13.8 5 2 11 2 15

10 2 20.9 7 4 14 2 6

11 3 24.4 2 3 15 2 3

12 4 26.7 2 7 15 2 4

13 2 15.9 5 7 12 2 7

14 5 15.4 2 6 11 2 7

15 4 14.0 3 4 12 2 12

16 3 20.1 9 5 7 3 9

17 1 22.3 2 8 11 4 2

18 3 19.7 13 7 10 12 15

19 1 12.1 3 2 5 2 7

20 4 12.5 2 3 15 2 13

21 3 9.8 3 3 11 2 10

22 2 8.7 2 2 2 3 6

23 5 19.5 5 9 11 9 5

24 3 18.3 4 2 14 5 14

25 4 11.7 3 4 15 2 12

26 4 25.8 5 2 15 2 10

27 1 4.5 2 5 4 5 5

28 3 10.6 11 4 15 5 14

29 3 26.0 2 3 11 3 2

30 1 9.1 3 2 13 7 6

31 2 15.4 6 5 13 6 13

32 2 12.5 2 3 7 11 5

33 3 10.9 2 2 15 15 11

34 3 14.7 2 3 9 2 9

35 3 9.7 3 8 13 2 12

36 4 12.8 4 8 - 2 8

37 4 22.2 3 4 6 2 7

38 3 8.3 5 13 4 12 6

39 4 13.3 3 2 4 5 7

Mean 3.8 4.6 10.6 4.3 8.2

Standard Deviation 2.5 2.6 3.8 3.7 3.7

These results offer insight into the variability of energy consumption across the homes
in the precinct. The most variable observed consumption was from the oven circuit with
an average of 10.6 clusters and a standard deviation of 3.8 across the study homes. This is
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an interesting finding showing that for these study homes, cooking practices were more
variable compared to other practices such as heating and cooling.

The next most variable consumption was related to the AC usage in each home. On
average, the homes would use their AC system in 8.2 different ways throughout the study
period with a standard deviation of 3.7. This finding relates to the heating and cooling
practices and the thermal comfort of the occupants. It is well-known that occupants use
their AC systems differently to achieve thermal comfort within the home. This reinforces
this conclusion showing the AC circuit consumes energy variably. However, further
investigation into this analysis shows that some households are quite repetitive with their
AC usage, with some homes following two or three different clusters.

4.4.3. Case Study: Household Clustering

A case study of the K-means analysis is included in this paper to give the reader a
better idea of what the clusters look like on a household level. This will provide a better
understanding when it comes to grouping these households based on these clusters.

Figure 5 shows the clustering results from one of the households with five unique
clusters identified using the whole study period’s energy data. The comparison of these
clusters shows how peaks in energy consumption vary between each cluster. Cluster 2
observes a peak in consumption at 6 AM while Cluster 4 shows minimal consumption in
the morning with two peaks in the afternoon between 3–4 p.m. and 9–10 p.m. Alternatively,
Cluster 3 shows a slight morning peak followed by a sharp peak in consumption between
6 p.m. and 8 p.m. This reinforces the complex household environment and the variation
in energy consumption throughout the occupancy of the home. This variation can result
in peak consumption periods occurring at different times of the day, which may impact
energy supply and demand management systems. Further investigation shows Clusters 3
and 5 frequently occur during the winter period, and Clusters 2 and 4 occur during the
summer period. This indicates when the peak consumption period typically occurs during
the year for this household.
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Figure 5. Example of K-Means clustering for one FLL household. The black lines represent the data
objects that were assigned to that cluster and the red lines represent the energy profile for that cluster.
The five figures show the clustering algorithm identified five clusters within the energy dataset
representing five different energy profiles. Each cluster is unique with peaks in energy consumption
occurring at different times of the day showing the variation in occupant routines.
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4.4.4. Grouping Household Clusters

After evaluating the different clusters for each home, the next step was to recognise
common clusters to begin to group households based on similarities in the way they
consume energy. This analysis was only based on clustering the total consumption of the
households and not assessing the circuit-specific data. All the clusters were aggregated
together and subjected to the k-means algorithm to find patterns amongst all the previously
identified clusters. These patterns are identified based on the shape of the daily energy
profile. The algorithm identified eight unique clusters within the individual household
clusters identified previously. These clusters are shown in Figure 6. Each of the eight
clusters has a unique daily energy profile with the peaks occurring at different times of the
day. This reinforces how some households share common routines and lifestyles resulting
in homes consuming energy similarly throughout the day. The figure is complimented by
Table 3, which displays which households follow which energy profile.
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Figure 6. K-Means clustering identified using each household’s clustering results. The black lines
represent the data objects that were assigned to that cluster and the red lines represent the energy
profile for that cluster. The eight figures show the clustering algorithm identified eight clusters
within the energy dataset representing eight different energy profiles. Each cluster is unique with
peaks in energy consumption occurring at different times of the day showing the variation in
occupant routines.

The most common cluster was Cluster 6, which showed minimal consumption during
the day, as seen in Table 4. This profile represents the days when the majority of the
household occupants did not consume much energy. This can be the result of the occupants
not relying on the air conditioning to achieve thermal comfort (due to mild temperatures
during spring and autumn). The second common cluster that is followed during the
study period is Cluster 1, which exhibits minimal consumption in the morning with a late
afternoon peak between 6 p.m. and 9 p.m. Cluster 2 was the next most common, with
the cluster exhibiting a peak in consumption in the morning between 6 a.m. and 9 a.m.
with minimal consumption in the afternoon. These two clusters show two different polar
opposite days where the energy consumption for the precinct is peaking in the morning or
the late afternoon.
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Table 3. Individual FLL homes matched to the eight Household Clusters identified previously. A tick
represents that the home follows that Household Cluster, and no tick means that the home did not
follow that cluster.

House ID
Household Cluster

1 2 3 4 5 6 7 8

1 X X X

2 X X X X

3 X X

4 X X X

5 X X X

6 X X

7 X X

8 X X X X

9 X X X X X

10 X X X X X X

11 X X

12 X X

13 X X X X

14 X X

15 X X X

16 X X X

17 X X

18 X X

19 X X

20 X X

21 X X X

22 X X

23 X X X X

24 X X X

25 X X X

26 X X X X X

27 X

28 X X X X

29 X X

30 X X X

31 X X X X X

32 X

33 X X

34 X X

35 X X

36 X X X

37 X X X

38 X X X

39 X X X
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Table 4. Frequency of matches for each household cluster.

Household Cluster 1 2 3 4 5 6 7 8

Number of homes 22 18 17 2 8 34 3 8

This insight into which households follow these two different energy profiles and
when will assist the performance of energy management systems. For example, ten house-
holds only follow Cluster 2 during the study period showing that these households do
not follow Cluster 1. Alternatively, fourteen households only follow Cluster 1 and not
Cluster 2. This identifies two distinct groupings in this study where group 1 contains the
fourteen households that follow Cluster 1 and group 2 contains the ten households that
follow Cluster 2. Some households can be placed in both, with the results showing eight
households that followed both Clusters.

This discussion and allocation of groups can continue to include the households that
follow Cluster 3 as shown in the table below. There are seven different ways to subset the
households based on Clusters 1, 2 and 3 results. Cluster 3 observes minimal consumption
in the morning with a broad long peak in the early afternoon to late afternoon (between
1 p.m. and 8 p.m.). Seventeen homes follow either Cluster 1, 2 or 3 only with no crossover.
These households are consistent in their consumption, hence the peaks can be predicted to
assist the performance of energy management systems. This insight can continue to include
households that follow Clusters 1 and 2, which implies that these homes do consume energy
in the early afternoon (i.e., Cluster 3) (Table 5). Each iteration of the results can identify
unique groupings, and the insights can be used to develop better prediction technology
and incorporate the results into the design of management systems.

Table 5. Number of households allocated to Clusters 1, 2 and 3.

Subset Number of Households

Cluster 1 only 8

Cluster 2 only 6

Cluster 3 only 3

Clusters 1 and 3 6

Clusters 1 and 2 4

Clusters 2 and 3 4

Clusters 1, 2 and 3 4

The results of this grouping relate to the purpose of this paper to confirm the presence
of household groupings within a precinct. Furthermore, these groupings can be made
based on the typical energy profiles of the household, with one grouping consistently
consuming energy in the morning and not the afternoon, while another grouping is the
polar opposite and only consumes energy in the afternoon.

4.5. t-SNE Analysis

The next part of the analysis moves away from the K-means algorithm and utilises a
t-SNE approach for this high-dimensional dataset. The inclusion of this second part of the
analysis offers a direct visualization of the high-dimensional data being more understand-
able for the reader to understand the concept of grouping homes into clusters. The k-means
offer better clustering results; however, the results are difficult for readers to understand.

This unsupervised algorithm is a non-linear dimensionality reduction algorithm that
is often used to explore high-dimensional data. It can map these data and identify patterns
based on the similarity of data points with multiple features. This research collected
survey responses from the study homes to gain insight into their self-reported routines and
practices, including their motivations relating to energy consumption.
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4.5.1. Overall AC Groups

The first approach was to calculate the average AC consumption per household
throughout the study period, as well as the average consumption during the summer and
winter. These quantitative data were combined with household characteristics such as
the internal area, number of bedrooms, and number of occupants, and with self-reported
routines and practices from the survey responses including the reliance on the AC to
achieve thermal comfort and self-reported comfort inside the home during summer and
winter. The objective of this analysis was to evaluate whether the t-SNE algorithm could
identify household groups based on this information and link the groups to occupant
behaviour and experiences.

The analysis recognised six different groups in this high-dimensional dataset as seen
in Figure 7. The figure maps out each house onto an arbitrary x-y plot to provide a visual
representation of the different groups identified by the algorithm. Each cluster is circled to
distinguish the different groups. Each group is named, and the number of households in
each group is counted and shown in Figure 7.
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Figure 7. X-y representation of the t-SNE results for the AC energy data analysis. The dots repre-
sent each household in the study and the location on the x-y axis is dependent on the input data
(i.e., energy consumption data). The closer the dots are together, the more common the households
are with each other. Each cluster of dots are circled and numbered to show the potential number of
household groups identified from the t-SNE analysis.

The households were separated into their groups with the dataset averaged and
summarised for each group as shown in Table 6. This table shows how each group had
different AC consumption per area, and different summer and winter consumption. This
outlines how the households can be grouped based on their AC consumption, as well as
how much they rely on the AC in the summer and winter to achieve thermal comfort. A
description of each group is provided in Table 7, providing insight into how each group was
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created by the algorithm. For example, Group 1 has a relatively high AC usage with a larger
internal area, and the occupants reported in the surveys that they were very comfortable in
their homes during the summer and winter months, while groups i, iii and vi used their AC
less and reported a lower thermal comfort rating in their survey responses. This indicates a
possible link between the thermal comfort experienced by the occupants and the reliance
on their AC.

Table 6. Quantitative and qualitative data for the six groups identified by the t-SNE results.

Group House Area (m2) Energy per Area
(Wh/m2)

Summer AC
(kWh)

Winter AC
(kWh)

Self-Reported
Comfort in Summer

(scale of 1 to 7)

Self-Reported
Comfort in Winter

(Scale 1 to 7)

i 244 2 0.49 0.89 6 6

ii 205 1.1 0.30 0.37 5 5.3

iii 194 0.9 0.22 0.31 4.7 4.6

iv 132 1.5 0.23 0.30 5.6 5.4

v 171 1.3 0.31 0.33 4.4 4.5

vi 256 0.5 0.15 0.20 5.5 5

Table 7. Description of the six groups identified by the t-SNE analysis.

Group AC Internal Area Comfort Description

i High Large Very High High AC users with a large internal area with occupants report a
high thermal comfort rating in the summer and winter.

ii Medium Large High Medium AC users with a large internal area with occupants report a
high thermal comfort rating in summer and winter

iii Low Large Medium Low AC users with a large internal area with occupants report a
medium thermal comfort rating in summer and winter

iv Low Small High Low AC users with a small internal area with occupants report a
high thermal comfort rating in summer and winter

v Medium Small Medium Medium AC user & small house

vi Very Low Large High Very Low AC user & a big house

This assessment shows a correlation between occupants’ comfort and their strategy for
achieving thermal comfort. Each household has different routines and practices that they
follow when experiencing discomfort within their home. Identifying the households that
rely on energy-intensive means such as using the AC to heat or cool their homes can help
in recognizing homes that will therefore consume more energy. These results show how oc-
cupant practices impact energy consumption and how these can vary between households.

4.5.2. Summer AC Groups

The cooling practices of the occupants are next investigated by analysing AC usage
during the summer. This provides a greater in-depth assessment of how cooling practices
vary throughout the precinct and whether further clustering and grouping can be identified
for the summer period. This approach only assessed the days when the AC was turned
on. The energy data from the AC circuit were filtered to only include readings above
0.05 kWh. Any measurements under 0.05 kWh represented times when the AC was on
standby, consuming minimal energy.

The t-SNE analysis identified two groups, as seen in Figure 8. The red line separates
the two possible groups, with the shading of the dots representing the self-reported strategy
that the occupants follow to achieve thermal comfort. The survey asked occupants what
activities they perform to feel comfortable in their homes during hot and cold days. These
included turning the AC on, opening a window, changing clothes, having a hot or cold
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drink or having a shower. Of these options, turning the AC on is the most energy-intensive
hence this strategy would be visible in the energy data. The figure separates lighter dots
(below the red line) and darker dots (above the red line) showing a grouping based on the
households’ cooling strategies.
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Additionally, the households were asked to report their reasons when deciding to use
their AC less frequently. These reasons included trying to reduce the household’s carbon
footprint, reduce energy costs, the household being comfortable in the summer and winter
without AC, the occupants preferring natural ventilation and fans or they do not mind the
variation in indoor temperature. These responses relate to the occupants’ motivation to
reduce their AC reliance and offer insight into why households use AC differently.

The figure is supported by Table 8, which provides the context of each group identified
by the t-SNE analysis. The relevant context involved the thermostat setting, self-reported
reasons for using the AC more or less frequently, self-reported reliance on AC and their
self-reported comfort within the home. Group 1 consumed more energy with a lower
thermostat setting during the summer, which is expected as the AC will consume more
energy trying to cool the house down to that lower setting. Additionally, Group 1 reported
fewer reasons for trying to use AC less in their households compared to Group 2. Fewer
homes in this group reported that they were trying to reduce their carbon footprint and
their energy bills. These homes also reported the occupants were not comfortable within
their homes during the summer and winter without the AC being on, indicating they
rely on AC a lot more to achieve thermal comfort. This is supported by Group 1 homes
reporting they have a high reliance on AC for thermal comfort while Group 2 reported they
try to perform other practices to cool down in summer.
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Table 8. Quantitative and qualitative data for the six groups identified for summer AC energy data.

AC Usage
(kWh/m2)

Thermostat
Setting (deg C)

Number of Reasons to
Use AC Less Frequently

Reliance on AC for
Thermal Comfort

Self-Reported
Comfort

Group 1 0.05 22.29 2.32 2.32 5.42

Group 2 0.04 23.21 2.75 3.58 4.25

This analysis observed that homes that used their AC systems more often reported a
better comfort rating in their survey responses. Group 1 homes consumed more energy
from their AC usage but reported very high comfort ratings while Group 2 reported
lower comfort ratings but consumed less AC energy. This indicates a difference between
occupants’ motivation and desire to be as comfortable as they can be while other occupants
are happy with being moderately comfortable. Furthermore, it outlines a connection
between comfort and personal values, where some occupants sacrifice their comfort to
reduce their energy consumption as they value reducing their carbon footprint, energy
bills, etc. Group 2 reported that they consider reducing their AC use while at home for the
reasons stated previously, even though they report moderate comfort levels. They have
access to a method for achieving higher comfort levels by using their AC more but it was
observed that their values are stronger than their desire to achieve higher comfort levels.

4.5.3. Winter AC Groups

A similar analysis was conducted for the winter season where the AC energy data
were filtered to only include readings above 0.05 kWh. The t-SNE results observed the
households being separated into three different groups, as seen in Figure 9. Similar to
the summer analysis, the figure shows the different groups containing different colour
shadings. The shadings represent the household’s winter strategy for achieving thermal
comfort and how much they rely on the AC to do this.
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red lines shows the differentiation between the three groups of households identified by the analysis.
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Group 1 has the highest AC consumption per internal area, which is supported by
their thermostat being set to 23.1 deg C on average as shown in Table 9. Similarly, Group 3
has a relatively high AC consumption and a higher thermostat setting (23.8 deg C) for the
winter periods. These two groups demonstrate the impact of the thermostat setting on the
overall consumption of the household. The thermostat setting can be linked to occupant
behaviour and their desire for thermal comfort within the home. A more extreme setting
can be associated with occupants who value their comfort and have a strong desire to
achieve comfort quickly when temperatures are high or low. Alternatively, Group 2 uses
their AC less and sets their thermostat much lower relative to Groups 1 and 3, reinforcing
this link between the two variables.

Table 9. Quantitative and qualitative data for the six groups identified for winter AC energy data.

AC Usage
(kWh/m2)

Thermostat
Setting (deg C)

Number of Reasons to
Use AC Less Frequently

Reliance on AC for
Thermal Comfort

Self-Reported
Comfort

Group 1 0.06 23.1 2.6 4.5 4.6

Group 2 0.02 20.0 5.0 1.0 5.0

Group 3 0.05 23.8 2.0 0.8 5.4

5. Discussion
5.1. Comparison of the Precinct and Household Analysis

The comparison of the different types of analysis of the energy data from the FLL
shows the features and details that are lost when aggregating the data at the precinct level.
The individualistic nature of each household does not carry through when assessing the
precinct as a whole.

The precinct analysis using the statistical and k-means approach shows that energy
consumption varies throughout the study period. Four clusters were identified by the k-
means approach, with each cluster being linked to seasonal variation such as clusters 1 and
4 typically occurring during the winter season. This reinforces some repetitive behaviours
shared by the whole precinct resulting in typical consumption profiles supporting previous
results [48,49]. However, these results do not identify any further patterns in the energy
data. The limitation of past research is a lack of consideration of individual lifestyles, with
the focus being more on how the precinct performs and consumes energy. Applying this
approach at a household level shows a more in-depth analysis of the patterns in energy
consumption from each home.

The analysis reinforces how some homes consume energy more consistently than other
homes [18]. Some households only followed a minimal number of clusters, demonstrating
their daily household routines are quite consistent throughout the study period, reinforced
by [20]. These routines were regularly followed by the occupants and rarely fluctuated,
while other households followed multiple clusters representing a more irregular lifestyle
where consumption is more random than consistent. These differences between households
are not reflected in the precinct analysis as the profiles and associated patterns are lost
when the data are aggregated.

Furthermore, the paper continues further to group the 39 homes in the FLL into a
range of clusters. This analysis demonstrates how household daily energy routines can
be shared between a group of homes. This is supported by previous research into shared
practices and institutionalised lifestyles that result in common energy behaviours [72,73].
The fifteen clusters were identified, with every household being assigned to one or more
of these clusters. This assignment showed which clusters were more commonly followed
during the study period and which other clusters were less common and more unique to a
small subset of homes. For example, household cluster 13 represented a low consumption
profile with no peaks. This was the most common cluster with 28 homes being assigned
to it. This is compared with household cluster 7, which had two peaks in the afternoon,
where this profile was unique to household House 30. This comparison indicates how some
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energy behaviours can align and become common between many households resulting
in these households following the same energy profile. Alternatively, some households
can be unique in their consumption by following profiles that are not common in their
community/precinct.

5.2. Role of Policymakers in the Energy Transition

The current approach of energy policymakers is focused on the whole system, aiming
to adapt technologies or management strategies to the system [74]. The drawback to this
approach is the lack of consideration of individual lifestyles and contextual factors of
energy consumption. This paper demonstrates there are natural groupings within these
systems (e.g., communities or precincts) that follow similar lifestyles and routines. These
natural groupings result in the same energy profile being followed by these households in
the group. This understanding can be used to design technologies or energy management
systems that can be adapted depending on which group is the target. This complements
past research that identifies that policies should consider users’ profiles and their personal
and social context, and target specific behaviours [75].

There were 15 different energy profiles that were followed throughout the study pe-
riod, with households being grouped under these 15 profiles. Some households would align
with many of these profiles while others were less varied and followed a smaller number
of profiles. This reinforces how the context of the household can influence energy con-
sumption, hence policy development should consider the social context of households [75].
The most effective policies and interventions include aspects of feedback, energy auditing,
community-focused and relevant initiatives and the combination of multiple strategies [19].
The result in this paper complements this research by reinforcing the social context and the
importance of focused initiatives and strategies that consider the context of the community
and the make-up of the households. Incorporating multiple strategies can be effective
when each strategy is focused on a specific grouping that occurs in the community. The
effectiveness when strategies are designed to target a higher volume of households can be
reduced as the contextual details are not considered.

5.3. Behaviour Change vs. Technology Change

The results outlined how energy consumption varies amongst households in a precinct.
This variation can lead to grouping the households based on their consumption patterns
resulting in many different groups in a precinct. The literature discusses the influence of
routines and practices and the challenges in changing these to consume energy optimally.
This raises the question of whether behaviour change is the right way approach in assisting
this energy transition. An alternate way is to review the way technology is designed and
implemented to improve its effectiveness in reducing and/or shifting energy consumption
within the home. Building modelling and energy management systems can potentially
provide a solution to residential energy consumption. These systems are established
based on energy data to understand occupant behaviour and their interactions with their
home and energy system. Energy management can address energy-intensive activities
and provide feedback and automation controls to reduce energy consumption [12,76]. The
performance of energy management systems often falls short of their expectations as they do
not align with or fit in well with the occupant’s lifestyles and behaviours [52]. The potential
benefits of these systems are not being observed in many studies due to challenges in user
acceptance and adoption of the technology. This has resulted in limiting the effectiveness
and viability of the implementation of these energy management systems [12,77]. The
impact on energy consumption can vary across individual households, demonstrating that
people’s responses to energy feedback can vary [78].

These systems do not consider the unique consumption patterns of each household
and try to use a one-size-fits-all solution as a blanket approach to energy management.
To improve the effectiveness of these systems, ref. [12] propose incorporating design
considerations when developing these energy systems to improve their performance. One
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of these considerations is “Personalised and Contextualised Information’, which aligns
with what this paper proposes. This research demonstrates how this approach cannot
be effective as households in a precinct can consume energy differently. However, the
ability to group households within a precinct based on their consumption patterns can
allow management systems to be adapted and changed for each group to improve the
system’s performance.

A hybrid approach can include encouraging routine and practice change and adapting
technology to suit different households. This can tackle this energy challenge by encour-
aging sustainable practices to achieve time shifting of consumption and the adoption of
energy-efficient routines.

6. Conclusions

The role of the consumer in the energy transition is gaining increasing momentum
and recognition to understand and influence the way people use energy at home. There
are several theories and past research that discuss the societal and contextual aspects of
energy consumption. This paper complements this discussion and reinforces the variability
of people’s routines and lifestyles. However, this paper adds further discussion of natural
groupings that occur within these precincts based on household energy practices.

The use of the energy data from FLL and different methods of analysis showed the
variation in energy consumption within a precinct. Each method of analysis gained more
insight into the specific nature of energy consumption within each home. The statistical
method provided high-level insight into the way energy is consumed within the precinct.
The K-Means clustering and t-SNE analysis successfully identified household groupings
within the Fairwater precinct. Each grouping typically followed similar daily energy
profiles throughout the study period.

The results recognise different silos that can occur within a precinct with households
being grouped by their typical energy profiles. Each grouping demonstrates that energy
behaviours can be shared by a subset of households resulting in these households following
the same daily energy profile. Current policies and strategies are designed to manage
energy and encourage behaviour change considering these communities as one system.
However, the identification of these silos within the community indicates the potential of
breaking these communities into sub-systems based on their energy profiles. This paper
was able to break up the FLL precinct into 15 different clusters and grouped the homes
into these clusters. This demonstrates the potential of developing policies and technology
that are more targeted to the end-users by considering the presence of these household
groupings. Further research includes recognizing and incorporating these groupings into
energy management systems to further develop this technology.
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