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Abstract: Electricity price forecasting (EPF) has become an essential part of decision-making for
energy companies to participate in power markets. As the energy mix becomes more uncertain and
stochastic, this process has also become important for industrial companies, as their production
schedules are greatly impacted by energy costs. Although various approaches have been tested
with varying degrees of success, this study focuses on predicting day-ahead market (DAM) prices
in different European markets and how this directly affects the optimal production scheduling
for various industrial loads. We propose a fuzzy-based architecture that incorporates the results
of two forecasting algorithms; a random forest (RF) and a long short-term memory (LSTM). To
enhance the accuracy of the proposed model for a specific country, electricity market data from
neighboring countries are also included. The developed DAM price forecaster can then be utilized
by energy-intensive industries to optimize their production processes to reduce energy costs and
improve energy-efficiency. Specifically, the tool is important for industries with multi-site production
facilities in neighboring countries, which could reschedule the production processes depending on
the forecasted electricity market price.

Keywords: electricity markets; day-ahead price forecasting; random forest; long short-term memory;
fuzzy architecture; energy efficiency; scheduling applications

1. Introduction

At present, the optimal production operation of large industrial loads poses a challenge
that requires long-term sustainable solutions [1]. This task is further complicated by the
need to meet the environmental objectives set by regulatory authorities [2]. Recent global
events, which have resulted in very high electricity prices and highly volatile markets,
have emphasized the importance of accurate DAM price forecasting for successful market
participation. This is especially true for energy-intensive industrial loads, which directly
procure energy from wholesale markets.

As such, electricity price forecasting (EPF) has become a problem of increasing com-
plexity due to various factors, such as the transformation of the energy sector and geopolit-
ical challenges in the power industry. The participation of weather-based, variable energy
resources and the implementation difficulties of grid-scale storage solutions, combined
with the rising prices of natural gas (NG) and carbon emissions (CO2), have led to acute
volatilities in the electricity markets. Given the above developments, the selection of NG as
a transition fuel due to its technical characteristics and economic viability seems to be at
risk [3].
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Several forecasting models have been proposed in the literature for EPF [4]. These
models can be broadly categorized into two groups: statistical and machine learning (ML).
In [5,6], traditional time series techniques are employed for the prediction of electricity
price. In both studies, a set of standard system predictors (system load, RES) are included.
The results highlight the importance of including system data in the analysis, since they
provide critical information about the power system. Nevertheless, the non-linearities
between these data and electricity price can not be fully captured by linear models; thus, it
is necessary to introduce models that capture non-linearities. To this end, ML models have
gained increasing attention in recent years, especially for short-time forecasting horizons
where the non-linearities are more evident [4].

The ML models, which are mostly employed for EPF purposes, are random forest,
XGBoost, CNN and LSTM [7–9]. In [10], the RF algorithm is employed to forecast Iberian
electricity data, providing accurate results. The algorithm is compared with a benchmark
method and outperforms it in all the different forecasting horizons. In [11], an LSTM net-
work is developed for the prediction of electricity prices from PJM market on a day-ahead
horizon. The results showcase that LSTM consistently performs better than traditional ML
algorithms by fully exploiting the hidden information in the electricity price. The existing
literature shows that, in terms of ML models, the RF and LSTM models present consistently
accurate results on different datasets, especially on a day-ahead forecasting horizon; thus,
they were selected for extensive study in this work [4].

Fuzzy neural networks are also employed, since they are able to handle complex
and nonlinear relationships between input variables and electricity price [12,13]. In [14],
a fuzzy model is developed to predict hourly PJM data architecture, considering past
price load and temperature information. The approach relies on the Mamdani Inference
Method to create the fuzzy rules in the network, which can greatly influence the forecasting
performance. The model has a single output node and every prediction is used as an input
to the subsequent forecast. The results clearly indicate the relationship between power
system data and the electricity market price. The developed fuzzy logic models found in
the literature do not combine predictions from single (stand-alone) forecasting algorithms.
Instead, their results rely on a standard set of external inputs related to the electricity
market. For that reason, in this study, we first considered the performance of stand-alone
ML algorithms, calculated their performance metrics and finally combined them in a fuzzy
based architecture, aiming to achieve the minimum possible error.

Large industries are keen to incorporate accurately forecasted electricity prices into
their decision support mechanisms and re-consider the scheduling of various industrial
processes. In [15], the economic benefits of integrating an electricity price forecast in the
process of industrial scheduling are studied. The results conclude that the benefits for the
industry largely depend on the response time of the industrial load to the electricity price
fluctuations. In [16], an energy-cost-oriented scheduling process is designed under different
forecasting scenarios, which are directly used by the EPEX spot for the German/Austrian
case. Consumer environmental awareness (CEA) provides further incentives to energy-
intensive industries regarding the adoption of energy-efficient strategies. In [17], a study
with a plethora of mathematical models (with respect to CEA constraints) is presented,
which could support industrial companies’ adoption of such policies. In [18], a hybrid
mathematical model is presented, addressing integrated production scheduling, mainte-
nance planning and energy controlling for manufacturing systems. Finally, a recent trend
includes collaboration schemes between industrial enterprises and energy providers, based
on a consideration of the time-varying energy price tariffs. In [19] the energy-efficiency
mandate is accommodated via a demand response framework for energy-intensive indus-
tries, while in [20], price signals are provided to the industrial manufacturers to optimise
their production scheduling process.

This paper proposes a novel ensemble forecasting model, which combines predictions
from two different algorithms. The two selected algorithms are extensively studied in the
EPF literature. They consistently present more accurate results compared to traditional
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time series techniques and other ML algorithms. The combination of these algorithms
under a fuzzy-based architecture further enhances the forecasting performance, since the
robustness and accuracy of the models are considerably improved. The forecasting tool is
incorporated into an optimization problem, which considers the scheduling process of an
industrial facility. The energy costs of the facilities are reflected in the electricity price data;
thus, accurate forecasting is essential considering the increasing volatility in the markets.
The contributions of this work are as follows:

1. A ensemble forecasting fuzzy model, which involves the output of two different ML
algorithms considering market data from neighboring countries.

2. A scheduling model for industries, incorporating the uncertainty from DAM
price prediction.

3. Validation of the proposed framework in different EU markets.

This paper has been organized as follows: Sections 1 and 2 indicate the various
proposed algorithms and how they are integrated into the forecasting framework, Section 3
compares the different algorithms and indicates the outcome of the forecaster considering
data from different countries, Section 4 shows how the price-forecasting algorithm can
be integrated into the decision support system of an industry, and Section 5 highlights
the superiority of the forecasting approach if additional data from neighboring countries
are considered.

2. Methodology

The development of a detailed forecaster tool for DAM price prediction is a crucial step
in ensuring successful market participation, particularly for energy-intensive industrial
loads that procure energy from electricity markets. Market participation refers to the energy
procurement, which is directly related to the scheduling process of the industrial facility.
Typically, the scheduling procedure occurs anywhere from several weeks in advance to as
little as one day prior, depending on the application. The aim is to secure an appropriate
quantity of energy in the day-ahead market, which often offers more favorable prices for
the industry compared to markets closer to real-time. If the amount of energy is over- or
under-procured, the industrial facility is typically responsible for paying the price arbitrage,
leading to higher energy costs.

The forecaster tool, as shown in Figure 1, comprises two sub-forecasters (load and
RES forecasters). The load forecasting module provides information about the system load,
while the RES forecasting module predicts the generation from weather-dependent energy
sources. The outputs from both modules, which provide information from the power
system side, are integrated into the main price forecasting module. Additionally, there is a
list of external predictors that are also included in the forecasting model. These predictors
are listed below:

• Historical electricity data (DAM prices).
• External market data (natural gas price, carbon emissions price).
• Social indicators (hour of the day, weekday, holidays, etc).

Historical electricity market data are important for making predictions about future
electricity market prices. Specific trends and patterns can be identified, showing informa-
tion about the most relevant market dynamics. External market data, such as prices NG
and CO2, can greatly influence DAM price and are also included [21]. NG is a major fuel
source for electricity generation and its price partially determines the DAM price. In the
examined period, NG contribution in the energy mix is significantly high. Natural gas-fired
power plants are often used to meet demand during peak hours when electricity prices are
the highest. Additionally, CO2 pricing, a policy tool designed to reduce greenhouse gas
emissions by creating a financial incentive for industries and individuals to shift towards
more sustainable practices, is also integrated into the model. Finally, social features (e.g.,
type of day, hour index) can also have an impact on the forecasting performance and thus
are included in the analysis. The analysis was based on a one-year dataset from 1 June 2021
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to 31 May 2022. This period was selected in order to study the performance of the algo-
rithms in a period with considerably high electricity market prices and increased volatility.
It is also noted that, during the same period, increased volatility is observed in the set of
external predictors, especially the ones describing market information (e.g., NG price).

Figure 1. Price forecaster tool for day-ahead electricity market.

The study includes an analysis of two scenarios. Scenario No.1 includes the devel-
opment of a forecasting model considering external predictors only from the country of
interest, while in Scenario No.2, the developed model is enriched by the inclusion of past
electricity prices from neighboring countries. This is to showcase the relationship between
neighboring countries in the interconnected European electricity market and examine their
influence on the forecasting results. Specifically, the electricity prices of the neighboring
countries provide valuable information about the supply and demand conditions in the
wider energy market, which can help to improve the accuracy of the price forecaster tool.

Overall, the developed framework for electricity price forecasting is a comprehensive
system, which integrates multiple sub-modules to provide accurate and reliable price
forecasts. By incorporating inputs from neighboring countries and considering a wide
range of external factors, the framework is well-equipped to handle the complex and
volatile nature of the electricity market.

The second part of the study involves the development of an optimization tool that
integrates the prediction of the DAM price. The tool considers all the operational constraints
of the facility and assigns the processes based on energy cost minimization. The predicted
DAM price is included in the objective (cost) function, and thus significantly determines the
optimal solution. The prediction can also help the facilities to plan their energy procurement
strategy and decide when to buy energy from the market, thereby reducing costs and
ensuring stable operations. Therefore, the optimal time for energy-intensive production
processes can be determined, leading to improvements in the facility’s energy efficiency.

In Figure 2, a simplified architecture is provided, showing how the forecasted DAM
price is integrated into the optimization tool. The process is scheduled based on the
forecasted DAM price. The solution for the optimal schedule is then implemented by the
facility. Finally, for the calculation of the actual operational costs, the actual DAM price is
taken into account. Overall, the goal of the proposed tool is to project operational costs
that will be relatively close to the actual ones, helping the industrial facility to take the
optimal decision.
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Figure 2. Integration of DAM price forecast in the scheduling optimization tool.

2.1. Load Forecaster

The accurate prediction of system load is critical to the efficient and reliable operation
of the power system. Load forecasting, therefore, plays a crucial role in many daily
planning and operating decisions in the power industry. Load forecasting is used for
several purposes, including the optimal dispatch of power generation units, the scheduling
of maintenance activities, and the planning of new infrastructure. In addition to this, the
accurate prediction of the system load is essential to ensuring that the power system is
balanced and that there is enough energy supply to meet the demand. However, given the
uncertain and stochastic nature of the emerging energy mix, load forecasting has proven to
be a challenging task. As a result, it has attracted the attention of many research teams who
are working to develop new and improved methods of load forecasting [22–26].

In this study, the load forecasting module provides an hourly aggregated system load
forecast value for of the examined countries on a day-ahead horizon. To achieve this, the
module utilizes a set of predictors including historical load values, weather parameters, and
social indicators. The analysis period was one year (1 June 2021–31 May 2022). Historical
values of system load are considered to be among the most important predictors in load
forecasting. They provide valuable information about previous patterns and trends in
energy consumption, leading to improved forecaster accuracy. In addition to these, weather
parameters are also included, since they capture the impact that weather conditions can
have on the system load. For example, temperature and humidity levels strongly influence
the amount of energy required for heating or cooling. In our work, the weather parameters
that were included are (a) temperature, (b) humidity, (c) solar radiation and (d) wind
speed. The data were downloaded by an open-source weather API [27]. Finally, the
module also incorporates social indicators, which capture the impact of human behavior on
energy consumption. For example, social indicators such as calendar seasonal information
(holidays, etc.) can significantly affect demand patterns, and the incorporation of these
factors can improve the accuracy of the module.

For the development of the module, a seasonal autoregressive integrated moving
average (SARIMA) was employed. SARIMA models are widely used in load forecasting
and have been shown to be effective in many studies. Researchers have used SARIMA
models to forecast energy demand at different levels of granularity, including hourly, daily,
weekly, and monthly time intervals [28,29]. Due to the low complexity of the model and its
ability to capture seasonal trends, a SARIMA model was also employed in this study for
load forecasting.

The model comprised many different parameters that need to be fine-tuned for the
optimal forecasting performance. Specifically, the auto-regressive order (p), integration
order (d), and moving average order (q) were used to indicate the order of the time
series, while the seasonal component of the model was represented by parameters P, D, Q,
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and M, representing auto-regressive parameters, integrated parameters, moving average
parameters, and periodicity, respectively. To determine the optimal parameters for the
SARIMA model, an analysis on the autocorrelation (ACF) and partial autocorrelation
function (PACF) were also performed. Time-series cross-validation was employed to fine-
tune the model’s parameters. The ordinary least squares (OLS) criterion was used to find
the optimal parameters at every fold. Then, the parameters for the maximum forecasting
accuracy of the load forecasting module were ensured by (0,1,1) (0,1,1)7.

2.2. RES Forecaster

RES forecasting is crucial to efficient grid operation, energy trading, and the planning
of energy resources. Grid operators rely on these forecasts to balance supply and demand,
ensure system stability and avoid disruptions. Energy traders use RES forecasts to optimize
their portfolios and maximize profits, while energy planners exploit them to determine
the optimal mix of energy resources and infrastructure investments. However, unlike
traditional energy sources, their production is highly dependent on weather conditions,
making it challenging to accurately forecast their output [30,31].

The developed RES forecasting module in our case provides an aggregated day-
ahead forecast for the estimated production from weather-based technologies (mainly
wind and solar). For the development of the module, a SARIMA model was employed
again, as indicated by numerous research papers in the literature [32,33]. The seasonality
and trend analysis of RES production are significant factors leading to the selection of a
model of similar nature (a seasonal one) that can effectively capture these. The module
utilizes historical time series data of renewable energy generation and weather parameters.
Historical production time series data provide insights into the trends and patterns of
renewable energy generation over time, leading to a consistent improvement in the forecast
quality. Additionally, weather parameters must be included for the prediction of weather-
dependent sources. The weather parameters employed in this study are temperature, wind
speed, solar radiation, and humidity [27]. The optimal model parameters were selected,
employing the OLS criterion in every fold of the time series cross-validation process. The
selected model parameters were (1,1,1) (1,1,1)12, indicating the auto-regressive, integration,
and moving average orders, along with the seasonal component’s order and periodicity.

2.3. Price Forecaster

The price forecasting module is the final component of the system architecture, as
shown in Figure 1. The module considers the predictions provided by the load forecasting
and RES forecasting modules, along with a list of external predictors.

The employed algorithms of the price forecasting module are the random forest (RF)
and a long short-term memory (LSTM) neural networks. These algorithms were chosen due
to their ability to capture the complex nonlinear relationships between the various inputs
and the electricity price. After individual predictions are obtained from each algorithm,
a fuzzy-based architecture is used to combine them to improve the accuracy of the final
forecast. By using a combination of these advanced algorithms, the price forecasting
module is able to provide reliable and accurate estimates of future electricity prices, which
are critical for efficient decision-making in the power market. In the following subsections,
a detailed description of the algorithms employd in the price forecasting module is given.

2.3.1. Random Forest Algorithm

The RF algorithm was selected due to its low computational complexity, its ability
to handle large datasets and the easy interperability of the results. RF is an ensemble
learning method that can be used both for regression and classification problems [34]. The
principle of the algorithm relies on having uncorrelated models (or trees), which is ensured
by bootstrap aggregation (also known as bagging) and the random subspace method. In
regression tasks, the average value of the predictions from each decision tree is given as the
final prediction. The basic steps of the algorithm are presented in Figure 3.
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Figure 3. Steps of the RF algorithm.

In an RF model, there are usually many parameters that need to be finetuned. For a
parameter selection that ensure a trade-off between forecasting performance and compu-
tational complexity, the OLS criterion was employed. Four parameters of the algorithm
were considered. The maximum number of features in each split (a1), the maximum depth
of the individual trees (a2), the maximum number of leaf nodes (a3) and the number of
decision trees in the forest (a4) were fine-tuned using time series cross-validation. Finally,
the optimal forecasting accuracy is ensured by setting a1 = 5, a2 = 20, a3 = 2 and a4 = 100.

2.3.2. Long Short-Term Memory

LSTM is a type of recurrent neural network (RNN) used for processing sequential
data. It is designed to overcome the limitations of traditional RNNs, which are prone to
the vanishing gradient problem when processing long sequences. They are well-suited to
time series forecasting as they can handle sequences of variable lengths, capture long-term
dependencies between the input and output sequences and model non-linear relationships.

The architecture of an LSTM network consists of several memory cells, which are
connected to each other through gates. Three types of gates are employed in LSTMs: the
input gate, the forget gate and the output gate. Each gate has its own weight matrix and
bias vector, which are learnt during the algorithm training phase. For the final prediction
of an LSTM network, the hidden state vector of the last time step is usually employed. In
Figure 4, a basic architecture of an LSTM network is presented.

There are many parameters that need to be fine-tuned in an LSTM model to achieve
the highest degree of accuracy. In this study, the parameters that are optimized through
time series cross-validation by employing the OLS criterion are the batch size (b1), number
of epochs (b2), learning rate (b3), number of units per layer (b4) and number of LSTM layers
(b5). It was derived that the optimal forecasting accuracy is ensured by b1 = 256, b2 = 100,
b3 = 0.1, b4 = 100 and b5 = 2.
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Figure 4. Architecture of an LSTM network.

2.3.3. Fuzzy-Based Architecture

A fuzzy-logic model is a mathematical model that incorporates fuzzy logic to deal
with uncertainty and imprecise data. This involves mapping input variables to output ones
using a set of fuzzy rules that describe the relationship between them.

Figure 5 presents a fuzzy logic system (FLS) and its four major units, namely, a fuzzifica-
tion unit, a fuzzy knowledge-base unit, a fuzzy inference engine unit and a defuzzification unit.

Figure 5. Fuzzy logic methodology for DAM price forecasting.

The fuzzification unit is responsible for converting crisp inputs into fuzzy sets. This
can be achieved with the use of pre-defined input membership functions. The membership
functions associate a weighting factor, which determines the degree of influence or degree
of membership for each active rule. The next block includes the knowledge base, which
consists of two sub-units: the fuzzy sets database and the rule base. Intuitively, this is
the core element of a fuzzy controller as it will contain all the information necessary to
accomplish its execution tasks. The inference engine provides the decision-making logic of
the controller. It deduces the fuzzy control actions by employing fuzzy implications and
the rules of inference. Finally, the defuzzification process converts fuzzy control values into
crisp quantities by selecting a single value from the output using a defuzzification method.
There are different methods of defuzzification. The most-used ones are the maximum
criterion (MC), the center of gravity (CG) and the mean of maximum (MM) [35].



Energies 2023, 16, 4085 9 of 21

In this work, the fuzzy-based architecture was used to combine the outputs of two
different algorithms (random forest and LSTM) to improve the accuracy of the overall
prediction. The fuzzy logic is implemented by assigning weights to the output of each
algorithm based on their performance on historical data. These weights are then combined
to produce a final prediction that considers the strengths and weaknesses of each algorithm.

A different set of rules was tested to examine the various configurations of the fuzzy
network architecture. These rules provide the framework for decision making by defining
the relationships between the input and output variables. The suggested architectures (and
the corresponding rules) are different depending on the hour of the day, since electricity
demand and supply varies significantly over a 24 h period. By using different sets of rules
for different hours of the day, the proposed fuzzy architecture can better capture these
fluctuations and provide more accurate predictions. The specific rules were selected based
on the accuracy of the rule regarding the forecasted value. This involves evaluating the
performance of each rule in the network based on how well it predicts the DAM price for
a given set of input variables. The rules with the highest accuracy that provide the best
predictions were finally selected for inclusion in the network. The list of rules are divided
into the following categories:

Market data:

• Lagged DAM electricity prices.
• Volatility of historical DAM prices.

System data:

• Peak system demand.
• Volatility of system load.
• Mix of RES generation.
• RES penetration levels (percentage value).

Models’ performance metrics:

• RF historical error.
• RF slope error.
• LSTM historical error.
• LSTM slope error

It is clear that the proposed rules are not limited to market and system data, similar
to a standard forecasting fuzzy tool. The additional rules, which explain the error metrics
of RF and LSTM models, are important extensions of the proposed fuzzy framework
compared to the ones found in the literature. To this end, the uncertainty is better handled
and the forecasting framework becomes more robust and less dependent on a single
forecasting method.

Different weights for the rules are tested for each country depending on the specific
market conditions. Each weight value falls within the range from 0 to 1 and represent
the relative importance of the different factors. The weight optimization of each rule is
made using time-series cross validation, employing the OLS criterion. Different weights
are calculated in every fold. The average value of the calculated weights is finally assigned
to the proposed fuzzy model. In all cases, increased weight is given to the historical error of
the RF and the LSTM model, as these significantly contribute to the forecasting performance.
For example, when the LSTM algorithm performs well in predicting prices during periods
of high volatility, it is assigned a higher weight when predicting prices during similar
periods in the future. Lower weights are assigned to the predictors that have already been
considered in the algorithms of RF and LSTM (e.g., lagged DAM electricity prices). As the
influence of these predictors has already been reflected, their impact on the fuzzy network
is rather limited. The steps of the fuzzy logic methodology used in this study are depicted
in Figure 6.
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Figure 6. Flow chart of fuzzy logic methodology for DAM price forecasting.

3. Results

In this section, a statistical analysis of the DAM electricity prices in the examined
countries is presented. The forecasting results of the different proposed algorithms are
also shown.
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3.1. Statistical Analysis

DAM electricity data from four European countries were examined in this study.
The selected countries were Greece (GR), Bulgaria (BG), Germany (DE), and Austria (AT).
Data (both from market and system perspective) were downloaded by the ENTSO-E
Transparency Platform [36]. The selection of these specific countries is not only based on
their geographic proximity but also on the fact that they are located in two different regions
of Europe, where distinct market conditions prevail.

Table 1 shows the average DAM electricity prices for the four countries examined
over three distinct time periods, emphasizing the significant price hike that occurred
after June 2021. In this study, the period under consideration ranged from 1 June 2021 to
31 May 2022, during which there was a rise in electricity prices in European markets due
to the energy crisis. The selected period is depicted as period C, while some performance
metrics will be also presented for periods A and B to showcase the difference in the
forecasting performance.

Table 1. Average DAM electricity prices (e/MWh).

Country 19 June–20 May (Period A) 20 June–21 May (Period B) 21 June–22 May (Period C)

GR 53.43 51.24 190.63
BG 42.94 47.58 168.59
DE 84.21 93.3 260.13
AT 33.39 45.29 167.84

A noticeable increase of 244% compared to the price of the preceding period (when
DAM prices decreased due to the COVID-19 pandemic) can be observed. This increase
is indicative of, and similar to, the average increase exhibited in the European wholesale
markets. Electricity prices sharply rose as a result of the significant increases in fuel and
CO2 prices, particularly during the latter half of the year. Additionally, higher European
gas prices played a crucial role in increasing the marginal cost of European gas-fired power
plants, leading to the increased cost of electricity. The European gas price reached its peak
and rose 10 times more than the minimum prices in 2021 due to the high global gas demand
stemming from high industrial production, low reserve levels in European gas storage
facilities, and supply shortages of Russian natural gas.

Additionally, the significantly increased volatility observed across all EU markets
during the analyzed period poses a significant challenge in accurately predicting the
electricity prices. A greater volatility results in a higher degree of uncertainty, making it
difficult to predict prices that fluctuate significantly and unpredictably. As an example, the
daily standard deviation of the Greek day-ahead electricity price increased by over twofold
in 2021 in comparison to 2020 (from 10% to 22%). In Germany, the increase was even more
substantial, rising from 5% in 2020 to 24% in 2021. Figure 7 displays time series data of
DAM electricity prices for the examined period (period C). The two evident price spikes,
which occurred in October 2021 and January 2022, are consistently observed across all the
countries, coinciding with the period of highest levels of natural gas prices (TTF index).

The correlation matrix of the DAM electricity price with respect to the set of external
predictors, is presented in Figure 8. The DAM price demonstrates a strong correlation with
lagged electricity price, natural gas (NG) price, and CO2 values. Specifically, the lagged
DAM prices of the previous day, as well as 2 days and 7 days before, are considered, along
with the average value of the previous week. The respective correlations are considerably
high, confirming the strong statistical relationship. Regarding NG and CO2 prices, the
correlation stands for 0.75 and 0.58, respectively. As expected, the relationship between
the NG and DAM prices is even higher in hourly indices, where NG power plants are
the marginal units and consequently set the price. However, although system data (load
and renewable energy sources) and social indicators can enhance the model’s forecasting
accuracy, they do not exhibit a high correlation with the DAM price.
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Figure 7. DAM electricity prices for 4 different countries (1 June 2021 to 31 May 2022).

Figure 8. Correlation matrix of DAM electricity price with the external predictors.

3.2. Forecasting Results

To assess the performance of the various forecasting algorithms and optimize their
parameters, time series cross-validation was utilized. Unlike traditional cross-validation
techniques, which randomly split data into training, validation and test sets, time series
cross-validation involves splitting the data in a temporal manner. This means that the
sets are divided based on the time order of the observations, ensuring that the model is
evaluated on its ability to make accurate predictions for future time periods. The training
set iwa used to train the model, while the validation set was used to tune the model’s
hyperparameters and prevent overfitting. The test set was used to evaluate the final
performance of the model and to estimate its generalization ability [37].

Two scenarios were examined to determine the impact of neighboring countries’
predictors on forecasting accuracy. In scenario No.1, predictors from the country of interest
were exclusively utilized, while scenario No.2 considered additional market data from
neighboring countries. All models were fine-tuned on a country-level basis, resulting
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in distinct models for each scenario, taking advantage of the unique characteristics and
dynamics of each country’s market and thus allowing for a more accurate forecasting of
the target variable. The evaluation metrics used in the study include R-squared (R2), mean
absolute error (MAE), and mean absolute percentage error (MAPE). The R2 measures the
proportion of the dependent variable’s variance, which is explained by the independent
variables in a regression model. The MAE measures the average of the absolute differences
between the actual and the forecasted values, while MAPE provides information on the
percentage difference between the residuals (prediction errors).

The mathematical formulas of the metrics are provided below:

R2 = 1− SSRES
SSTOT

= 1− ∑i (yi − ŷ)2

∑i (yi − y)2 (1)

MAE =
1
n

n

∑
i
|yi − ŷi| (2)

MAPE =
1
n

n

∑
i
|yi − ŷi

yi
· 100| (3)

where yi denotes the true value, ŷi shows the predicted value, y represents the mean value
of all the points and n indicates the number of fitted points.

In Table 2, the forecasting results of scenario No.1 are presented. In this scenario,
only predictors from the country of interest are employed, without accounting for the
influence of the neighboring countries. The same predictors are studied for all the proposed
forecasting algorithms.

Table 2. Evaluation metrics in scenario No.1.

Countries Models R2 (−) MAE (e/MWh) MAPE (%)

GR
RF 0.56 23.67 14.7

LSTM 0.55 25.32 15.2
Fuzzy 0.61 21.12 13.1

BG
RF 0.52 35.04 21.4

LSTM 0.50 37.09 23.0
Fuzzy 0.54 34.35 20.6

DE
RF 0.55 34.01 18.5

LSTM 0.52 36.08 19.2
Fuzzy 0.57 32.78 17.7

AT
RF 0.61 28.62 20.8

LSTM 0.64 26.11 18.1
Fuzzy 0.66 24.89 17.0

The results indicate that the RF algorithm outperforms LSTM in all the selected coun-
tries, except for Austria. The highest accuracy was achieved by RF implementation in
the case of Greece, in which MAPE stands for 14.7%. However, LSTM implementation
in the Bulgarian market provided the highest error, with MAPE being equal to 23%. The
proposed fuzzy-based architecture provides an improved performance in all cases. In the
cases where one model over-predicts and the other under-predicts the price, the selec-
tion of the corresponding weights improves the model’s performance, highlighting the
importance of fuzzy logic. It is notable that the error metrics fell within this range due to
the considerable volatility of electricity prices during that particular period (as explained
in Section 3.1). The proposed metrics would be significantly improved if applying the
forecasting algorithms in periods A and B (see Table 1). Indicatively, the accuracy of the
proposed fuzzy-based architecture for the German case, which now stands for 17.7%, would
be enhanced, reaching 12.1% and 11.9% in periods A and B, respectively. For the Greek
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market, MAPE would further drop to 8.1% and 7.5%, respectively, indicating that, under
normal market conditions, the results would be consistently improved.

In Figure 9, a plot showcasing the forecasting results for 5 days of the test set is
presented. The specific date range shows indicative DAM prices for the testing period, and
thus is appropriate for the comparison. The trend in the DAM price is captured accurately
by all the examined forecasting algorithms; the fuzzy logic model appears to have the
smallest deviations in the extreme values, which are also reflected in the presented metric
results. In Figure 10, the distribution of the residuals in the test set is depicted in a boxplot.
The red line shows where the Q2 quartile is located (median), while the distance between
the box’s edges is called the interquartile range (IQR) and shows where the middle 50% of
the residuals lie (Q3-Q1). In all the examined countries, the residuals’ median value for the
fuzzy logic model is closer to zero. Additionally, the corresponding IQR displays residuals
that are more tightly clustered, validating the superiority of the fuzzy logic approach
compared to the RF and LSTM.

In scenario No.2, the performance of the algorithms in the case of the Greek and
German electricity market is studied. Additional predictors are included in both cases.
Specifically, the model for Greek DAM price prediction is enriched by the historical electric-
ity data from the Bulgarian market, while the corresponding one for the German electricity
market is enhanced by the Austrian data. The results are presented in Table 3. In both
cases, the accuracy is improved, confirming the correlation in electricity data between
neighboring countries. The additional value is a result of the hours where there was no
price convergence between the neighboring countries. For the remaining hours of the
year, in which the same price co-exists, no additional information is added to the model,
leading to identical results to Scenario No.1 being obtained. The fuzzy logic model again
outperforms the other two algorithms, since it successfully combines the strengths of each
model, leading to a better overall performance. The improved accuracy is more evident in
the Greek DA market, in which it is enhanced by almost 17% compared to Scenario No.1.
In the case of the German market, although there was an improvement, the added value
was rather limited due to the fact that the influence of the Austrian market on the German
is small.

Figure 9. Forecasting results for scenario No.1.
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Figure 10. Boxplot of residuals for scenario No.1.

Table 3. Evaluation metrics in scenario No.2.

Countries Models R2 (−) MAE (e/MWh) MAPE (%)

GR
RF 0.60 20.59 12.2

LSTM 0.59 21.12 12.5
Fuzzy 0.64 18.11 10.7

DE
RF 0.57 31.62 17.3

LSTM 0.55 33.14 18.0
Fuzzy 0.61 30.56 16.1

Finally, in Figures 11 and 12, the respective time series plots and boxplots, similar to
the ones presented for scenario No.1, are presented. Similarly to the previous case, the
DAM price trend is captured by all the examined algorithms, while the respective residual
distribution is also improved compared to that in Scenario No.1.

Figure 11. Forecasting results for scenario No.2.
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Figure 12. Boxplot of residuals for scenario No.2.

Finally, in Table 4 a comparison of the forecasting performance for the three different
periods of Table 1 is presented for Scenario No.2. This is to validate that the increased
volatility of the DAM of period C significantly affects the error metrics of the proposed
algorithms. It is evident that the MAPE significantly drops in all cases for periods A and
B. Specifically, an average decrease of almost 50% is depicted in both countries, while the
proposed fuzzy architecture consistently shows the best performance. The error metrics
for period B are lower compared to the ones for period A, mostly due to the decreased
system load levels in all EU countries due to COVID-19 pandemic. To this end, it is clear
that the examined dataset plays a crucial role in the forecasting performance; however, it
was selected to be examined as it is one of the first studies predicting DAM prices in this
period of high volatility and uncertainty.

Table 4. MAPE (%) for the 3 different periods (scenario No.2).

Countries Models Period A Period B Period C

GR
RF 7.5 6.0 12.2

LSTM 6.2 7.4 12.5
Fuzzy 6.9 5.5 10.7

DE
RF 9.4 9.0 17.3

LSTM 9.7 9.5 18.0
Fuzzy 8.5 8.1 16.1

4. Application Example: Scheduling of Industrial Processes

In this section, the application of the aforementioned EPF work to optimize the process
scheduling of an industrial facility in terms of energy cost will be presented on a day-ahead
scheduling horizon. The energy cost is reflected by integrating the DAM price in which the
industry procures energy for covering its needs into the scheduling process.

Mathematical Formulation

To validate the importance of the proposed DAM price forecaster in the schedul-
ing optimization framework, a short description of an optimization scheduling use-case
example follows:

Let O = {1, 2, . . . , o} be a number of independent orders and F = {1, 2, . . . , f } be a
list of factories belonging to the same company. The optimal allocation and scheduling of
all orders to factories, while minimizing the total energy cost and/or the CO2 emissions,
is the main goal. Each order can only be implemented on a subset Ft ⊆ F of the factories
and, due to the heterogeneity of each factory infrastructure, the execution time Dij and
consumed energy Cij of order oi in factory f j are not constant. Let O f ⊆ O be the orders
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that can be executed in factory f . Let the variables si and ei denote the start and end time
of order oi, while the variable xij is a binary decision variable that equals 1 when order
oi is assigned to factory f j; otherwise, xij = 0. An optional fixed-size interval variable Iij
is introduced for each oi ∈ O f and f j ∈ Fo. Given a specific time horizon L in which, for
each time period [la, lb], we have a forecast of the energy cost for each factory S f ab and the
renewable energy percentage Pf ab in the available energy, for each factory f j ∈ F and for
every order oi ∈ O f , an array of variables Eij is introduced that, for each point in the time
horizon, calculates the cost and/or the CO2 emissions. This problem can be formulated as
a constraint programming (CP) model as follows:

min ∑
i∈O,j∈Fo

xij × Eij[si] (4)

s.t.
∀ oi ∈ O, ∑

f∈Fo

xi f = 1 (5)

∀ f ∈ F, ∀ oi, ok ∈ Om, i 6= k, p f ik = 1 ↔ xi f + xk f = 2 (6)

∀ f ∈ F, ∀ oi, ok ∈ Om, i 6= k, p f ik = 0 ↔ xi f + xk f < 2 (7)

∀ f ∈ F, ∀ oi, ok ∈ Om, i 6= k, q f ik = 1 ↔ si ≤ sk (8)

∀ f ∈ F, ∀ oi, ok ∈ Om, i 6= k, q f ik = 0 ↔ si ≥ sk (9)

∀ f ∈ F, ∀ oi, ok ∈ O, i 6= k, p f ik = 1, q f ik = 1↔ si + Di f ≤ sk (10)

∀ f ∈ F, ∀ oi, ok ∈ O, i 6= k, p f ik = 1, q f ik = 0↔ sk + Dkm ≤ si (11)

Equation (4) is the objective function, minimizing the total operational energy costs
of all factories. Equation (5) ensures that each order is assigned to exactly one factory.
Equations (6) and (7) define a binary variable that indicates whether two orders are assigned
to the same factory, while Equations (8) and (9) define a binary variable that reflects whether
order i is scheduled before order k. A non-overlapped-in-time execution sequence between
two orders oi, ok is imposed by Equations (10) and (11) when they are assigned to the
same factory. In addition to the CP model, a number of heuristics and ILP models based
on the ideas presented in [38–40], were implemented but are outside the scope of the
current paper.

The case of 3 factories and 30 independent jobs was examined in this case study. The
solution of the optimization problem is depicted in a Gantt chart in Figure 13. Each job type
is represented by different color (green, blue and orange). Grey represents periods in which
the machine inside a factory is not available. The red graph indicates the forecasted energy
price on the market region in which each factory is located. Factories 2 and 3 operate on the
same market and this is why the same DAM price is considered, while factory 1 is located
in a different region.

High-cost periods are avoided; the model ensures that the industrial process starts in
the factory with the lowest energy costs if all the relevant constraints (e.g., earliest start
time, latest finish time, etc.) are satisfied. As previously mentioned, not all tasks can be
assigned to all factories.
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Figure 13. Scheduling example for a 3-factory case scenario.

Additionally, the operational costs for the optimal planning of the industrial appli-
cations considering the three forecasting algorithms are given in Table 5. Specifically, the
minimum, maximum and average costs of the solution were calculated using the forecasted
DAM price of the respective method. The real operational costs are also depicted, calculated
based on the actual DAM price.

Table 5. Operational costs of the optimal solution for the three forecasting algorithms.

Method Minimum (k e) Maximum (k e) Average (k e) Percentage Difference (%)

RF 186.29 188.09 187.21 9.72
LSTM 187.11 189.24 187.92 13.51
Fuzzy 185.97 186.98 186.43 5.64
Real 185.04 185.04 185.04 -

The results indicate that the projected operational costs utilizing the fuzzy logic DAM
prediction are the most accurate, standing for an percentage difference error of 5.64%
compared to the actual ones. RF’s percentage error stands for 9.72% while LSTM’s error
equals 13.51%. The results validate the importance of an accurate DAM price forecast
when finding the optimal schedule for the industrial facility in terms of cost minimization.
Additionally, the operational costs of the fuzzy logic model has the smallest projected range
compared to the RF and LSTM. This is desirable, offering a more robust solution that does
not present large differences between the minimum and maximum scenarios.

The reason that significantly better results were achieved in terms of scheduling cost
with fuzzy logic compared to the respective forecasting error of the same method is that the
scheduling algorithm determines the relatively better assignment and starting time of an
order, which is implicitly correlated by the forecasting error. Fuzzy logic time series exhibit
a more robust behaviour when comparing the number of underestimated time periods
to the overestimated ones, which is an important property for the scheduler. However,
underestimating low cost periods or overestimating relatively costlier periods negatively
affects the forecasting error of the time series, while they have no effect on the scheduling
outcome (difference). A scheduling selection of the orders will be made during the periods
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with lower forecasted energy costs, which will also be the case if these periods are the lower
ones based on the actual data. To this end, the same optimal schedule will be generated by
the scheduling algorithm and the operational costs will not be affected.

5. Conclusions

In the study, a DAM price forecasting tool was developed and analyzed in detail. A
fuzzy logic approach, which integrates the results of two distinct forecasting algorithms,
was implemented. The results show that this approach significantly enhanced the accuracy
of the forecasts in all the examined countries. Moreover, including explanatory market
data from neighboring countries further improved the accuracy of the forecaster. This
improvement was consistent across all the examined countries and was attributed to the
hours during which there was no price convergence in the DAM prices. This highlights
the importance of incorporating relevant market data from neighboring countries in DAM
price forecasting to obtain more accurate and reliable predictions. The distributed forecast-
ing tool can then be used as an important input in the optimal scheduling process of an
industrial facility, aiming to minimize energy costs and improve the energy efficiency. The
resulting simulation data give strong credence to the claim that the proposed methodolo-
gies and tools can remarkably improve the decision making process of energy-intensive
industrial facilities.

In summary, the study provides strong evidence that the proposed fuzzy logic ap-
proach to DAM price forecasting can significantly improve accuracy, particularly when
neighboring countries’ market data are included. The resulting tool can be used as an
important input in the decision-making process of energy-intensive industrial facilities,
leading to improved energy efficiency and cost savings.

Future research could explore the integration of energy storage and on-site generation
into the scheduling application of an industrial facility. As RES production in the energy mix
is steadily increased, industries will need to synchronize their energy-intensive processes
not only during periods of low electricity prices but also during periods of high RES
penetration. This would necessitate the accurate forecasting of not only electricity prices
but also RES penetration into the mix to meet the production planning requirements.

Author Contributions: Conceptualization, K.P., I.K., P.A., A.B., M.B. and A.P.; methodology, K.P. and
I.K.; formal analysis, K.P. and I.K.; writing—original draft preparation, K.P.; writing—review and
editing, K.P., I.K., P.A., A.B., M.B. and A.P.; supervision, P.A., A.B., M.B. and A.P. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded by ENERMAN project (Horizon 2020 EU research and innovation
program) under Grant Agreement number 958478.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EPF Electricity price forecasting
DAM Day-ahead market
RF Random forest
LSTM Long short-term memory
NG Natural gas
CEA Consumer environmental awareness
SARIMA Seasonal autoregressive integrated moving average
ACF Autocorrelation function
PACF Partial autocorrelation function
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OLS Ordinary least squares
RES Renewable energy sources
RNN Recurrent neural network
FLS Fuzzy logic system
R2 R-squared
MAE Mean absolute error
MAPE Mean absolute percentage error
IQR Interquartile range
GR Greece
BG Bulgaria
DE Germany
AT Austria
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