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Abstract: Mass-produced thermoelectric modules are mainly fabricated with Bi2Te3-based materials.
Due to the limited world reserves and the high price of tellurium, it must be saved. The miniatur-
ization of thermoelectric converters is one of the modern trends to diminish the use of tellurium,
reduce the cost of modules and expand the range of their applications. The main disadvantage of
miniature thermoelectric converters operating in cooling or generating modes is their low energy
efficiency, caused by the effect of electrical and thermal resistances of contacts, interconnectors and
insulating plates. We propose an improved method for evaluating the maximum efficiency that takes
into consideration the impact of these unwanted resistances. This method can also be used to design
the modules with the optimal structure for cooling and energy generation, and not only to study their
performance. The effect of undesirable electrical and thermal resistances on the maximum efficiency
of cooling and generating converters made of Bi2Te3-based materials is analyzed. It is shown that the
efficiency of miniature modules can be significantly improved if these resistances are reduced to their
rational values. The decrease in electrical contact resistance is the predominant factor. The rational
values to which it is advisable to decrease the electrical contact resistance have been determined. In
the development of miniscale module technology, it is necessary to focus on such rational contact
resistance values.

Keywords: miniscale thermoelectric module; miniature thermoelectric converter; thermoelectric
cooler; thermoelectric generator; maximum efficiency; electrical contact resistance; thermal resistance
of insulating plate

1. Introduction

The practical application of thermoelectricity is currently constrained by the relatively
high cost of thermoelectric energy convertors. Figure 1a shows a diagram [1,2] of the
growth in the market size of thermoelectric (TE) modules produced worldwide for the
needs of thermoelectric power generation and cooling. The data are provided for the last
6 years with a prospect up to 2026. The market compound annual growth rate (CAGR) is
about 9% [1,2]. Using this diagram and assuming that the average price of a standard TE
module is near USD 15, we can easily estimate the annual production of modules in the
world. The results of such a rough estimation are shown in Figure 1b. It can be seen that,
at present, the production reaches about 54 million pieces per year. At the same time, the
market potential is estimated at 6.2 billion pieces per year [3]. Consequently, the market
for thermoelectric products, which are mainly cooling systems and converters of the waste
heat into electricity, is provided for by less than 1% now. Therefore, the market needs are
quite significant.
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moelectric figures of merit and high mechanical properties are required. 
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It is generally known that commercial TE modules are mainly fabricated with Bi2Te3-based
materials. The main obstacle to increasing production is limited reserves, and hence the
high price of tellurium. According to the estimates of the Energy Research Center (Great
Britain), the world reserves of tellurium amount to 50 thousand tons only. The annual
production of tellurium and its price in recent years are shown in Table 1 [4].

Table 1. Annual world production of tellurium and its price [4].

Year 2015 2016 2017 2018 2019 2020 2021 2022

Production, tons 400 400 420 460 520 562 610 640

Price, $/kg 77 34 40 74 60 56 68 68

Therefore, today the average annual production of tellurium is more than 600 tons. Of
this, 30% is spent on the needs of the thermoelectric industry [4], i.e., more than 180 tons
per year. For a standard TE module, at least 5 g of tellurium is used. Consequently, the
current level of tellurium production ensures today the manufacturing of approximately
36 million tellurium-containing modules per year, and the reserves of tellurium will suffice
for 80 years. However, increasing the production of modules to at least 300 million pieces
(which will correspond to 5% of the market demand only) will require 1500 tons of tellurium
per year, and its annual production should be increased to at least 2000 tons. Then, the
reserves of tellurium will last for 25 years only.

Therefore, for the development of the mass production of TE modules, it is necessary to
reduce the use of tellurium drastically. There are several ways to do this. First of all, this is a
search for new tellurium-free thermoelectric materials. Materials with high thermoelectric
figures of merit and high mechanical properties are required.

No such materials have yet been proposed for thermoelectric coolers (TECs). Since the
1950s, cooling modules have been produced of Bi2Te3-based materials, whose dimensionless
figure of merit remains at the level of 1–1.2 [5]. The search for new tellurium-free materials
with increased figures of merit does not give tangible positive results.

For thermoelectric generators (TEGs), a number of compounds are being investigated.
Skutterudites and clathrates [6,7] are considered promising materials. Their optimization is
predominantly focused on reducing their lattice thermal conductivity. The most attractive
for practical applications are CoSb3-based skutterudites [8] whose crystal lattices are sup-
plemented to reduce their thermal conductivity by rare-earth, alkaline-earth, alkali metals
and other ions. The highest figures of merit, ZT = 1.7 [9] and ZT = 1.9 [10] at T = 850 K,
were achieved for skutterudites Ba0.08La0.05Yb0.04Co4Sb12 and Sr0.09 Ba0.11Yb0.05Co4Sb12.3,
respectively. For clathrates, a high value of ZT = 1.35 [11] at T = 900 K was obtained for
Ba8Ga16Ge30 single-crystalline samples synthesized using the Czochralski method.



Energies 2023, 16, 4082 3 of 22

Intermetallic compounds Mg2X (X = Si, Ge, Sn) are promising mid-temperature ma-
terials consisting of nontoxic and cheap elements. For solid solutions based on these
compounds, such as Mg2Si1-xGex [12], Mg2Si1-xSnx [13] and Mg2Sn1-xGex [14], ZT values
in the range of 1.2–1.4 at near 800 K have been obtained for doped samples used as an
n-type thermoelement in generator modules. For the p-type thermoelement, manganese
silicides Mn4Si7 and Mn11Si19 with a figure of merit ZT in the range of 0.7–0.8 at 750 K are
used [15,16]. Compounds such as Zn4Sb3 [17] and In4Se3 [18] are also promising for use in
generator modules.

A lot of other compounds are being studied [8] for the middle range of operating
temperatures from 500 K to 900 K and the high-temperature range from 900 K to 1300 K.
For the low-temperature range from 300 K to 500 K, Bi2Te3-based materials remain the most
effective for thermoelectric generators. However, it should be noted that for new materials
it is necessary to adapt and change the technology of mass production of TE modules.

There is another effective way to save world resources, in particular tellurium, and
reduce the cost of TE modules. This is a reduction in the consumption of thermoelectric
materials by miniaturization of thermoelements and the TE module as a whole. Miniatur-
ization of thermoelectric converters (modules) is a modern trend in the improvement and
expansion of their practical use [19].

A particularly important task is the miniaturization of modules for TECs, in the
mass production of which materials other than Bi2Te3-based compounds have not yet
been used. Miniaturized cooling modules have a lot of important applications. Miniscale
thermoelectric devices are used for cooling, controlling thermal conditions and stabilizing
the temperature of electronic elements and systems. The main purpose of using a TEC is to
remove heat and keep the electronic equipment at a normal operating temperature [20].
An additional task is to reduce the leakage current from electronic devices and the thermal
noise from electrical components in order to improve the accuracy of devices [21]. An
important application of TE modules is the spot cooling of electronic computer chips and
their components [22–24]. Miniature TECs are used to control the temperature of the
light-emitting diodes (LEDs) [25–27] and laser diodes [28,29] and to provide the required
operating temperature of IR sensors [30–33].

Miniature TEGs are used in applications where a heat source is available and, in
some cases, they can even replace batteries, for example, to power wireless sensors and
autonomous circuitry placed in a harsh or remote environment [34,35]. These can be sensors
for monitoring the operating condition of industrial processes or those in pipelines. TE
converters are used in nuclear-based small-scale power sources for biomedical applications
and implantable devices, such as pacemakers [36]. An example of such a Bi2Te3-based
converter made of 215 µm thick wafers is described in [37]. Miniscale TEGs are promising
energy sources for wearable electronics and the “Internet of Things” devices [38–40]. Dif-
ferent wearable products with TEGs that use body heat have been developed, for example,
a pulse-oximeter [41], a body-powered electroencephalogram system [42] and a wireless
electrocardiography system inserted into a shirt [43,44]. Flexible TE modules with miniature
thermoelements integrated into a fabric or silicon matrix [45] are more suitable for power
generation from the human body [46–48]. Since miniscale TEGs usually operate at near room
temperature conditions, Bi2Te3-based materials are commonly used for such generators.

Thermoelectric converters are mechanically stable and highly reliable with a life
cycle of up to 20 years. The main disadvantage here is their low energy efficiency. This
study focuses on increasing the efficiency of miniscale TE modules for cooling and power
generation. It should be noted that we identify the module with a length of thermoelements
in the range from 500 µm to 200 µm as a miniature one. For the production of such modules,
it is not necessary to change the existing technology. The conventional bulk technology
with the manufacturing of thermoelements by thinning bulk materials is used [19,49].
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2. Impact of Electrical and Thermal Contacts on Miniaturization of Thermoelectric
Converters

It is well known that the efficiency of TE modules is mainly determined by the figure
of merit Z = α2σ/κ, where α is the Seebeck coefficient, σ is the electrical conductivity and
κ is the thermal conductivity of thermoelectric materials. However, it also depends on the
electrical resistance of contacts at the boundaries between the semiconductor material of
the legs and the metal connecting layers. A contact resistance is one of the main reasons for
the fact that the thermoelectric properties of materials are not fully realized. The Joule heat
releasing on the contacts reduces the efficiency of thermoelectric converters and leads to its
dependence on the thermoelement length [50].

Figure 2 shows the dependences of efficiency (Figure 2a) and coefficient of perfor-
mance (COP) (Figure 2b) on thermoelement length L for generating and cooling converters,
respectively. The length L is indicated in Figure 3 below. These data have been calculated
at a contact resistivity value of rc = 5 × 10−6 Ω cm2 [51], which is considered typical for
mass-produced modules made of Bi2Te3-based materials.
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To calculate the maximum efficiency and COP, the classical formulae [52] have been
used, which are given as

η0 =
Th − Tc

Th

(M− 1)
(M + Tc/Th)

, ε0 =
MTc − Th

∆T(M + 1)
, (1)

where, M =
√

1 + ZTE(Th + Tc)/2, ZTE = α2/((ρ + 2rc/L)κ) is the figure of merit of the
thermoelement that depends on the value of contact resistivity rc. Th and Tc are the hot
side and cold side temperatures, respectively, and ∆T = Th − Tc, ρ = 1/σ is the electrical
resistivity of the thermoelectric material.

The influence of contact resistance on the efficiency and COP becomes more significant
under the condition of thermoelement miniaturization when the thickness of the thermo-
electric material–metal interfacial layer becomes comparable with the leg length. Attempts
to create the miniature modules face a catastrophic decrease in the module efficiency. For
example, for the cooling modules, it is desirable to reduce the thermoelement length from
0.1 cm to 0.01 cm. Under such conditions, the influence of contact resistivity, with a value
of about 5 × 10−6 Ω cm2, causes the decrease in COP at ∆T = 30 K from approximately
0.8 to 0.1 (Figure 2), i.e., eightfold. Such modules, therefore, are no longer effective for
practical applications.

It is possible to keep the energy efficiency value of miniature converters at a level
sufficient for practical use by creating the contacts with significantly lower contact resis-
tance. Therefore, the efforts of researchers are mainly focused on reducing the contact
resistance [51,53–55].

Table 2 shows the theoretical and experimental results of studies of the contact re-
sistivity between Bi2Te3-based thermoelectric material (TEM) and anti-diffusion layers
of metals, basically nickel, obtained in [51,56–59]. From Table 2, it follows that the im-
provement of contact technology enables reducing the contact resistivity to a value of
about (3–5) × 10−7 Ω cm2.

Table 2. Resistivity of TEM–metal contact.

Contact Features of Contact Technique Contact Resistivity rc, Ω cm2 Reference

Calculation data

p-type Bi2Te3/Ni - (3.0–3.2) × 10−6 [57]

n-type Bi2Te2.7Se0.3/Ni,
p-type Bi0.5Sb1.5Te3/Ni - (0.25–2.5) × 10−6 [58]

Experimental data

p-type BiSbTe/Ni - 3.7 × 10−6 [59]

n-type Bi2Te2.7Se0.3/
anti-diffusion barrier

Fabrication of contact under the standard technology.
Improved technology of surface treatment and cleaning.

2.74 × 10−6

1.12 × 10−6 [56]

p-type Bi0.5Sb1.5Te3/
anti-diffusion barrier

Fabrication of contact under the standard technology.
Improved technology of surface treatment and cleaning.

3.59 × 10−6

1.3 × 10−6 [56]

n-type (Bi,Sb)2(Se,Te)3/Ni
Processing and cleaning of the TEM surface.
Ion implantation of impurities for increasing the carrier
concentration at the TEM–metal boundary.

1.7 × 10−6

4.5 × 10−7 [51]

p-type (Bi,Sb)2(Se,Te)3/Ni
Processing and cleaning of the TEM surface.
Ion implantation of impurities for increasing the carrier
concentration at the TEM–metal boundary.

7.7 × 10−7

2.7 × 10−7 [51]

However, under miniaturization of thermoelectric legs, another factor is included
in the process of reducing the efficiency, namely, the influence of thermal resistance of
interconnectors and insulating plates in the module. Obviously, if the contact resistance
approaches the minimum but technologically possible value, the role of thermal resistance
becomes predominant, and a further decrease in contact resistance is not appropriate.
Therefore, it is advisable to study the combined influence of electrical and thermal contacts
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on the maximum efficiency value and to determine which of the resistances affects the
efficiency more significantly with a decrease in the length of thermoelements for generators
and coolers.

Approximate analytical methods for calculating the performances of TE converters
considering electrical and thermal resistances are described in [49,60–63]. The heat balance
equations at the hot and cold junctions of thermocouples are used. The main disadvantage
of these methods is their limited accuracy due to simplifying assumptions, such as tem-
perature independence of TE material parameters, disregarding the Thomson effect and
others. More accurate one-dimensional [64–68] or three-dimensional [69–73] models and
numerical methods are used to study the performance of cooling or generating converters
taking into account the influence of various factors.

We offer a comprehensive one-dimensional theoretical model and a fairly accurate
method that are suitable not only for analyzing the performance of TE converters, but also
for designing the module with an optimal structure for TE coolers and generators.

3. Method for Designing and Calculating the Performance of TE Converter in Cooling
and Generating Modes
3.1. Converter Physical Model

A schematic of a TE module for cooling or power generation is shown in Figure 3.
The module contains a number of thermocouples made of semiconductor n- and

p-type legs, commonly referred to as thermoelements. Typically, the legs are connected in a
series electrical circuit by metallic interconnectors and mounted between two insulating
plates in parallel with respect to the heat flow.

If we pass an electric current I with the polarity, indicated in Figure 3b, and maintain
the heat-liberating surface of the module at a temperature of Th close to the ambient
temperature, then the heat-absorbing surface will be cooled to a certain temperature of Tc.
The module will operate in cooling mode.

If the absorbing junction is heated by a heat flow Qh (Figure 3c) to a temperature of Th,
and the opposite junction is maintained at a temperature of Tc by the removing of heat Qc,
then due to the Seebeck effect, a thermo-EMF appears in a circuit. If the circuit is closed,
the electric current passes and power is generated at the external load RL. The module
operates as a generator.

This schematic diagram is used to establish the appropriate mathematical relationships
for the module’s physical model. For simplicity, the heat flow is assumed to be one-
dimensional. This assumption is reasonable since the interconnectors and insulating plates
are usually thin and made of materials with good thermal conductivity. Therefore, the
heat flow along the module surface due to local temperature gradients is neglected as it
is usually compared to the heat flux across the thermoelements. The heat losses from the
edges of the thermoelements and insulating plates are also neglected.

Moreover, as shown, for example, in [65], the results of calculating the module per-
formance using the 3D approach differ, but only a little from the results obtained in the
one-dimensional approximation.

3.2. Generating Converter

The efficiency of the generating converter is defined as the ratio

η =
W
Qh

, (2)

where, W = Qh −Qc is electric power delivered to the load, Qh is the heat power absorbed
at the hot junction of the thermocouple, Qc is the heat power liberated at the cold junction.

The values Qh and Qc should satisfy the energy balance equations, which are written
as follows:

Qh(Rins + Rcon + Rhs) = (Th − Thj)

Qc(Rins + Rcon + Rcs) = (Tcj − Tc)
, (3)
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where, Thj and Tcj are the temperatures of the thermocouple’s hot and cold junctions,

Rcon = lcon
κconscon

and Rins =
lins

κinssins
are the thermal resistances of interconnector and insulating

plate per one thermocouple, κcon, κins, lcon, lins, scon and sins are their thermal conductivities,
thickness and area, respectively. The thermal resistances Rhs =

1
hhshs

and Rcs =
1

hcscs
of the

heat sinks on the hot and cold sides of the thermocouple can also be considered, where, hh,
hc, shs and scs are their heat transfer coefficients and area, correspondingly.

Written in terms of heat flux densities, the expression (2) and Equation (3) become:

η =
w
qh
≡ qh − qc

qh
, (4)

qhRth = (Th − Thj)
qcRtc = (Tcj − Tc)

, (5)

where, Rth = lcon
κconKcon

+ lins
κinsKins

+ 1
hhKhs

and Rtc = lcon
κconKcon

+ lins
κinsKins

+ 1
hcKcs

. Kcon = scon
sn+sp

,

Kins =
sins

sn+sp
, Khs =

shs
sn+sp

and Kcs =
scs

sn+sp
are the fill factors of the interconnector, insulating

plate and hot and cold heat sinks, respectively. qh = Qh
sn+sp

and qc = Qc
sn+sp

denote the
densities of heat absorbed at the hot junction and rejected at the cold junction of the
thermocouple, respectively. w = qh − qc is a power density and sn and sp are the cross-
sectional areas of n- and p-type legs, respectively.

To determine the heat flux densities qh, qc, we use the one-dimensional equation of
heat flow in the thermoelectric leg at a steady state, which has the following form [50,52]:

d
dx
κ

dT
dx

+
i2

σ
− T

dα

dT
i
dT
dx

= 0, (6)

where, i ≡
∣∣∣∣→i ∣∣∣∣ = I/s is a current density. In this equation, the thermoelectric material

properties, namely, the Seebeck coefficient α(T), the electrical conductivity σ(T) and the
thermal conductivity κ(T) are temperature dependent. The last term on the left-hand-
side of Equation (6) represents the Thomson effect which, as shown in [69], can affect the
performances of the converters.

To calculate the temperature T(x) and heat flux q(x) distributions in the n- and p-type
legs of the thermocouple, a new variable q = −κ dT

dx + αiT is used to write the two second-
order differential Equation (6) for legs in the form of a system of four first-order equations
as follows:

dTn
dx = − qn

κn
− αn

κn
inTn; dTp

dx = − qp
κp
− αp

κp
ipTp

dqn
dx = α2

n
κn

i2nTn +
αn
κn

inqn +
i2n
σn

; dqp
dx =

α2
p

κp
i2pTp +

αp
κp

ipqp +
i2p
σp

, (7)

where, αn = |αn|. In system (7), it was taken into consideration that the equality α
→
i = −|αi|

is valid for both n- and p-type legs since a change in the type of conductivity in a thermo-
couple occurs simultaneously with a change in the direction of the current density vector
(Figure 3c).

The solution of system (7) at given current densities in and ip under boundary conditions

Tn(L) = Tp(L) = Thj; Tn(0) = Tp(0) = Tcj (8)

enables determining the heat fluxes qh and qc according to the following formulae:

qh = −
[
qn(L) + qp(L) + i2nrc + i2prc + qcon

]
qc = −

[
qn(0) + qp(0)− i2nrc − i2prc − qcon

] . (9)
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These formulae take into account the release of Joule heat due to contact resistance rc at
the junctions of the thermocouple. The liberation of Joule heat in the metallic interconnector
is also considered. Using the expression for interconnector resistance obtained in [50], the
density qcon of this heat can be approximated as follows:

qcon =
ρcon
lcon

(Kcon − 2/3)I(in + ip), (10)

where, ρcon is the resistivity of the connecting material.
Consequently, using the nonlinear system of Equation (5) to find the unknown temper-

atures Thj and Tcj and the solution of the boundary value problem (7) and (8) to calculate qh
and qc (9), it is possible to determine the efficiency (4) for the given current densities in and
ip. The variation of in and ip makes it possible to find the optimal current densities in opt and
ip opt, at which the efficiency takes the maximum value ηmax.

The initial data for solving such an optimization problem and for designing a generat-
ing module are temperatures Th and Tc, the required electric power WL and voltage VL on
the external load. Therefore, the current I in the closed circuit is also given and is equal
to I = WL/VL. The temperature dependences of materials parameters αn,p(T), σn,p(T) and
κn,p(T), leg length, contact resistance, thicknesses and filling factors of the interconnector,
insulating plate and heat sinks should also be specified. Then, the optimal cross-sectional ar-
eas of the n- and p-type legs are calculated using the ratio sn opt = I/in opt, sp opt = I/ip opt
and the number of thermocouples providing the required power WL is determined by
the following formula: n = WL

(sn opt+sp opt)(qh−qc)
. Obviously, numerical methods are used

for calculations.
It should be noted that, in order to design a module with the same cross-sectional area

(sn = sp) of the legs, it is necessary to put in = ip for calculations.

3.3. Cooling Converter

The energy efficiency of the cooling module is determined by the COP ε, which is
given by

ε =
Qc

W
, (11)

where, W = Qh −Qc is the consumed electric power, Qc is the heat power absorbed at the
cold junction of a thermocouple and Qh is the heat power liberated at the hot junction.

The values Qc and Qh should satisfy the energy balance equations, which are written
as follows:

Qc(Rins + Rcon + Rcs) = (Tc − Tcj)

Qh(Rins + Rcon + Rhs) = (Thj − Th)
. (12)

Written in terms of heat flux densities, the expression (11) for the COP and Equation
(12) become:

ε =
qc

qh − qc
, (13)

qcRtc = (Tc − Tcj)
qhRth = (Thj − Th)

. (14)

To determine the heat flux densities qc and qh, we solve the system of differential
Equation (7) with the following boundary conditions:

Tn(0) = Tp(0) = Thj; Tn(L) = Tp(L) = Tcj, (15)

and use the relations:

qc = −
[
qn(L) + qp(L) + i2nrc + i2prc + qcon

]
qh = −

[
qn(0) + qp(0)− i2nrc − i2prc − qcon

] . (16)
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So, solving the system of Equation (14) and the boundary value problems (7)–(15)
for given current densities in and ip, we find the heat flux densities qc and qh (9) using
formulae (16) and determine the COP (13). The variation of in and ip makes it possible to
find the optimal current densities in opt and ip opt, at which the COP takes the maximum
value εmax.

The described method is used for designing of the cooling module with the maximum
COP at temperature difference ∆T = Th − Tc considering the electrical and thermal resis-
tances of contacts, interconnectors, insulating plates and heat sinks. For a given value of
current I, the optimal cross-section areas of n- and p-type legs are calculated using the ratio
sn opt = I/in opt, sp opt = I/ip opt and the number of thermocouples providing the required
cooling capacity Qm of the module is determined as follows: n = Qm/(qc(sn opt + sp opt)).

3.4. Algorithm for Designing and Calculating the Performance of TE Converter

To design and calculate the performance of TE converters, a special iterative algorithm
was developed, which consists of the following:

1. We set the initial values of the current densities i(0)n = i(0)p ≡ i(0) and the initial

values of T(0)
cj , T(0)

hj , close to the values of Tc and Th. To calculate i(0), we used approximate
classical expressions [52] for the optimal current density, which are given as follows:
i(0)η = α∆T

ρL(M+1) for the generating converter or i(0)ε = α∆T
ρL(M−1) for the cooling mode, where,

α = αn + αp, ρ = ρn + ρp + 4rc/L, αn, αp, ρn, ρp are the average values of parameters in
the temperature range ∆T.

2. We apply the Newton iteration method to solve the system of Equations (5) or (14)
for the generating or cooling converter, respectively, and find the next approximation for
the temperatures T(i)

cj , T(i)
hj .

3. Within each Newton iteration, we solve the boundary value problem (7) and (8) or
(7)–(15) and calculate the heat flux densities qc and qh according to Formula (9) or (16). For
this, we use the finite element method in combination with the shooting method.

4. For each Newton iteration, we determine η or ε by Formula (4) or (11), respectively,
and vary current densities in and ip using the gradient method until finding ηmax or εmax.

5. Newton’s iterative process is repeated until the specified accuracy is reached in
solving the system of Equations (5) or (14).

Such an algorithm was implemented in MATLAB.

4. Results and Discussion

Our goal was to investigate the effect of electrical and thermal resistances of contacts,
interconnectors and insulating plates on the energy efficiency of TE converters with the
leg length from 0.2 cm to 0.02 cm. The maximum COP and maximum efficiency were
calculated for modules made of Bi2Te3-based materials. The samples of n- and p-type
Bi2Te3-based alloys for cooling and generating modules were grown at the Institute of
Thermoelectricity (Ukraine) by the vertical zone-melting technique and their thermoelectric
properties were measured using the methods and equipment developed herein [74,75]. The
measured temperature dependences of the Seebeck coefficient α(T), the electrical conduc-
tivity σ(T) and the thermal conductivity κ(T) are shown in Figure 4. These dependences
were approximated by polynomials and used for the COP and efficiency calculation. The
composition of Bi2Te3-based alloys for cooling modules differs from the composition for
generator modules. The generator materials are chosen in such a way that the maximum
of the Seebeck coefficient is in the hot temperature range from 400 K to 500 K (Figure 4a).
Figure 4d shows the temperature dependences of material figure of merit Z. Obviously, the
alloys used for cooling modules have a maximum Z value in the temperature range from
250 K to 300 K. For generator materials, the maximum Z is shifted to the range of 300 K–350 K,
and the Z value at temperatures of 400 K–450 K is higher compared to cooling materials.
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(Bi2Te3)0.90(Sb2Te3)0.05(Sb2Se3)0.05, 4—p-type (Bi2Te3)0.25(Sb2Te3)0.72(Sb2Se3)0.03.

Calculations were carried out for modules with the same cross-sectional area (sn = sp)
of the legs connected by copper interconnectors. Three ceramic materials were considered
for insulating plates, namely, aluminum oxide Al2O3, aluminum nitride AlN and pressed
diamond powder. The initial data for calculating the efficiency and COP are given in Table 3.

Table 3. Value of parameters used for calculation.

Parameter Value

Leg length L, cm 0.02–0.2

Ratio Kcon = scon/2s 1.25

Ratio Kins = sins/2s 2.25

Thickness of the insulating plate lins, cm 0.02

Thickness of the copper interconnector lcon, cm 0.02

Current in a circuit I, A 1.0

Thermal conductivity of insulating plate materials κins, W/cm K:
Al2O3 0.24
AlN 1.25
Pressed diamond powder 10.0
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4.1. Cooling Converter

The dependences of the maximum COP εmax on a thermoelement length, calculated
for temperature differences across the modules of 30 K and 50 K, are shown in Figure 5.
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To analyze the impact of electrical contact resistance on the maximum COP, calculations
were performed for two values of resistivity rc, namely, for the value rc = 5 × 10−6 Ω cm2,
which is considered as typical for commercial TE modules [51], and for the minimum value
rc = 10−7 Ω cm2. As shown in [58,76], such minimum contact resistance is caused by a
potential barrier at the boundary between the TEM and the nickel anti-diffusion layer.
As it follows from the data in Table 2, the lowest value of contact resistivity measured
experimentally is close to 10−7 Ω cm2.

The effect of the thermal resistance of interconnectors and insulating plates results in
the dependence of εmax on a thermoelement length for both the minimum (dashed lines in
Figure 5) and the typical (solid lines in Figure 5) values of contact resistance. Reducing the
leg length of module leads to a decrease in the COP, which is especially sharp if the length
is less than 0.05 cm and the contact resistance is high.

Thermal resistance evokes the unwanted temperature drops δT across the interconnec-
tors and insulating plates (Figure 6), which for modules with miniscale thermoelements,
are the greater the shorter the leg.

Obviously, δTh across the heat-releasing (solid lines in Figure 6) insulating plate
is significantly greater than the drop δTc across the heat-absorbing one (dashed lines
in Figure 6). The larger the temperature difference across the module and the thermal
resistance of the insulating plates, the greater δT. For example, for modules with a leg length
of 0.02 cm and insulating plates made of Al2O3, δTh reaches a value of 3.5 K (Figure 6b)
for a temperature difference across the module of ∆T = 50 K. Accordingly, the temperature
of heat-releasing junctions of thermocouples increases by the same value, thus causing a
reduction of the COP.

An improvement in the COP can be obtained by decreasing the thermal resistance
of insulating plates. This is achieved by reducing the plate thickness and using ceramics
with high thermal conductivity, such as AlN or pressed diamond powder. In particular,
for insulating plates made of AlN, the temperature drop δTh has a value of less than 1 K
instead of 3.5 K (Figure 6). In general, the temperature losses δTh for miniature modules
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with Al2O3 insulating plates are about 3.5 times or 8 times higher than δTh for modules
with AlN or pressed diamond ceramics, respectively.
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However, the data in Figure 5 show that the COP of modules with diamond insulating
plates does not differ significantly from the COP of modules with AlN ceramics. Therefore,
it is impractical to use materials with a thermal conductivity greater than that of aluminum
nitride for insulating plates. In particular, using an expensive diamond ceramic is not
reasonable. However, when choosing the material for insulating plates and plate thickness,
the mechanical properties of the ceramics must be also taken into account.

We also studied the effect of interconnector electrical resistance on the COP of minia-
ture modules. The optimal supply current for such modules usually does not exceed
3 A [49], and the Joule heat that is released in the interconnector has little effect on the COP.

Figure 7 shows the dependences of the COP εmax on the temperature difference ∆T
across the miniscale module with the leg length of L = 0.02 cm. The COP has been calculated
for different electrical and thermal resistances of contacts and insulating plates. This figure
also represents the dependence ε0(∆T), corresponding to the ideal model of the module
(without undesirable electrical and thermal resistances). It can be seen that the COP εmax
approaches the value ε0 of an ideal model, only if the contact electrical resistance is minimal
and the insulating plates are made of materials with high thermal conductivity. Otherwise,
εmax of the miniature module is 2–6 times less than the value of ε0. This result follows from
the data of calculating the ratio ε0/εmax presented in Table 4.

The analysis of these data also shows that a significant improvement in the COP of
miniscale modules can be achieved by decreasing the electrical contact resistance to its
rational value. An increase in the COP by reducing the thermal resistance of insulating
plates is less noticeable.

To determine the rational values, the dependences of the maximum COP on the
contact resistivity were calculated and analyzed. The results are shown in Figure 8 for the
temperature differences of ∆T = 10 K and ∆T = 50 K. The data were calculated for cooling
converters with a typical leg length of 0.1 cm and with miniature legs of 0.02 cm. Modules
with the insulating plates of both Al2O3 and AlN materials were considered.
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Table 4. Ratio ε0/εmax of ideal module COP ε0 to real module COP εmax in dependence of thermoele-
ment length.

Leg Length L, cm
ε0/εmax

rc = 10−7 Ω cm2,
AlN Insulating Plates

ε0/εmax
rc = 10−7 Ω cm2,

Al2O3 Insulating Plates

ε0/εmax
rc = 5 × 10−6 Ω cm2,

AlN Insulating Plates

ε0/εmax
rc = 5 × 10−6 Ω cm2,

Al2O3 Insulating Plates

Temperature difference across a module ∆T = 10 K, ε0 = 4.149

0.1 1.02 1.06 1.10 1.14

0.05 1.04 1.12 1.21 1.29

0.02 1.11 1.30 1.54 1.77

Temperature difference across a module ∆T = 30 K, ε0 = 0.961

0.1 1.02 1.05 1.14 1.17

0.05 1.04 1.10 1.29 1.35

0.02 1.11 1.26 1.85 2.11

Temperature difference across a module ∆T = 50 K, ε0 = 0.324

0.1 1.03 1.07 1.25 1.29

0.05 1.07 1.14 1.59 1.72

0.02 1.18 1.40 4.18 6.47

The value of the contact resistance strongly affects the COP. The lower the contact
resistance, the higher the COP of converter. This dependence is more intense for a converter
with miniature legs. In particular, for a converter with a thermoelement length of 0.02 cm,
the COP at ∆T = 50 K decreases to zero (Figure 8b) if the contact resistivity exceeds the
value of 5·10−6 Ω·cm2. This means that the maximum temperature difference of such a
converter reaches only 50 K.

However, the data in Figure 8 show that for a converter with a certain length of
thermoelements, there is a rational value rc opt of the contact resistivity, such that for
rc < rc opt the increase in the COP becomes insignificant, namely, not exceeding 5%. The
results of computer calculations have shown that the rational value of rc opt depends only
on the length of the converter legs and does not depend either on the temperature drop in
the converter or on the thermal resistance of the insulating plates. To determine the value
of rc opt, we calculated the dependences εmax(rc) for converters with different leg lengths.
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They are shown in Figure 9. It can be seen that for each length there is its own value rc opt
of contact resistivity, such that for rc < rc opt the dependences εmax(rc) go into saturation.
The rational values rc opt have been defined for cooling converters with different leg lengths
and are given in Table 5.
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Table 5. The rational values of the contact resistivity for cooling converters with different leg lengths.

Thermoelement length
L, cm 0.15 0.1 0.075 0.05 0.02

Rational contact resistivity
rc opt, Ω·cm2 2·10−6 10−6 9·10−7 7·10−7 3·10−7
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It is necessary to focus on such rational values of contact resistance in the development
of technology for creating the junction between Bi2Te3–based material and anti-diffusion
metal for cooling modules, especially for the modules with miniscale thermoelements.

4.2. Generating Converter

The influence of electrical and thermal resistances of contacts, interconnectors and
insulating plates on the efficiency and power density was studied for generating converters.
Dependences of the maximum efficiency ηmax and power density w on the leg length,
calculated for temperature drops of 25 K and 100 K on the generating module are shown
in Figure 10. Reducing the length of the thermoelements leads to a decrease in efficiency,
which is especially sharp if the length is less than 0.1 cm and the contact resistance is
high. It is obvious that with a decrease in the leg length, the density of the generated
power increases. This testifies to the absolute advantage of converters with miniature
thermoelements. However, unwanted electrical and thermal resistances significantly affect
this advantage, reducing the power density.
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Contact resistance: rc = 5 × 10−6 Ω cm2 (solid lines), rc = 10−7 Ω cm2 (dashed lines). Insulating
plates: 1—Al2O3, 2—AlN. Temperature difference: ∆T = 25 K (a), ∆T = 100 K (b). Tc= 300 K.

Thermal resistance causes a temperature drop δT across the insulating plates, which
depends on the leg length and the temperature difference across the converter, as shown
in Figure 11. In a module with miniature legs, the drop δT can reach a high value. For
example, for a module with insulating plates made of Al2O3, δT = 8.5 K (Figure 11). Because
of the generating module δTh ≈ δTc, the losses of the temperature difference across the
module, in this case, are about 17 K, which results in a significant reduction in efficiency.

We also investigated the influence of copper interconnectors on the performance of
the generating converter. Their thermal resistance actually does not affect the efficiency.
However, their electrical resistance can affect the efficiency if the module is designed for
a load with a large input current. The dependence of efficiency on the current in the
thermoelectric circuit is shown in Figure 12. If the current is low, the Joule heat released
in the interconnector has little effect on the efficiency. However, if the current exceeds a
certain critical value of Icr, the efficiency decreases sharply. The value Icr depends on the
temperature drop across the converter and does not depend on the leg length. In order to
avoid a decrease in efficiency at high currents, it is enough to increase the thickness of the
interconnector. This is confirmed by the dependences ηmax(lcon) at the high currents shown
in Figure 13.



Energies 2023, 16, 4082 16 of 22

Energies 2023, 16, x FOR PEER REVIEW 16 of 23 
 

 

thermoelements. However, unwanted electrical and thermal resistances significantly af-
fect this advantage, reducing the power density. 

  
(a) (b) 

Figure 10. Dependences of the maximum efficiency ηmax and power density w on the leg length L. 
Contact resistance: rc = 5 × 10−6 Ω cm2 (solid lines), rc = 10−7 Ω cm2 (dashed lines). Insulating plates: 
1—Al2O3, 2—AlN. Temperature difference: ΔT = 25 K (a), ΔT = 100 K (b). Tc = 300 K. 

Thermal resistance causes a temperature drop δT across the insulating plates, which 
depends on the leg length and the temperature difference across the converter, as shown 
in Figure 11. In a module with miniature legs, the drop δT can reach a high value. For 
example, for a module with insulating plates made of Al2O3, δT = 8.5 K (Figure 11). Because 
of the generating module h cT Tδ ≈ δ , the losses of the temperature difference across the 
module, in this case, are about 17 K, which results in a significant reduction in efficiency. 

  
(a) (b) 

Figure 11. Dependences of temperature drop δT across the insulating plate on the leg length L. rc = 
5 × 10−6 Ω cm2, insulating plate: 1—Al2O3, 2—AlN, ΔT = 25 K (a), ΔT = 100 K (b), Tc = 300 K. 

We also investigated the influence of copper interconnectors on the performance of 
the generating converter. Their thermal resistance actually does not affect the efficiency. 
However, their electrical resistance can affect the efficiency if the module is designed for 

Figure 11. Dependences of temperature drop δT across the insulating plate on the leg length L.
rc = 5 × 10−6 Ω cm2, insulating plate: 1—Al2O3, 2—AlN, ∆T = 25 K (a), ∆T = 100 K (b), Tc= 300 K.

Energies 2023, 16, x FOR PEER REVIEW 17 of 23 
 

 

a load with a large input current. The dependence of efficiency on the current in the ther-
moelectric circuit is shown in Figure 12. If the current is low, the Joule heat released in the 
interconnector has little effect on the efficiency. However, if the current exceeds a certain 
critical value of Icr, the efficiency decreases sharply. The value Icr depends on the tempera-
ture drop across the converter and does not depend on the leg length. In order to avoid a 
decrease in efficiency at high currents, it is enough to increase the thickness of the inter-
connector. This is confirmed by the dependences ηmax(lcon) at the high currents shown in 
Figure 13. 

 
Figure 12. Dependences of the efficiency ηmax on the current I in thermoelectric circuit. rc = 5 × 10−6 Ω 
cm2, AlN insulating plate, leg length 1—L = 0.05 cm, 2—L = 0.15 cm. ΔT = 25 K (a), ΔT = 100 K (b). 

 
Figure 13. Dependences of the efficiency ηmax on the thickness of interconnector lcon. AlN insulating 
plates, rc = 5 × 10−6 Ω cm2, L = 0.05 cm. ΔT = 25 K and I = 10 A (a), ΔT = 100 K and I = 100 A (b). Tc = 
300 K. 

Dependences of maximum efficiency ηmax on the temperature drop ΔT across the 
module with the miniature legs are shown in Figure 14. Dependence η0(ΔT) for the ideal 
module model (without undesirable electrical and thermal resistances) is also given. The 
calculated ratio η0/ηmax is presented in Table 6. The ratio w0/w of power density values is 
also shown in this Table. 

Figure 12. Dependences of the efficiency ηmax on the current I in thermoelectric circuit.
rc = 5 × 10−6 Ω cm2, AlN insulating plate, leg length 1—L = 0.05 cm, 2—L = 0.15 cm. ∆T = 25 K (a),
∆T = 100 K (b).

Energies 2023, 16, x FOR PEER REVIEW 17 of 23 
 

 

a load with a large input current. The dependence of efficiency on the current in the ther-
moelectric circuit is shown in Figure 12. If the current is low, the Joule heat released in the 
interconnector has little effect on the efficiency. However, if the current exceeds a certain 
critical value of Icr, the efficiency decreases sharply. The value Icr depends on the tempera-
ture drop across the converter and does not depend on the leg length. In order to avoid a 
decrease in efficiency at high currents, it is enough to increase the thickness of the inter-
connector. This is confirmed by the dependences ηmax(lcon) at the high currents shown in 
Figure 13. 

 
Figure 12. Dependences of the efficiency ηmax on the current I in thermoelectric circuit. rc = 5 × 10−6 Ω 
cm2, AlN insulating plate, leg length 1—L = 0.05 cm, 2—L = 0.15 cm. ΔT = 25 K (a), ΔT = 100 K (b). 

 
Figure 13. Dependences of the efficiency ηmax on the thickness of interconnector lcon. AlN insulating 
plates, rc = 5 × 10−6 Ω cm2, L = 0.05 cm. ΔT = 25 K and I = 10 A (a), ΔT = 100 K and I = 100 A (b). Tc = 
300 K. 

Dependences of maximum efficiency ηmax on the temperature drop ΔT across the 
module with the miniature legs are shown in Figure 14. Dependence η0(ΔT) for the ideal 
module model (without undesirable electrical and thermal resistances) is also given. The 
calculated ratio η0/ηmax is presented in Table 6. The ratio w0/w of power density values is 
also shown in this Table. 

Figure 13. Dependences of the efficiency ηmax on the thickness of interconnector lcon. AlN insulating
plates, rc = 5 × 10−6 Ω cm2, L = 0.05 cm. ∆T = 25 K and I = 10 A (a), ∆T = 100 K and I = 100 A (b).
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Dependences of maximum efficiency ηmax on the temperature drop ∆T across the
module with the miniature legs are shown in Figure 14. Dependence η0(∆T) for the ideal
module model (without undesirable electrical and thermal resistances) is also given. The
calculated ratio η0/ηmax is presented in Table 6. The ratio w0/w of power density values is
also shown in this Table.
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Table 6. Ratio of efficiencies η0/ηmax and of power densities w0/w depending on thermoele-
ment length.

Leg Length
L, cm

rc = 10−7Ω cm2,
AlN Insulating Plate

rc = 10−7Ω cm2,
Al2O3 Insulating Plate

rc = 5 × 10−6Ω cm2,
AlN Insulating Plate

rc = 5 × 10−6Ω cm2,
Al2O3 Insulating Plate

η0/ηmax w0/w η0/ηmax w0/w η0/ηmax w0/w η0/ηmax w0/w

Temperature difference across a module ∆T = 10 K, η0 = 0.4838

0.2 1.12 1.14 1.14 1.19 1.19 1.22 1.2 1.27

0.1 1.13 1.15 1.17 1.23 1.26 1.32 1.3 1.42

0.05 1.14 1.18 1.23 1.35 1.4 1.52 1.5 1.74

0.025 1.17 1.24 1.35 1.615 1.7 1.96 1.93 2.49

Temperature difference across a module ∆T = 25 K, η0 = 1.1946

0.2 1.05 1.06 1.07 1.1 1.11 1.14 1.13 1.17

0.1 1.06 1.07 1.1 1.15 1.17 1.22 1.21 1.31

0.05 1.07 1.1 1.14 1.25 1.3 1.41 1.39 1.6

0.025 1.1 1.15 1.25 1.48 1.56 1.79 1.76 2.26

Temperature difference across a module ∆T = 100 K, η0 = 4.3363

0.2 1.02 1.02 1.03 1.06 1.06 1.08 1.08 1.12

0.1 1.02 1.03 1.05 1.1 1.11 1.16 1.15 1.23

0.05 1.03 1.06 1.1 1.2 1.21 1.3 1.28 1.47

0.025 1.06 1.1 1.18 1.4 1.42 1.61 1.58 2.02

Temperature difference across a module ∆T = 100 K, η0 = 4.3363

0.2 1.01 1.02 1.02 1.05 1.05 1.07 1.06 1.1

0.1 1.02 1.03 1.04 1.1 1.09 1.12 1.12 1.2

0.05 1.03 1.05 1.08 1.19 1.16 1.25 1.23 1.41

0.025 1.04 1.1 1.15 1.4 1.33 1.5 1.47 1.89



Energies 2023, 16, 4082 18 of 22

It can be seen that the efficiency ηmax approaches the value η0 for the modules with
the contact resistivity of 10−7 Ω cm2 and insulating plates made of AlN. Otherwise ηmax of
the miniscale converters is 1.5–2 times less than the value of η0. The power density w is
2.0–2.5 times less than its ideal value w0.

For the generating converter, as well as for the cooling module, there is a rational value
rc opt of the contact resistance, such that for rc < rc opt the increase in the efficiency does not
exceed 5%. Figure 15 shows the dependences of ηmax(rc), which were used to determine the
values of rc opt for generator converters with different leg lengths. The results are presented
in Table 7.
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Table 7. The rational values of the contact resistivity for generating converters with different
leg lengths.

Thermoelement length
L, cm 0.15 0.1 0.075 0.05 0.02

Rational contact resistivity
rc opt, Ω·cm2 3·10−6 2·10−6 1.5·10−6 10−6 6·10−7

These contact resistance values should be adhered to when developing the technology
of miniscale generator modules.

It should be noted that the calculated rational values of the contact resistivity, which
for miniscale converters with leg lengths from 0.05 cm to 0.02 cm are in the range from
10−6 Ω·cm2 to 3·10−7 Ω·cm2, correlate well with the experimental values given in [51]
and shown in Table 2. The technology for the fabrication of such contacts is described in
detail in [51]. The manufacturing technique of miniscale modules with legs from 0.05 cm
to 0.02 cm long has also been developed [49]. It is similar to the technology of modules
with traditional leg lengths from 0.1 cm to 0.2 cm. Therefore, it can be confidently stated
that there are no obstacles to the mass production of highly efficient miniature converters.
The COP or efficiency of such converters will not be less than that of modules with tradi-
tional leg lengths. However, the consumption of thermoelectric materials for them will be
significantly less, which makes them cheaper.
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5. Conclusions

According to the results of the investigation, the following conclusions can be drawn:

• A new numerical method is proposed for designing cooling modules in the maximum
COP mode and generating modules with maximum efficiency, with regard to the
electrical and thermal resistances of contacts, interconnectors, insulating plates and
other factors. The negative effect of these undesirable resistances on the performance
of miniscale converters has been estimated. The results prove that the electrical
contact resistance becomes the predominant reason for the decrease in the efficiency
of converters at the miniaturization of thermoelements.

• A commercial Bi2Te3-based module has insulating plates made of Al2O3 material and
a contact resistivity of about 5 × 10−6 Ω cm2. The maximum COP of such a cooling
module with a leg length of 0.02 cm is about 2–6 times (depending on temperature
drop) less than its possible value for the ideal model of the module (without undesir-
able electrical and thermal resistances). The efficiency of such modules for generators
is about 1.5–2 times less as compared to the ideal model.

• An improvement in the energy efficiency of miniature modules is achieved by de-
creasing the undesirable resistances to their limit values. Such a limit for the electrical
contact resistance is its rational value, which depends on thermoelement length. The
rational values for the Bi2Te3-based modules both for cooling and generation have
been determined and are given in this paper. For miniscale converters with leg lengths
from 0.05 cm to 0.02 cm, they vary in the range from 10−6 Ω·cm2 to 3·10−7 Ω·cm2 and
correlate well with the experimental data obtained in [51]. It is expedient to follow
these rational values of contact resistance in the fabrication of miniature modules. To
reduce the undesirable thermal resistance, it is preferable to use AlN ceramics instead
of insulating plates made of Al2O3.
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