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Abstract: This work studied the static magnetic pull of a modular spoke-type permanent magnet
motor (MSTPMM) with no rotor eccentricity during the motor’s final assembly process and its
dynamic magnetic pull during different motor operating states. A new final assembly scheme was
proposed to significantly reduce the static magnetic pull during the final assembly process of the
motor. The methods required to reduce the unbalanced radial magnetic pull of the whole stator,
which is caused by partial stator module operation, were also studied. Firstly, the structure of the
MSTPMM was examined. The static magnetic pull that occurred with the implementation of the
two motor final assembly methods was studied in order to prove the effectiveness of reducing the
maximum static magnetic pull. Moreover, the maximum magnetic pull during the assembly process
was also observed. Then, the dynamic magnetic pull was studied with different motor operating
states: no load, on load, and partial stator module operation. To solve the unbalanced radial magnetic
pull of the whole stator, which is caused by partial stator module operation, methods of changing the
angle between the stator current vector and the q axis (¥) or the d axis current (i) were also studied.

Keywords: static magnetic pull; dynamic magnetic pull; modular spoke-type permanent magnet
motor (MSTPMM); final assembly

1. Introduction

The spoke-type permanent magnet motor has been widely studied in home and vehicle
appliances because it can concentrate flux and has a high torque density and potential
magnet-saving capabilities [1-3]. The majority of studies have been mainly focused on the
magnet shape [4-11], the analytical model [12,13] and the magnetic barrier, with different
shapes and dimensions [14-21], for high-speed spoke-type permanent magnet motors.
However, a study on the magnetic pull of modular stators or rotors for modular spoke-type
permanent magnet motors has not yet been conducted.

In a modular spoke-type permanent magnet motor (MSTPMM), the modular stator
and modular rotor are fixed separately. Therefore, the magnetic pull of the modular stator
and rotor in the assembly process, as well as its operating states, need to be analyzed
separately. In addition, the magnetic pull that mainly influences the motor’s fixed structure
and assembly positioning tooling mechanical strength consists of the following: the radial
magnetic pull of one modular rotor core (F,pr), the tangential magnetic pull of one modular
rotor core (Fiyr), the radial magnetic pull of one modular stator core (F,us), the tangential
magnetic pull of one modular stator core (Fyys), the magnetic pull of one modular stator
core (Fs), and the magnetic pull of the whole stator (Fyys).

This paper proposed two assembly schemes for MSTPMM; found the maximum static
magnetic pull during motor final assembly process; and proposed a method to reduce
the unbalanced radial magnetic pull of the whole stator, which was caused by part of the
stator modules operating. This paper will be organized as follows. First, the structure and
parameters of a modular spoke-type permanent magnet motor (MSTPMM) is introduced in
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the second section. Two motor final assembly methods, which are suited to large-volume
permanent magnet motors in order to reduce static magnetic pull, are proposed in Section 3.
The static magnetic pulls that occurred following the implementation of the two motor
final assembly methods are analyzed. In Section 4, the dynamic magnetic pulls are studied
with different motor operating states: no load, on load, and partial stator module operation.
Then, in Section 5, to solve the unbalanced radial magnetic pull of the whole stator, which
is caused by partial stator module operation, the methods of changing the angle between
the stator current vector and the q axis (¥) or the d axis current (iy) are studied.

2. Structure of Non-Magnetic Supports for Spoke-Type Permanent Magnet Motor and
Motor Parameters

A diagram of non-magnetic stainless-steel supports for an outer rotor modular spoke-
type permanent magnet motor is shown in Figure 1.
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(b) Local schematic diagram

Figure 1. Diagram for the outer rotor of the MSTPMM. 1. Non-magnetic bolt; 2. outer rotor yoke; 3.
non-magnetic stainless steel; 4. permanent magnet; 5. modular rotor core; and 6. modular stator core.

The coil layout of one modular stator (10 pole-12 slot) is shown in Figure 2, where the
numbers are the stator tooth number, and the letters are the phase of the windings belong.
The modular motor parameters are shown in Table 1. The stators and rotors are all modular,
the number of modular stators is 6, and the number of modular rotors is 60.
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stator border

Figure 2. Coil layout of one modular stator.

Table 1. Main parameters of motor.

Values and Units

Parameter
Rated power 160 kW
Rated voltage 1140V
Rated speed 30 rpm
Rated torque 50,933 N-m
Rated frequency 15 Hz
Stack length (L,) 1000 mm
Stator outer diameter (Dq) 1149.4 mm
Thickness of stator yoke 40 mm
Air gap (1) 23 mm
Magnet magnetization direction dimension (/1) 10 mm
Magnet width (by,;) 40 mm
Thickness of non-magnetic stainless steel (h3) 30 mm
Number of stator slots (z)/rotor pole pairs (p) 72/30
DW470_50

Iron core material

PM material N42UH
Number of modular stators 6
Number of modular rotors 60

3. Static Magnetic Pull in Different Magnet Assembly Processes
3.1. The Description of the Motor Assembly Scheme

This section proposes two final motor assembly schemes. The final assembly process
of Scheme A is shown in Figure 3a and is divided into three steps:

’.’-#.—-_.“.h magnetic
\- bond
magnetic magnetic
isolated isolated
pad
pad

(b) Scheme B

(a) Scheme A
Figure 3. Schematic diagram of the motor assembly scheme.

(Step A1) The stator part and rotor part with magnets are independently assembled.

(Step A2) Between the stator and rotor, the magnetic isolated pads are inserted equidis-
tributionally in the circle direction. Then, the stator and rotor are assembled together.

(Step A3) The magnetic isolated pads are removed through assembly holes at the end

closure. The hole is shown in Figure 4.
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Figure 4. Schematic diagram of the assembly hole location.

The final assembly process of Scheme B is shown in Figure 3b and is divided into three
steps:

(Step B1) The stator part and rotor part with magnets are independently assembled.
During the rotor part assembly process, the magnetic bonds assembly process must take
place before the magnets are assembled.

(Step B2) Between the stators and rotors, the magnetic isolated pads are inserted
equidistributionally in the circle direction. Then, the stator and rotor are assembled together.

(Step B3) The magnetic bonds and magnetic isolated pads are removed through
assembly holes at the end closure. The hole is shown in Figure 4.

3.2. The Static Magnetic Pull Description of Motor Assembly Scheme A

Niotor_lest 1s the number of adjacent filled-groove magnets, which are on the left of the
analyzed modular rotor core. Nyyor_rignt is the number of adjacent filled-groove magnets,
which are on the right of the analyzed modular rotor core. The diagrammatic sketch of
Niotor_left and Nyotor_rignt 18 shown in Figure 5.

... il /..
@Mmoiularmg

Nrotor Jeft core being analyzed Nr 0tor_right

Figure 5. The diagrammatic sketch of Nyotor_jept and Niyosor_right-

The local enlarged rotor schematic of rotor core A is shown in Figure 6, into which
magnet grooves 1 and 2 inserted magnets, where the numbers are the magnetic grooves
number, the letters are the rotor core letter. The corresponding magnetic flux distribution of
Steps Al and B1 is shown in Figure 7, where, @, @y, Ppipga1, and Puea2 are the remanent
magnet flux, magnet leakage flux, air-gap flux on the left of core A, and air-gap flux on
the right of core A, respectively; Doa11, P11, and Py are the core magnetic flux on the
bottom of core A, B, and C near the air gap, respectively; and @g421, Pgp21, and Pgcoy are
the core magnetic flux on top of core A, B, and C near the non-magnetic stainless steel,
respectively. @p11 and @pq; are the leakage magnetic flux near the air gap.

The basic formula of electromagnetic suction is shown in expression (1).

(PZ

F= 1
ZhobLes g

where @ is air-gap flux, i is the magnetoconductivity of air, b is magnetic field cross
section width, and Lef is the length of stator core.
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(a) Scheme A (b) Scheme B

Figure 6. The local enlarged rotor schematic of rotor core A (with inserted magnets via magnet
grooves 1 and 2).
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Figure 7. Schematic diagram of magnetic flux distribution.

The tangential magnetic pull of core A (Fipra) and the radial magnetic pull of core A
(Frpmra) are shown in expression (2).

_ (Pmagar® —Pmagar®) | (Pp112—Pp122)
Fipmra = 2ol Ly + 2pob1 Les
¢gA112 _ Pean
2uobarLes  2pobazLe

@

FrMRrA

where by, is the width of magnet, b is the radial length of the magnetic isolated barrier
near the air gap, b4 is the bottom arc length of core A near the air gap, and b4 is the top
arc length of core A near the non-magnetic stainless steel.

The magnetic pull is simulated by finite element simulation software (Ansoft Maxwell
16). In order to facilitate the simulation, the following assumptions were made:

(1) The magnetic pull caused by axial end flux is ignored, and 2D simulation is used.

(2) The value of magnetic pull shown in the below figures is the maximum magnetic pull
among the whole mechanical rotation circle.

(3)  The eccentricities of motor and inconsistencies of permanent magnet performance are
not considered.

The simulation tangential magnetic pull of one modular rotor core (Fygr) and the
radial magnetic pull of one modular rotor core (Fyyr) in the process of Scheme A, Step Al
are shown in Figure 8. The magnetic pull of the rotors and stators with different magnetic
isolated pad thicknesses in the process of Scheme A, Step A2 are shown in Figure 9. The
analyzed modular stator shown in Figure 9b is the one modular stator that had a minimum
air-gap distance with the rotor. When the thickness of the magnetic isolated pad is 2.3 mm,
then the magnetic pull of the stator and rotor in Step A3 are the same as the magnetic pull
of the stator and rotor in Step A2.
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(a) Tangential magnetic pull (Fivr)

(b) Radial magnetic pull (Fmvr)

Figure 8. Magnetic pull of one modular rotor core in the Scheme A, Step A1l process.
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(a) Magnetic pull of one modular rotor (b) Magnetic pull of one modular stator and whole stator

Figure 9. Magnetic pull of rotor and stator with different magnetic isolated pad thickness in the
Scheme A, Step A2 process.

Figures 8 and 9 show that in the Scheme A process:

(1)  When the left or right adjacent magnet grooves insert magnets, that is, when (Notor_efts
Niotor_right) = (1, 0) or (0, 1) as in Step A1, the tangential magnetic pull of one modular
rotor core (FyR) is at the maximum, as shown in Figure 8a.

(2) The radial magnetic pull of one modular rotor core (Fyr) is at the maximum when
the assembly process is in A2, which is shown in Figure 9a.

(8) Through increasing the thickness of the magnetic isolated pad, Fpr, Fws, and Fys

can be reduced significantly.

3.3. The Static Magnetic Pull Description of Motor Assembly Scheme B

The simulation magnetic pull of one modular rotor in the process of Scheme B, Step
B1 is shown in Figure 10. When the radian of the magnetic bond is 6°, the magnetic pull of
the whole stator (Fyys) is assumed to be Fys(8°), and the magnetic pull of modular stator
(Fpms) is assumed to be Fjs(6°). Then, the reduction percent of the whole stator magnetic
pull is assumed to be [Fyys(0°) — Fws(6°)]/Fws(0°); the reduction percent of the modular
stator magnetic pull is assumed to be [Fj15(0°) — Fp1s(6°)]/ Fams(0°). The magnetic pull of
one modular rotor and stator with different magnetic bond radians and magnetic isolated
pad thicknesses during the process of Scheme B, Step B2 are shown in Figure 11, where the
analyzed modular stator, shown in Figure 11e,f, has a minimum air-gap distance among all
modular stators.
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Figures 10 and 11 show that in the Scheme B process:

(1)  When the left or right adjacent filled-groove magnets are (Nyotor_teft Niotor_right) = (1, 0),
or (0, 1), as in Step B1, then the tangential magnetic pull of one modular rotor core
(Frmr) is at the maximum. This is shown in Figure 10a—c.

Through increasing the radian of the magnetic bond, the F,yr, Fws, and Fps can
be smaller than what is found in Scheme A with the same magnetic isolated pad,
especially when the magnetic isolated pad is thin. Figure 11d,e show that the value of
Fws and Fys with 1.5° radian of magnetic bond can be reduced to 50% value of Fys

and Fyss without magnetic bond.
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(c) Tangential magnetic pull (Fimr)
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(radian of magnetic bond is 1.5°)
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(f) Radial magnetic pull (Frmr)

(e) Radial magnetic pull (Frur)
(radian of magnetic bond is 1.5°)

(d) Radial magnetic pull (Frmr)
(radian of magnetic bond is 1°)

(radian of magnetic bond is 0.5°)

Figure 10. Magnetic pull of one modular rotor core in the process of Scheme B, Step B1.
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Figure 11. The magnetic pull of one modular rotor and stator with different magnetic bond radians
and magnetic isolated pad thicknesses during the Scheme B, Step B2 process.

4. Dynamic Magnetic Pull in Different Operating States
4.1. Full Stator Module Operation

When the d axis current i; < 0 or i; > 0, then the stator current can influence the d
axis magnetic field of the whole motor, which can then influence the magnetic pull of the
rotor. The magnetic pull of the motor and rotor with different loads and ¥ are shown in
Figures 12 and 13, respectively. This is where the ¥ is the angle between the stator current
vector and the q axis, and i,,,,. is the whole stator phase current’s effective value, which is
where every stator module’s phase current is iy,./6.
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(b) Radial magnetic pull (Frmr)

Figure 12. The magnetic pull of one modular rotor with different load currents and ¥.
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Figure 13. The magnetic pull of the stator with different loads and ¥.
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Figures 12 and 13 show the following:

¥ mainly influences the Fypr, Fws, Fims, and Fags. The influence degree is directly
proportional to the magnitude of the stator current.
When Y is close to —90° and the value of iy, is at the maximum, then F,pr, Fums,
and F,p;s can be at the maximum for different load currents and ¥.

4.2. Partial Stator Module Operation

The maximum magnetic pull of the modular rotor (Fipmgr, Frpmr) and the modular
stator’s magnetic pull (Fips, Fryms) were not influenced by the number of stator modules
operating. Therefore, this section only shows the magnetic pull of the whole stator (Fyys),
which is influenced by the number of operating stator modules (shown in Figure 14). Here,

i, is the operating stator module phase current and the operating stator module that is
adjacent to it.

@

@)

Figure 14 shows the following:

With the same number of adjacent stator modules operating, when ¥ is close to 90°
and the value of i, is at the maximum, then the magnetic pull of the whole stator

(Fws) can be at the maximum,;

With the same current and ¥, and when half of the stator is operating (i.e., the number
of adjacent modular stators is three), then the magnetic pull of the stator (Fys) can be

at the maximum.
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(a) in=15.9A (b) in=42A

Figure 14. The magnetic pull of the whole stator with different numbers of operating modular stators.

5. A Method for Reducing the Unbalanced Magnetic Pull of the Whole Stator

Section 4.2 shows that ¥ or i; can significantly influence the magnetic pull of the stator
(Fws and F,ps) with the same stator current. Based on this conclusion, the way to reduce
the unbalanced magnetic pull of the whole stator (Fs) is proposed by a change in ¥ or
when the proportion of i; is in line with the stator current.

5.1. One Operating Modular Stator

The modular stators are numbered from 1 to 6 (shown in Figure 15). Additionally, the
corresponding current expressions are shown in (3), where k =1, 2, 3, 4, 5, 6 represents
the stator number; iy is the d axis current of the stator module k; i) is the g axis current
of the stator module k; i4(), i), and icy) are the three phases of the current of stator
module k; and 6 is the angle between the d axis of the rotor and the winding axis of A phase
(electrical degree).

igy | _ [2| cos® cos(0 — %ﬂ) cos(6 + %ﬂ) ;A(k) "
i | V3| —sind —sin(@— %) —sin(6+ %) f@
C(k

Figure 15. Diagrammatic sketch of the number of modular stators.

The radial magnetic pull of the whole stator (F,s), the load torque (T), the stator
copper loss with a single modular stator operating (oc,), and stator iron loss (pr) are shown
in Figures 16 and 17.
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Figure 16. The radical magnetic pull (F,ys) and load torque (T) with different i; and 7.
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Figure 17. The stator iron loss (p,) with different i; and 7.

In addition, the expression of magnetic pull (F), load torque (Tey;), and copper loss
(pcu) are shown in (4)(6), where f is frequency, Ky, is winding coefficient, N is the number
of series winding turns per phase, K¢ is the waveform coefficient of air-gap magnetic
flux, Ey is the no-load phase back electromotive force, X,; is the 4 axis armature reaction
reactance, Xy is the q axis armature reaction reactance, p is the number of pole pairs, iy is
the magnetic flux linkage of the rotor, L, is the d axis inductance, L, the q axis inductance,
m is the number of phase, and R; is the phase resistance.

1 (Eo— iXg)* + (I;Xaq)*

= 4)
2HobLes (444 depNK¢)2

T = P[leiq + (Lg— Lq)idiq] &)

peu = m(i; +i3)Ry (6)

Figures 16 and 17 and expressions (4)—-(6) show the following:

(1) The magnetic pull is a function associated to idz, i, iqz, and iy, and with the same
(i? + iqz) and i;, the absolute value of F,yys with i; < 0 is higher than the absolute
value of F,yys withi; > 0;

(2) The load torque is a function associated to iy and i4i;, and with same i;, the maximum
torque is in the area of iy < 0;

(38) The stator copper loss is a function associated to (i + iqz),'

(4) The stator iron loss is mildly influenced by the current with the same 7.

Considering the association shown in expressions (4)—(6), the fitted expression of the
unbalanced radial magnetic pull of the whole stator (F,ys), the average load torque, and
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the copper loss are shown in (7)-(9); Figures 18-20 show that the simulation value and
fitted value are matched.

( —0.02633i3 , + 2474iy)

—0.003863iq K

. , id k <0
(1) + 0.08312i, 1) — 2.534 > (k)
F,

ws(k) = § 000631922\ — 046751, + 0.731, iy(r) = 0 @)
—0.03545:2,,, + 2.025i 5,
d. k) () id(k) >0
—~0.007533i, ) — 0.2287iy +0.1279
0.53061; 1) — 0.005427 (1) fg(1) + 01765, iz < O
T = 0.4963Zq(k) + 0.434, ld(k) =0 (8)
{O.4981zq(k) — 0.008608i 4411 + 0.3892] gy > 0
Peu(r) = 0.003148(i2 ) + i3 )

. w
5 & ©

Radial magnetic pull (kN)
N
>

Figure 18. Radial magnetic pull of the whole stator (F,s) under different i; and i; with one stator
module operating.
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Figure 19. The load torque (T) under different i; and i; with one stator module operating.
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Figure 20. The stator copper loss (oc,) under different iy and i; with one stator module operating.

5.2. Several Modular Stators Operating

The combined modular stator operating scheme is classified by the number of modular
stators operating. The illustration of the schemes is as follows:
1: a single modular stator operating (for an example, see Figure 21);

Figure 21. Diagrammatic sketch of the combined stator in Scheme 1: the single operating modular
stator.

2A: a two-space symmetrical modular stator operating (for an example, see Figure 22a);

FrW51<0

Ewsd

(a) Two-space symmetrical

(c) Two non-adjacent symmetrical space
modular stator operating

and non-symmetrical space modular stators
operating (Scheme 2C)

(b) Adjacent two-space modular
(Scheme 2A) stator operating (Scheme 2B)

Figure 22. Diagrammatic sketch of combined stators operating in Schemes 2A, 2B, and 2C.
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2B: a two-space adjacent modular stator operating (for an example, see Figure 22b);

2C: two modular stators with no adjacent symmetrical spaces and no symmetrical
spaces operating (for an example, see Figure 22¢);

3A: a three-space symmetrical modular stator operating (for an example, see Figure 23a);

Frwsi<0 Frwsi<0

.,/" W@
Sk
D /'/2

Frwss ) B Frwss

i)
(c) Three non-adjacent symmetrical

space and non-symmetrical space
modular stators operating (Scheme 3C)

(a) Three-space symmetrical modular (b) Three-space adjacent modular
stator operating (Scheme 3A) stator operating (Scheme 3B)

Figure 23. Diagrammatic sketch of combined stators operating in Schemes 3A, 3B and 3C.

3B: a three-space adjacent modular stator operating (for an example, see Figure 23b);

3C: three modular stators with no adjacent symmetrical spaces and no symmetrical
spaces operating (for an example, see Figure 23c);

4A: a four-space symmetrical modular stator operating (for an example, see Figure 24a);

Prli\’51_<0 FHLVSIfO Frws1<0

/

Frwse<0 /

Cf R
Frwsas0 \ i
b 7
N/

Frwsuc Frivsac e

(c) Four non-adjacent symmetrical
(a) Four-space symmetrical modular (b) Four-space adjacent modular space and non-symmetrical space
stator operating (Scheme 4A) stator operating (Scheme 4B) modular stators operating (Scheme

4C)

Figure 24. Diagrammatic sketch of combined stators operating in Schemes 4A, 4B, and 4C.

4B: a four-space adjacent modular stator operating (for an example, see Figure 24b);

4C: four modular stators with no adjacent symmetrical spaces and no symmetrical
space operating (for an example, see Figure 24c);

5: five modular stators operating (for an example, see Figure 25a);

6: six modular stators operating (for an example, see Figure 25b).

The magnetic pull and current expression for reducing the unbalanced radial magnetic
pull of the whole stator (F,pys) with different combined stator schemes are shown in Table 2.
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(a) Five operating modular stators (Scheme 5) (b) Six operating modular stators (Scheme 6)

Figure 25. Diagrammatic sketch of combined stators operating in Schemes 5 and 6.

Table 2. The magnetic pull and current expression for reducing the unbalanced magnetic pull of the
whole stator with different combined stator schemes.

Combined Operating Stator
Scheme Number

Expression

1
2A
2B
2C
3A
3B
3C
4A
4B
4C

5

6

Fiws1=0;i1 > 0
Frws1 = Frwsa < 0; i1 = iga < 0; g1 = igs
Fiws1 =Fws2=0;ig1 =igp > 0; 1q1 = lqz
Fiws1 =Frwss = 0; i1 =ig3 > 0;ig1 =1ig3
Fyws1 = Frwss = Frwss < 0;ig1 = ig3 = g5 < 0; g1 = ig3 = ig5
Frws1 = Frwsz = —0.5F,ws2 < 0; Frwso 2 0; i1 =igz < 0; g0 2 0; g1 = ig3
Fiws1 = Frwsa <0; Frwsz = 0;ig1 = igq <0; g5 > 05 g1 = igy
Fiws1 = Fywsa = Frwsa = Frwss < 0;ig1 =12 = iga = ig5 < 0; g1 = igo = 1q4 = lq5
Frws1= Frwsa< 0;ig1 = igq <0; ig1 =iga; Frwsa = Frwss = 0;ig2 = ig3 > 0; lqz = lqa
Frws1 + Frwsa = Frwss < 0; Frwst = Frwss < 0;ig1 =gz < 0;dg <0; g5 < 0;ig1 = ig3
Fiws1 = Frws2 = Frwssa = Frwss< 0; Fywss = 0;
g1 =igp =iga =135 < 0;ig3 > 0;ig1 = igp = igq = ig5
Fyws1 = Frws2 = Fyrwss = Frwsa = Frwss = Frwse = 0;
g1 = ig =143 = iga = ig5 = ige < 0;iq1 = igp = ig3 = igg = ig5 = ige

When the stator combined number is N, the load torque is assumed to be T(N), and
the stator copper loss and iron loss are assumed to be pc.(N) and pf,(N). Then, the reduction
percent of torque is assumed to be [T(6) — T(IN)]/T(6), the rising percent of stator copper
loss is assumed to be [p¢,(N) — pcu(6)]/pcu(6), and the rising percent of stator copper loss+
iron loss is assumed to be [pcu(N) + pr(N) — pcu(6) — p(6)]/[pcu(6) + pr(6)]. Under the
premise of F,ys = 0, the optimized maximum load torque and loss with different combined
operating stator schemes and different phase currents are shown in Figures 26-29. Under
the premise of F,yys = 0, Figures 26-29 show the following:

(1) With the same whole current (i) and the same number operating modular stator,
sorted by the value of the load torque, the stator combined scheme number is: 2A
> 2C> 2B,3A > 3C > 3B,4A > 4B > 4C; sorted by the value of core loss, the stator
combined scheme number is: 2A < 2C < 2B, 3A < 3C < 3B, 4A < 4B < 4C;

(2) With same whole current (i), the value of loss is inversely proportional to the
number of operating stator modules, especially with respect to copper loss.
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Figure 26. Comparison diagram of load torque with different load currents and different operating

modular stator combinations.
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Figure 27. Comparison diagram of the iron loss with different load currents and different operating
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Figure 28. Comparison diagram of the copper loss with different load currents and different operating

modular stator combinations.
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Figure 29. Comparison diagram of the stator copper and iron loss with different load currents and
different operating modular stator combinations.

6. Discussion

This study mainly focused on examining the maximum static of the magnetic pull
during the final assembly process of a motor and the dynamic magnetic pull during
different motor operating states. New final assembly schemes designed to significantly
reduce the static magnetic pull during the motor’s final assembly process were proposed,
and a method to reduce the unbalanced radial magnetic pull of the whole stator, which is
caused by partial stator module operation, was studied.

When the out diameter of the bearings is smaller than the out diameter of the air gap,
Scheme A can be used; when the motor is a spoke-type permanent magnet motor and
the out diameter of the bearings is smaller than the out diameter of the air gap and rotor,
Scheme B can be used. In Scheme B, the value of Fyys and Fjss with 1.5° radian of magnetic
bond can be reduced to 50% value of Fyg and Fy;s with Scheme A; the method to reduce
the unbalanced radial magnetic pull of the whole stator, which is caused by part of the
stator modules operating, can be used for all modular stator motors with all speeds.

The rotor eccentricity and motor assembly tolerance can also cause an unbalanced
magnetic pull. The proposed method to reduce the unbalanced radial magnetic pull of
the whole stator can also be influenced by rotor eccentricity and motor assembly tolerance.
Therefore, further studies will focus on reducing the unbalanced radial magnetic pull
considering rotor eccentricity and motor assembly tolerance.

7. Conclusions
The novelty of the paper is:

(1) proposing two assembly scheme for motors, in which the out diameter of bearings is
smaller than the out diameter of the air gap, especially in Scheme B for a spoke-type
permanent magnet motor.

(2) finding out the maximum static magnetic pull during the motor final assembly process.

(3) amethod to reduce the unbalanced radial magnetic pull of the whole stator, which is
caused by part of the stator modules operating.
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