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Abstract: The introduction of smart meters and time-use survey data is helping decision makers
to understand the residential electricity consumption behaviour behind load profiles. However, it
can be difficult to obtain the actual detailed consumption data due to privacy issues. Synthesising
residential electricity consumption profiles may be an alternative way to develop synthetic load
profiles that initially starts by reviewing the existing synthetic load profile methods. The purpose of
this review is to identify the recent methods for synthesising residential electricity load profiles by
conducting a rigorous standalone literature review. This review study has been applied and presented
transparently and is replicable by other researchers. The review has answered the following research
questions: the definition, concept and roles of residential electricity load profile and synthesised data;
recent approaches and methods; research purposes; applicable simulations and validation methods
of the final selected studies. The results show that the most applied approach in modelling residential
electricity load profiles is the bottom-up approach. As it is detailed, it suitable to reflect the local
residential behaviour in electricity consumption. Consequently, it is more complex to develop and
calibrate the model as identified in the results. Bottom-up models are more powerful in analysing
energy consumptions that focus on behavioural patterns, dwelling profiles and control strategies.

Keywords: rigorous; standalone literature review; load profiles; electricity consumption; domestic
use; residential electricity consumption; top-down approach; bottom-up approach; statistical model;
engineering model

1. Introduction

The load profile analysis is essential in optimising and planning of the electricity
distribution grid [1,2] and planning of the production capacity [1]. The term load profile has
been used for decades in the field of energy, especially in the Demand-Side Management
(DSM). In 1985, Gellings proposed the basic load profile shapes in DSM for electrical
appliances [3]. A load profile can be defined as a pattern of how much electricity is used at
each time presented in a graph. Narayan et al. in [4] defined “load profile as the power
demand of an energy system mapped over time”, which not only identifies the energy
demand but also plays an important role as a vital input to the electrical system design.

Responsible for 25% of the total energy consumption globally [2] in general, and a
third of the final electricity in the European Union (EU) specifically [5] or 29% of the total
electricity demand in Europe [6], the residential sector plays an important role in future
electricity systems [6]. As it influences future electricity systems, the residential electricity
load profile has a big role in capacity planning; In particular, it may improve the efficiency
in the system operations, electricity grids and generation investments. In addition to
capacity planning, the residential electricity load profile also plays a vital role in the energy
market, included in analysing electricity tariffs, price structures, incentives, customer
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satisfaction and other economic optimisations. It may also support studies in renewable
energy penetration, intelligent building and emissions reduction analyses. Furthermore, it
is also important to have a high-resolution residential load profile in order to increase the
share of “renewable energy feed-in, which is weather-dependent, intermittent and highly
variable” [7].

A residential electricity load profile is defined as “a formal system that can repro-
duce the combined electricity consumption of all the electricity powered devices in a
single/number of private/non-commercial residences” [5]. In modelling the residential
sector, the standard load profile (SLP) is usually applied to model a household’s load
profile [5,6]. The standard electricity load profile is regularly identified by the distribution
system operators (DSOs) or utility companies and is fundamental in their electricity grid
planning [8]. Hence, rough estimations are employed with respect to the worst-case sit-
uations in modelling the residential load models [8]. However, there may only be a little
amount of information about the nature of the load profiles on domestic electricity use in
their typical data. Occupant behaviour that reflects a personal lifestyle varies widely and
in unpredictable ways [9], and privacy issues are also a concern. Privacy issues are still the
major challenge in successful energy data collection related to individual households. This
nature of the load profile on the residential sector can impact energy use significantly by
as much as 100% for a given dwelling [9]. Thus, the standard load profile might not be
appropriate in a given planning decision-making process [1]. Therefore, a better presen-
tation of the load profile is required that does not only support the utilities in planning
their electricity network but also enhances customers’ understanding of their electricity
consumption if the data are available to them.

In line with this background, the ClairCity H2020 Project has the main aim to engage
citizens in better understanding their environmental behaviours in a local context [10–16].
One way of gaining a deeper understanding of the residential electricity consumption
behaviour is by synthesising the local load profiles. A simple review of load profile studies
was presented in our previous work [2]. In this paper, it focuses on the recent residential
electricity load profile methods, which limits the period to over the last decade, from 2010
to 2020. The purpose of focusing the review on the last decade is to have a recent overview
and updates on the trends of the applicable methods in the field. This paper aims to answer
the following questions:

1. What is the definition of the residential electricity load profile?
2. What is the definition of the synthesised load profile?
3. What are the roles of the residential electricity load profile?
4. What approaches and methods have been used to synthesise residential electricity

load profiles in the last decade?
5. What are the purposes of synthesising residential electricity load profiles?
6. What inputs have been used to synthesise residential electricity load profile models?
7. How were the proposed models validated?
8. What are the strengths and weaknesses of these approaches?

A review study is an essential tool for analysing, summarising or synthesising the
existing literature published in the applied energy field. Since literature reviews serve
as “benchmarks” for other researchers in a specific field, they should cover the relevant
literature to date and earn readers’ confidence about the validity, reliability and relevance
of their findings [17]. The review must be rigorously conducted to represent powerful
information sources [17]. Therefore, in this work, a rigorous standalone literature review
method has been selected and conducted in a transparent process, including presenting the
challenges during this work. We agree with Cooper 2009 [18,19] that the review should be
as transparent as possible, including explaining conflicting results. In line with the recent
structural literature review development mentioned in [20], our analysis provides criteria,
such as a research purpose and location, besides research methods, data description and
validation. Previous works have reviewed electricity load profile studies, whereas our work
applies the structure literature review method and is bound in scope to residential load
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profile studies in the last decade. Some of the extensive studies have discussed residential
electricity load profiles using the data from smart meter [21–23], time-use survey (TUS)
data [1,24,25] and synthesised data [25–31]. Smart meter data are the measured energy
consumption data from installed advanced energy meters where the devices are integrated
with computer sciences, advanced communication and measurement methods [32], while
TUS data are the data from “time use surveys (TUS) measure the amount of time people
spend doing various activities, such as paid work, household and family care, personal
care, voluntary work, social life, travel, and leisure activities. The survey consists of a
household interview, a personal interview, a diary and a week diary” [33]. The TUS data
in [25] are used to create activity profiles.

In this work, we focused on the synthesised data, and some of the well-known load
profile studies before 2011 were presented in [25–27]. According to the McGraw-Hill dic-
tionary of scientific and technical terms, “synthetic data is any production data applicable
to a given situation that are not obtained by direct measurement”, while Nowok et al.
2016 in [34] defined synthetic data as artificially generated data that resemble the original
(observed) data by preserving relationships between variables. In this study, synthesised
data is defined as generated data. In essence, artificial data are used to represent real data
according to what is the purpose of the synthesising process, which, in this case, is the
residential electricity load profile. The synthesising process uses relevant variables where
data pre-processing is required. The load profile study is conducted with two distinct
approaches [2,4,29,35–38]: the bottom-up and the top-down approaches. The bottom-up
approach estimates the energy consumption based on the data from individual users [39]
and dwelling characteristics, and uses input data from a lower level, usually data at the
appliance level. The bottom-up approach consists of two categories: statistical models and
engineering models [9,39–41]. Statistical models calculate the dwelling energy consumption
of the individual occupant, individual houses, a group of buildings, housing characteristics
or a prototype of a building stock, which also can be extended to a bigger geographic area,
such as a region or nation, using the representative weight of the sample [9,39,40], as ap-
plied in [2]. The model employs types of regression analyses, conditional demand analyses
or neural networks [9,39,40]. Engineering models account for the building energy consump-
tion based on building physical principles [39] and thermodynamic relationships [9] that
require detailed physical variable data. The building’s physical variables include geometry,
envelope fabric, occupancy profiles, thermal profiles, indoor and outdoor temperatures,
solar radiation, electrical appliances and so on [9,39,42].

In contrast, the top-down approach works on aggregate data that contain general
information and statistics from large-area studies of electricity use but do not distinguish
the individual user’s consumption. This approach does not require a detailed profile of the
buildings, appliances or end uses [40]. A top-down approach typically employs historical
data with macroeconomic variables to estimate the total energy consumption in a residential
sector [39,40]. Macroeconomic variables include employment rates, gender, gross domestic
product (GDP) and price indices. In addition to macroeconomics, the historical data cover
the climatic parameters, dwelling demolition rates, appliance ownership estimations and so
on [9,39,40]. Furthermore, there are some models that employ both approaches to account
for the energy consumption [9]; for instance, both approaches were applied in [2] to reflect
the electricity load profile in a residential sector.

Thus, the purpose of this paper is to conduct a rigorous structured literature review
and identify recent methods in synthesising residential electricity load profiles. The con-
tributions of this work are: It provides a transparent process when applying a modified
rigorous standalone literature review, and it becomes a source of knowledge in the residen-
tial energy demand area for new scholars and for those researchers outside the field. It also
provides the recent methods in the last decade. The remainder of this paper is organised as
follows: Section 2 presents the methodology of the rigorous standalone literature review.
Section 3 describes the application of the modified rigorous standalone literature review
from step 1 to step 5. Section 4 provides the discussion of step 6: Analysing and synthesis-
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ing. Section 5 summarises and concludes the review, including the research implications
for future work.

2. Methodology

A high-quality review means that the review is conducted rigorously. Rigor refers
to the soundness of the research process, which has strong scientific and knowledge val-
ues [17]. One of the purposes of a standalone review, which is in line with our goal, is
to identify the existing knowledge on a particular topic (Webster & Watson 2002; King
& He 2005; Okoli & Schabram 2010 cited in [17]), especially the methods of synthesising
residential electricity load profiles in the last decade. A framework in conducting a rigorous
standalone review is required for our study. The framework provides high-quality and
valuable information from past research that is useful as inspiration and useful for conduct-
ing our method in synthesising the residential electricity load profiles for the ClairCity [43]
and CITIES Projects [44]. We then conducted our standalone review based on the modified
set of guidelines for conducting a rigorous literature review that was proposed by [17]
as follows:

1. Formulating the problem. Justifying the need of the review study, defining the
review objective by identifying the research question and designing the concept of the
synthesis are required in this basic stage [17]. As stated by Jessen et al. (2011) in [17],
the entire study design is guided by the research questions. The research questions
direct what type of information is needed and what information is to be searched.

2. Searching the literature. The searching is based on the guidance of the research
questions. It is the fundamental part in the literature review before selecting and
extracting data. Therefore, a specified strategy in searching the literature is required
to identify the relevant studies and answer the research questions [17].

3. Screening for inclusion. In this stage, the set of rules includes the selection criteria [17,
18,45,46], filtering criteria [18,47] and the final selected studies [17,18] being defined.
It is the basic step for including and excluding specific studies [17], and it should be
explicitly described how these procedures are conducted for ensuring transparency
and replicability [19,46,48].

4. Assessing quality. The quality of the studies needs to be assessed after screening for
inclusion. It is essential to assess whether the quality is affecting the results of the
studies [17].

5. Extracting data. This step gathers the applicable information from the qualified
studies, including how the primary studies were conducted and how the methods
and the results were evaluated [17,49]. It includes defining what to capture and how
it is captured [49,50], which helps to address the research question(s) [47].

6. Analysing and synthesising data. In the final stage, collation, summarising, aggregat-
ing, organising and comparing the evidence from the extracted studies are presented
to provide a new contribution to the knowledge on a given topic. Finally, it is also
expected to discuss the findings and present the conclusion in a meaningful way [17].

3. Results

The six steps of the applied rigorous standalone review method are presented in the
following subsection, where the last step: Analysing and synthesising, is discussed in
Section 4.

3.1. Formulating the Problem

It is challenging to sufficiently access detailed electricity consumption data in ClairCity
case cities. An alternative is to develop synthesised data for each city. There are, however,
different methods for developing a synthesised dataset, and hence, the objective of this work
is to carry out a rigorous literature review of residential electricity load profile methods.
This study evaluates the existing methods used to synthesise residential electricity load
profiles and how they have developed in the last decade. This research question directs
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the entire study design, evaluates how the methods have evolved over the last decade and
which type of method is most applicable for the ClairCity Project.

3.2. Searching the Literature

The review was done in the Scopus database, which is the largest scholarly database
that indexes content from 25,000 active titles and 7000 publishers [51]. It is a fundamental
step to define the relevant main phrases related to the existing residential electricity load
profile methods. Therefore, three main phrases that have the same meaning were searched
in the Scopus database: “Residential load profile”, “Household load profile” and “Domestic
load profile”.

TITLE-ABS-KEY (domestic AND load AND profiles) OR TITLE-ABS-KEY (household
AND load AND profiles) OR TITLE-ABS-KEY (residential AND load AND profiles) AND
PUBYEAR > 2010 AND PUBYEAR < 2021.

The defined phrases made the searching process more specific, as it focused on the
residential sector. The terms “energy use” or “energy consumption” were not selected
as the defined phrases, since each of them had a broader coverage that could involve
other sectors than residential electricity or other discussions than load profile terms. As a
result, this query had 2221 related documents and contained about 150 indexed keywords.
The 2221 initial results consisted of 1058 journal articles, 1111 conference papers, 23 book
chapters, 19 reviews, 3 data papers, 2 books, 2 errata, 1 editorial and 1 letter.

3.3. Screening for Inclusion

In the screening stage, the criterion based on the language, publication stage, relevant
keywords and relevant subject areas are defined below. The steps below are replicable and
show the transparency of this review process.

3.3.1. Screening 1: Language

The first screening is the document’s language. In this study, we defined English as
the main universal language of science to be selected. As a result, in the 2221 documents,
we had 2187 documents written in English. Other documents were eliminated: Chinese
(18), German (6), Portuguese (4), Turkish (3), Russian (2), Spanish (2), French (1), Japanese
(1), Korean (1) and Czech (1).

3.3.2. Screening 2: Publication Stage

The second screening is the documents’ publication stage. The 2187 documents had
2174 documents in the final stage and 13 articles in press. In this stage, the results were
reduced to 2174 documents.

3.3.3. Searching and Filtering: Keywords

As mentioned in the first phase, the results contained about 150 keywords, and simi-
larly, they still had about 150 keywords at this stage. Therefore, filtering the irrelevant key-
words was required. After eliminating about 100 keywords, there were 514 documents left.

3.3.4. Searching and Filtering: Subject Area

From the 514 documents, we filtered the irrelevant subject areas. In this case, the fol-
lowing subject areas: physics and astronomy, accounting, chemical engineering, earth and
planetary sciences, agriculture and biological sciences, medicine, economics, biochemistry,
art, health professions, immunology and microbiology, nursing, pharmacology, toxicol-
ogy and psychology were eliminated from the list. We then had eight relevant subject
areas at this stage: engineering, energy, computer science, mathematics, environmental
science, materials science, social sciences and decision sciences. This filtering resulted in
404 documents.
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3.4. Assessing Quality

From the 404 documents, we scoped our review to including only journal articles.
Therefore, the number of documents was reduced to 177 journal articles. To ensure quality
assurance, we limited our study to only peer-reviewed journals. The website of each journal
was explored to check the peer-reviewing process. There were 83 journals listed at this
stage. Additionally, as suggested by [20], the current impact of scholarly journals in the
field was considered as a basis for selection. The Scimago rank of each journal was also
visited to see the journal’s metrics, and in some cases, it also announced the current status of
the journal if it had been discontinued by Scopus. We eliminated 14 journals that consisted
of 24 articles because of some reasons: They had no official website or were listed in a
predatory journal or had been discontinued by Scopus. After this process, we only had
153 peer-reviewed articles. The next step was to revisit the title and abstract readings of
each peer-reviewed article, and these two activities were done in one process per article.
Abstract reading provided a clearer understanding and deeper assessment of the focus of
the article [52]. They were then reduced to 43 peer-reviewed articles.

Lastly, full article reading was conducted for these 43 papers. Only papers that were
focused on electricity load profiles in the residential sector were included. The research
objective, methodology, data description and validation of the method were the focus
of the article readings. The final collection was reduced to 31 peer-reviewed articles, as
shown in Appendix A. Twelve of the listed articles were related to electric load profile
studies. However, most of them focused on clustering profiles or the segmentation of
the residential users that grouped customer profiles using existing data from smart meter,
TUS or occupancy data [6,53–59], and one article characterised a seasonal variation using
a monitored dataset [60]. Article [61] focused on the heating load profile in the United
Kingdom, where it is not clear whether the heating used electrical appliances or gas or any
other energy source of heating. Article [62] discussed a district cooling load profile, and
article [63] focused on DSM. As mentioned in [64], domestic energy use can be categorised
into thermal energy and electrical energy use for daily activities. However, as mentioned
in [65], treating thermal and electrical systems as one is a substantial measure toward the
integration of renewable power production. Our work is focused on electrical energy use
load profiles in the residential sector, and therefore, we limited the scope to the articles that
clearly mentioned the use of electrical appliances or electrical sources.

3.5. Extracting Data

In this stage, the relevant information from each primary study was gathered: the
research objective, methodology, data description and validation method. The data extrac-
tion is displayed in Appendix B, which shows how the primary study was conducted. In
addition, the mapping of the selected final articles is illustrated in Figure 1 to show an
overview of the data extraction. The figure shows the approaches and methods applied in
the studies.

The map shows the two categories of the load profile approach: top-down and bottom-
up, where 30 articles applied the bottom-up approach and one article employed the top-
down approach, as also shown in Table 1. The bottom-up approach consists of two methods:
statistical and engineering. From the 30 articles, 25 articles applied the statistical method,
such as the Markov model, fuzzy logic, neural network and autoregressive. The remaining
five articles employed the engineering method based on partial differential equation (PDE),
non-intrusive load monitoring (NILM) and home energy management systems (HEMS).
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Table 1. The approaches and methods applied in the final selected articles.

Approach Number of Articles

Bottom-up 30
Statistical 25

Engineering 5

Top-down 1

Based on the mapping of the approaches and methods in Figure 1 and the list of final
articles in Appendix A, we can identify the trend analysis of the method per year from 2013
to 2020, as shown in Table 2. This shows that the probabilistic and Markov chain models,
which are the most employed models from the final articles, were applied throughout the
years from 2011 to 2020 at the beginning, middle and end of the decade.



Energies 2023, 16, 4072 8 of 27

Table 2. Trend analysis of the method per year from 2013 to 2020.

Pu
bl

ic
at

io
n

Ye
ar

A
pp

ro
ac

h

A
pp

ro
ac

h
C

at
eg

or
y

A
rt

ic
le

Pr
ob

ab
il

is
ti

c
M

od
el

A
ge

nt
-B

as
ed

M
od

el
in

g
an

d
Si

m
ul

at
io

n
(A

B
M

S)

W
ei

gh
te

d
Pr

op
or

ti
on

M
ul

ti
-T

ie
r

Fr
am

ew
or

k
(M

T
F)

Fl
ow

-B
as

ed
G

en
er

at
iv

e
M

od
el

N
on

-I
nt

ru
si

ve
Lo

ad
M

on
it

or
in

g
(N

IL
M

)

N
eu

ra
lN

et
w

or
k

M
ar

ko
v

M
od

el

Fo
re

ca
st

in
g

M
od

el

A
ut

o
re

gr
es

si
ve

(A
R

)

Lo
ad

G
en

er
at

io
n

M
on

te
C

ar
lo

Pa
rt

ia
lD

if
fe

re
nt

ia
lE

qu
at

io
n

(P
D

E)

H
om

e
En

er
gy

M
an

ag
em

en
tS

ys
te

m
s

(H
EM

S)

Fu
zz

y
Lo

gi
c

B
i-

Le
ve

lA
lg

or
it

hm

2020 Bottom-up

Statistical a1 3

Statistical a2 3

Statistical a3 3

Statistical a4 3

2019
Top-down a5 3

Bottom-up Engineering a6 3

2018 Bottom-up

Statistical a7 3

Statistical a8 3

Statistical a9 3

Statistical a10 3

Statistical a11 3

Statistical a12 3

2017 Bottom-up
Statistical a13 3

Statistical a14 3

Statistical a15 3



Energies 2023, 16, 4072 9 of 27

Table 2. Cont.

Pu
bl

ic
at

io
n

Ye
ar

A
pp

ro
ac

h

A
pp

ro
ac

h
C

at
eg

or
y

A
rt

ic
le

Pr
ob

ab
il

is
ti

c
M

od
el

A
ge

nt
-B

as
ed

M
od

el
in

g
an

d
Si

m
ul

at
io

n
(A

B
M

S)

W
ei

gh
te

d
Pr

op
or

ti
on

M
ul

ti
-T

ie
r

Fr
am

ew
or

k
(M

T
F)

Fl
ow

-B
as

ed
G

en
er

at
iv

e
M

od
el

N
on

-I
nt

ru
si

ve
Lo

ad
M

on
it

or
in

g
(N

IL
M

)

N
eu

ra
lN

et
w

or
k

M
ar

ko
v

M
od

el

Fo
re

ca
st

in
g

M
od

el

A
ut

o
re

gr
es

si
ve

(A
R

)

Lo
ad

G
en

er
at

io
n

M
on

te
C

ar
lo

Pa
rt

ia
lD

if
fe

re
nt

ia
lE

qu
at

io
n

(P
D

E)

H
om

e
En

er
gy

M
an

ag
em

en
tS

ys
te

m
s

(H
EM

S)

Fu
zz

y
Lo

gi
c

B
i-

Le
ve

lA
lg

or
it

hm

2016 Bottom-up
Statistical a16 3

Statistical a17 3

Statistical a18 3

2015 Bottom-up Statistical a19 3

2014 Bottom-up

Statistical a20 3

Engineering a21 3

Engineering a22 3

Statistical a23 3

Statistical a24 3

Engineering a25 3

Statistical a26 3

Statistical a27 3

Statistical a28 3

2013 Bottom-up
Engineering a29 3

Statistical a30 3

Statistical a31 3



Energies 2023, 16, 4072 10 of 27

4. Discussion

In this section, the merits and demerits of each approach, and method will be discussed.
We will also present the data characteristics, validation and data quality scores of each
article. The data extraction ended with 31 articles. As shown in Table 1, the majority
of the final 31 studies employed the bottom-up approach, and only one study used the
top-down approach. The bottom-up and top-down approaches are described explicitly
in [2,4,29,35–38]. A combined bottom-up and top-down approach was employed in [2]. In
fact, ref. [2] has also been included in the statistical bottom-up method category, as it used
a statistical weighted proportion model and employed a detailed load model based on a
load profile generator (LPG) [28,29,66] and artificial load profile generator (ALPG) [30,67].

The top-down approach was used in [68], where it employed a machine learning
method based on flow-based generative models. A daily forecast scenario was generated
by the observed data from the previous day as the historical input data with hourly
resolutions. The simulation was done for 105 households in Austin, Texas, USA. The
validation of the results was compared with the observed data generated during data
training and within the aggregated load profiles. The merit of using flow-based generative
models is that they may provide a set of scenarios that are able to cover a wide range
of behaviours that are more accurate for residential loads at different aggregation levels.
Specifically, the model uses a reversible transformation flow to optimise the value of the
conditional density function of future loads based on historical observations [68]. However,
in certain cases, if the conditioned historical observations are too noisy, the simulations
show failed results when forecasting accurate future loads, because they cannot provide
useful side information for the models [68]. Five of the thirty articles used bottom-up
engineering methods, namely PDE [69], NILM [38,70] and HEMS [71,72]. Most of these
engineering method studies used appliance usage as the main input data [38,70–72] and
thermal behaviour [69] for a case of modelling a single appliance load profile: an electric
water heater.

The merits of the PDE physics-based method in [69] were dedicated to modelling
the dynamic behaviour of an electric water heater. The results showed accurate and
realistic temperature variations under different operation modes. The simulation was
done in hourly resolutions, and the results were compared with field measurement data.
However, it requires better algorithms and parallel computing techniques to speed up
the computation of the model. This computational speed issue was also addressed by [2],
where it was important to identify the processing time in the case of a model’s efficiency.
For instance, the ALPG model [30] specified the drawback of its performance where the
tool was used for one simulation with a maximum of 100 households. Computational
speeds and technical requirements that are used to run the models need to be specified, as
informed in [2,69,70,73].

The NILM-based method in [70] employed an additive factorial approximate max-
imum a posteriori (AFAMAP) based on iterative fuzzy c-means (IFCM) to solve load
disaggregation. The proposed model outperforms the latter when more electrical appli-
ances work simultaneously. However, the model requires improvement to solve load
disaggregation problems in the case of real-time scheduling at a high frequency. A different
NILM-based study to solve load disaggregation was also presented in [38]. It used on/off
algorithm state models, as well as multi-state models, to disaggregate the operation and the
power consumption of each model, where it presented a truth table matrix and a matching
process. The improvement of this model was required to disaggregate the continuous
variable appliances and identical power consumption appliances due to the possibility of
profile duplication among the electrical appliances [38]. Both of the NILM-based methods
in [38,70] simulated the load profiles in one-minute resolutions and validated the results by
comparing them with another model’s results or experiment’s results.

Another method is the HEMS-based method, where it uses energy management
devices at the appliance level [71,72]. The advantage of this HEMS-based method in [71]
was that the operation of a single appliance could be controlled for an emerging demand
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response program with high-resolution data. However, the improvement of this method is
still required to cover the account for the load priority and customer comfort by developing
a more intelligent HEMS algorithm. While the merit of the HEMS-based method in [72]
was the time variation profile of energy that agreed with the merit in [2], where the results
could produce a time division analysis based on the seasonal variations, monthly variations,
typical seasonal days and hourly variations.

The HEMS-based methods were simulated in two houses [71] and forty single family
homes [72], where both cases were conducted in the United States. Unfortunately, no
validation was is provided in [71], but validation by comparing the results with other
measured data was performed in [72]. Most of the engineering methods in the final selected
articles are applicable to analyse the load profiles of multi-appliances. These engineering-
based studies were conducted in the United States [70–72], Korea [38] and Canada [69].

The statistical bottom-up method was applied in 25 studies, including Markov mod-
els [29,73–77]. The psychological model was applied in [28], where the model was able to
simulate the behaviour of each of the household’s occupant(s). As this model has a greater
level of detail that is similar to all of the statistical bottom-up methods applied in [29,73–77],
it is very flexible for simulating the variations in the behaviours of different occupants in
different households. The Markov models in [73] employed a hierarchical hidden Markov
model (HHMM), and [74] used a disaggregation approach based on the difference factorial
hidden Markov model (DFHMM) and the Kronecker operation. Another method in [75]
used a discrete time Markov model that was controlled by a nonhomogeneous poison pro-
cess (NHPP model). Lastly, the Markov chain process was used in [76], where it employed
the high-resolution probabilistic model CREST, an integrated thermal–electrical demand
model [31], and in the LPG [29], and LPG was also employed in [77]. Major advantages
of the combined Markov model in [74] were the modelling simplicity and inference, as
well as load detection efficacy using general historical information in the presence of per-
turbations. A statistical method is applied in [73], where the hierarchical hidden Markov
model (HHMM) fits a single-mode appliance by being able to distinguish the standby mode
from the off mode, while, for the multi-mode appliances, the simulation showed a more
accurate result than the conventional hidden Markov model (HMM). Another statistical
bottom-up method applied in [75] showed a great advantage in flexibility to reflect any
specific load profile scenario based on different regions and the potential to control indi-
vidual low-voltage loads by turning on the activation function of the corresponding load
model. Furthermore, a trimodal Gaussian mixture model in [76] showed a valued estimate
of the observed distribution of the total annual consumptions. This model can overcome
the complexity of distribution with the diversity of real-life households. However, future
research is required to identify the resultant composite distribution, as it does not exhibit
normal features, whether it is a trend or a coincidence. The current underlying assump-
tions about electricity consumption with limited variability need to be rectified in order
to gain a better interpretation of the characteristics of the measured data. In accordance
with [75], the flexible demand response (DR) model in [77] can be applied in any region
under any energy scenario. It is a more comprehensive model that considers the various
electrical appliances and comfort levels of customers. Another advantage to this model is
that a genetic algorithm was developed to control the operation of the appliances based
on real-time electricity prices in order to achieve cost reduction without disregarding the
level of satisfaction and comfort. The applicable methods in [71,77] are concerned with
maintaining customer comfort preferences.

Furthermore, a fuzzy logic model in [78] was applied with the main advantage that it
minimises the risk inherent when DSM strategies are designed. It also allows the inclusion
of key human behaviour characteristics that influence the use of electrical appliances.
Another advantage of the proposed model is requiring limited or little input and expert
knowledge to form the activation profiles of the electrical appliances compared to other
approaches that require huge amounts of input data. An improvement in the proposed
model is needed to model human behaviour, since the shape of load curves is influenced
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by the occupants’ behaviour. In this case, it is recommended to see the psychological model
proposed in [28].

Autoregressive models were applied in [79,80]. In [79], some models: flat forecast,
persistent forecast, feed forward neural network, Gaussian–Markov model and ARIMA
model were developed to allow a more reliable scheduling of the grid. The ARIMA model
has the advantage of providing a more accurate forecast at a higher computational expense,
while the Gaussian–Markov model provides almost equivalent levels of accuracy to the
ARIMA model but at a lower computational expense. It also takes into account the model
scalability or reduced computing processing, as addressed in [2,69,70,73]. The improvement
of the models is necessary in the choice of constituent forecasts by weighting model outputs
according to the time of day. The autoregressive model in [80] was developed to improve the
forecast for short-term load profiles. Similar to [2], the model also provided a load profile
based on a time division concept—in this case, weekday and weekend. Another work
was needed to develop an algorithm for longer prediction horizons and comprehensive
dwelling information, such as location, number of floors and occupancy profiles. A unique
hierarchical, multi-scale and multi-resolution using a multi-layer architecture framework
was developed in [81]. The proposed model showed merit flexibility in modelling large-
scale neighbourhoods and at the detailed appliance level. It supported effective energy
planning, future energy demand estimations and a complex and dynamic analysis of
consumer behaviour. This study also covered a load profile based on the time division
concept, as discussed in [2,72,79]. However, a high-performance distributed platform is
required in forecasting a load profile at the appliance level.

The multi-tiered framework in [4] showed several advantages in scalability and adapt-
ability for specific regions and communities that reflect the local measured or desired
electricity consumption data. However, there is a constraint at the appliance level: only
the fridge is treated as a special case at the moment, which should be expanded to other
appliances. Neural network methods were applied in [82,83], where they showed merit
in the forecasting capability and reliability of the models. The proposed model in [82,83]
focused on small microgrids and residential load levels. Improvement is necessary to cover
the real-time pricing that usually changes on an hourly basis [82], while [83] proposed
an improvement to enhance the forecasting capability in relation with renewable energy
production and energy storage.

A method in [84] consisted of two embedded optimisation problems where it modelled
a bi-level problem, which is a relation between retailers and consumers where the retailer
is the leader and the consumer is the follower. The proposed model showed merit in
comprehensive and detailed solutions for lower-level problems, since it offers multiple
alternative optimal solutions. A further improvement is suggested to provide an explicit
objective function that may assess consumer discomfort in relation to load scheduling,
which can increase the complexity of the model. Furthermore, a weighted proportion
model in [2] was found to be simpler and more efficient in the case of computational speed.
This method creates efficiency in the size and storage of generated load profile files. It
also shows merit in reflecting the local characteristics of the residential sector based on
time variation analyses: seasonal analysis, monthly analysis, daily analysis and hourly
analysis. However, the model relies on the profile generator as the external tool to match
the weighted profile with the representative occupants’ profiles.

A quantitative simulation model based on the Monte Carlo approach was employed
in [85]. The assumption applied in the model was that the electricity use consisted of
three different modules: the usage of electrical appliances, domestic hot water (DHW)
consumption and space heating. The simulation results showed that the model could reflect
the realistic local power demand profiles for the households living in detached houses.
However, the model limited the appliances only to the predefined electrical appliance setup.
As the behavioural model was very detailed and complex, the proposed model applied
the constant behaviours of the household members. The other methods employed load
generation models [36,86], a forecasting model [87] and probabilistic models in [35,37,88–91].
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In general, the merits and demerits of the method, whether it is the top-down or
bottom-up approach, are specified in Table 3. According to [9,41,86,92], the limitation
of bottom-up models is that those models typically require a lot of detailed information,
such as that presented in Appendix B, where the models required input about occupancy,
behavioural, appliances, climate, dwelling and socioeconomics data. It makes the data
collection process more time-consuming and costly. Consequently, it is more complex to
develop and calibrate the model as identified in the results (Articles a1 to a4 and a6 to a31
in Appendix A).

Table 3. Strengths and weaknesses of the approaches.

Approach Strengths Weaknesses

Top-down

� Data collection is limited, easier and usually available.
� Suitable for long-term changes and energy

transition purposes.
� Simple calculation.

� Relies on historical data.
� Inherent capability to model discontinuous advances

in technology.
� Lack of detailed data resulting in less flexible calculation.

Bottom-up

� Detailed information and results.
� Higher prediction capability and accuracy.
� Ability to account for more objectivity in relation with

energy consumption.
� Strong in behavioural aspects, dwelling profiles and

control strategies.
� The results can be extrapolated to higher level: region

or national level.

� Requires more inputs; relies on more detailed
dwelling information.

� Data collection processes can be costly.
� Data collection and calibration process are usually

time consuming.
� More complex simulation.
� Higher levels of expertise required in the development and

use of the EM.

The advantage of the bottom-up approach is that, as it is detailed, it can analyse
the customised purpose of load profile calculations, as in articles a1 to a4 and a6 to a31
in Appendix A. For instance, as described in [86], bottom-up models can investigate the
effect of a single appliance on the total load. This basic analysis supports the future
study of smart grids. In line with [41], bottom-up models are more powerful in analysing
energy consumptions that focus on behavioural patterns, dwelling profiles and control
strategies. Although this approach typically requires detailed inputs, it can calculate the
total residential energy use without relying on historical data. In addition, the results can
be extended to higher levels in the scope of top-down models: the regional or national
level, as mentioned before in [9,39,40].

In the case of the top-down approach, one of its limitations is that it relies on historical
data, although these data are usually available and easier to find [9]. The reliance on
historical data makes it less flexible and less capable to model discontinuous advances
in technology. As shown in [68], the sole article that employed the top-down approach,
historical data were used as the data input. As mentioned, the applicability of this approach
is simpler than the bottom-up approach, as it requires limited information, which is easier
to find. Those models also perform simpler calculations than the bottom-up models. Top-
down models are suitable to account for the long-term energy consumption or energy
transitions within the residential sector.

Therefore, based on our work, the most suitable approach that is in line with our
project to reflect the local residential behaviour is the bottom-up models. Specifically,
for energy use calculations in relation with new technologies or building profiles, the
bottom-up engineering models are recommended due to requiring high levels of expertise.

Moreover, the research objective of each study was identified to gain an overview of their
specific purpose in relation with the residential electricity load profile. The research objectives
of the 31 articles were group into 12 categories based on specific aspects: flexibility profiles
of the individual technology [88], multi-resolutions or different load profile resolutions [81],
electricity access [4], a forecasting scenario [68], electricity costs [77] and a comparison study
between the synthesised and metered data [76]. Several studies had a similar main purpose
in developing the cities’ or districts’ load profiles [2,90] and load disaggregation [38,70].
There were four big groups of the studies that addressed the purpose of short-term load
forecasting [79,80,83,93], residential consumption behaviour [29,35,37,75,84,87], appliance
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usage [69,72–74,91] and residential buildings [36,71,85,86]. Most of the engineering-based
studies addressed the purpose in relation with load disaggregation [38,70] and appliance
usage [69,72]. The research purpose about load disaggregation is typically conducted with
the NILM-based method, as presented in [38,70].

In the case of data characteristics, most of the input data used in the statistical-based
studies covered behavioural aspects that could be related to the occupants and/or appli-
ances, including the household profiles, appliance usage and occupancy profiles. Some
studies combined these parameters with climate parameters, such as outdoor tempera-
ture [2,29,77,80]. Thermodynamical aspects were added to the input data in [85,90]. The
load profile time resolutions in the statistical method studies were generated from high-
resolution data that were mostly in hourly and one-minute resolutions. A quarter-hour
resolution profile was generated in [84].

Most of their validations were conducted by comparing the results with measured
data [2,4,29,35,75,76,85–88] or load profiles from other projects [36,37,78,89,90] using the
performance metrics [73,74,79,81,83,93] and employing a certain algorithm [77,84]. A com-
bination of the measured data and performance metrics was used for validation in [80].
Validation with real data is still a major challenge in most related studies, since privacy issues
are the main concern. Applications of the methods were performed in two example cases [91]
without explicitly describing the validation method. As mentioned, most of these statistical-
based studies were applied to more than one appliance or multi-appliances. Similarly, with
the engineering-based studies, there was also a study specifically focused on a single appli-
ance: electric space heaters [74]. In contrast to the engineering-based group, where all of them
focused on the appliance level, in the statistical-based group, most of the studies focused on
a bigger scope: household, neighbourhood or local levels. A few of them were focused on
the appliance level [73,74,78,84]. The countries that have conducted or simulated most of the
statistical studies in the final list are Germany [2,29,88] and Spain [37,78,89], followed by the
United Kingdom [76,79] and Brazil [75,77], although in six of the thirty-one studies, it was not
mentioned where the studies were conducted. The remaining studies were from Pakistan [81],
Rwanda [4], Italy [90], Singapore [86], the United States [80], Iran [35], Portugal [83] and
Sweden [85]. Specifically for the study in [2], it was simulated for an Amsterdam case study
using the simulators LPG developed in Germany and ALPG developed in the Netherlands.
In general, whether it is a top-down or a bottom-up approach, all studies have produced
temporal resolution data. Additionally, the analysis in [80] was extended to a spatial analysis
due to air conditioner (AC) loads’ strong dependency on the weather parameters and high
interhouse correlations. In addition, the top five cited articles of the final list were identified
in Scopus on 1 April 2021 as follows: [69,71,79,80,86].

Furthermore, in order to quantify the quality of information in relation to the research
questions of this study, a basic data quality score was created. It comprised 11 measurable
attributes, as shown in Table 4. The availability of each attribute in the final articles is
uniformly weighted, where each attribute gets one score. Table 4 shows the distribution
scores for the 31 final articles. It is shown that 24 articles addressed all eleven attributes,
which are recommended to be in the priority review list. Another four articles get a 10 score,
because it was not clearly identified where the case study’s location was or the simulation’s
country or region. The case study’s location might be a minor issue. However, it is still
essential to recognise the simulation’s location in order to gain a better understanding of the
data characteristics and the developed model. For instance, it was found out in a3 [2] that the
ALPG model [30,67] was developed based on the Dutch dwelling system. Thus, when it is
applied in the Netherlands’ case study, the result is according to the Dutch real electricity
consumption data. The other two articles (a26 and a31) that get a 10 score did not specify the
number of simulated dwellings or households. The lowest score was article a28 that had an 8
score, because it did not clearly mention the number of simulated dwellings or households or
how the applied method was validated, and it also did not mention the countries or regions
of the simulation. In general, the results showed that about 77% of the final articles addressed
all the required information to answer the research questions in this study.
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Table 4. Basic data quality score of the final articles.

Article ID Objective Approach Method Merits Demerits Model’s
Input

Time
Resolution

Number of Simulated
Dwellings/Households Validation Model’s Scale Country/Region Score

a1 1 1 1 1 1 1 1 1 1 1 1 11

a2 1 1 1 1 1 1 1 1 1 1 1 11

a3 1 1 1 1 1 1 1 1 1 1 1 11

a4 1 1 1 1 1 1 1 1 1 1 1 11

a5 1 1 1 1 1 1 1 1 1 1 1 11

a6 1 1 1 1 1 1 1 1 1 1 1 11

a7 1 1 1 1 1 1 1 1 1 1 1 11

a8 1 1 1 1 1 1 1 1 1 1 1 11

a9 1 1 1 1 1 1 1 1 1 1 1 11

a10 1 1 1 1 1 1 1 1 1 1 1 11

a11 1 1 1 1 1 1 1 1 1 1 0 10

a12 1 1 1 1 1 1 1 1 1 1 0 10

a13 1 1 1 1 1 1 1 1 1 1 0 10

a14 1 1 1 1 1 1 1 1 1 1 1 11

a15 1 1 1 1 1 1 1 1 1 1 1 11

a16 1 1 1 1 1 1 1 1 1 1 1 11

a17 1 1 1 1 1 1 1 1 1 1 1 11

a18 1 1 1 1 1 1 1 1 1 1 1 11

a19 1 1 1 1 1 1 1 1 1 1 1 11

a20 1 1 1 1 1 1 1 1 1 1 1 11

a21 1 1 1 1 1 1 1 1 1 1 1 11

a22 1 1 1 1 1 1 1 1 1 1 1 11

a23 1 1 1 1 1 1 1 1 1 1 0 10
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Table 4. Cont.

Article ID Objective Approach Method Merits Demerits Model’s
Input

Time
Resolution

Number of Simulated
Dwellings/Households Validation Model’s Scale Country/Region Score

a24 1 1 1 1 1 1 1 1 1 1 1 11

a25 1 1 1 1 1 1 1 1 1 1 1 11

a26 1 1 1 1 1 1 1 0 1 1 1 10

a27 1 1 1 1 1 1 1 1 1 1 1 11

a28 1 1 1 1 1 1 1 0 0 1 0 8

a29 1 1 1 1 1 1 1 1 1 1 1 11

a30 1 1 1 1 1 1 1 1 1 1 1 11

a31 1 1 1 1 1 1 1 0 1 1 1 10
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The challenge of this applied approach lies in the searching and filtering stages,
because it depends on the selected search engine system. The process of removing the non-
relevant keywords or subject areas may dismiss a potentially relevant article. An example:
while analysing and synthesising the final 31 articles, the article [31] about the new CREST
model was read as part of [76], because CREST’s electric load model was used in [76].
As the title of article [31] was “High-resolution stochastic integrated thermal–electrical
domestic demand model”, then it should be on the list of final articles. Similarly, Ref. [64]
was read as part of [88], since the synPRO model proposed in [64] was used in [88]. The
title of [64] was “Model for electric load profiles with high time resolution for German
households”. In fact, both of the examples were listed in the initial searched results but
were not included in the final articles.

5. Conclusions

A review according to the rigorous standalone literature method was applied and
presented in a transparent way and is replicable by other researchers. The method helped
to gather, analyse and synthesise recent articles in relation to residential electricity load
profiles. This study answered all the research questions focused on the research purpose,
approach, method, data description, applicable simulation and validation.

The term load profile was used in this study, which has been used for decades in the
DSM field. The results showed that the three defined phrases that have the same meaning:
“residential load profile”, “household load profile” and “domestic load profile” contribute
to making the searching process more focused and specific. It also indicates that the most
applied approach in the last decade has been the bottom-up approach with statistical-based
methods. It is concluded that the most suitable approach that is in line with the purpose to
reflect local residential behaviour is the bottom-up models. In this study, the most common
research purpose addressed by the major studies was to analyse residential consumption
behaviours. The research purposes in relation to the short-term load forecasting, appliance
usage and residential buildings have also become important topics in some studies.

In most cases, privacy issues are still the important challenges in load profile studies.
This study helps policy makers gain a better understanding of local residential load profiles
in electricity consumption. The review results in this study help to identify which approach
and method are suitable to represent the local residential electricity load profile based on a
specific purpose. This study also supports decision makers in making more effective and
more cost-efficient policies in relation to green transitions at the local level. This review
was done in the Scopus database, and it would be interesting to apply this review method
to two databases, e.g., Scopus vs. WoS, and compare the results. It could overcome the
challenge of a sensitive case during the searching and filtering process in this study, because
the sensitivity case may depend on the selected search engine database.

Author Contributions: The review idea, P.S.N. and the idea’s topic, P.D.K.M.; the method, data
curation and analysis of the study, A.K.; original draft, A.K.; writing, review and editing; A.K.,
P.D.K.M. and P.S.N.; supervision, P.S.N.; project administration, A.K. and funding acquisition, P.S.N.
All authors have read and agreed to the published version of the manuscript.

Funding: The research described in this paper is being conducted as part of the CITIES Project, funded
by Innovations Fund Denmark under contract: 1305-00027B, a PhD fellowship funded by the Indone-
sia Endowment Fund for Education (LPDP) under Letter of Guarantee: Ref:S-1401/LPDP.3/2016 and
ClairCity Project, funded by the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 689289. This publication was supported by the FED Project, which was
funded by Innovations Fund Denmark under contract: 8090-00069B.

Data Availability Statement: The data presented in this study are available in the article.

Acknowledgments: We acknowledge all ClairCity partners, the CITIES research centre and other
partners for their large-scale inputs. We would like to thank John Soucy and Liza Wikarsa for
proofreading our manuscript.



Energies 2023, 16, 4072 18 of 27

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses or interpretation of the data; in the writing of the manuscript
or in the decision to publish the results.

Appendix A

ID Article’s Title

a1
Fischer, D.; Surmann, A.; Biener, W.; Selinger-Lutz, O. From residential electric load profiles to flexibility profiles—A
stochastic bottom-up approach. Energy Build. 2020, 224, 110133.

a2
Mahmood, I.; Quair-tul-ain; Nasir, H.A.; Javed, F.; Aguado, J.A. A hierarchical multi-resolution agent-based modeling and
simulation framework for household electricity demand profile. Simulation 2020, 96, 655–678.

a3
Kewo, A.; Manembu, P.D.K.; Nielsen, P.S. Synthesising residential electricity load profiles at the city level using a weighted
proportion (wepro) model. Energies 2020, 13.

a4
Narayan, N.; Qin, Z.; Popovic-Gerber, J.; Diehl, J.C.; Bauer, P.; Zeman, M. Stochastic load profile construction for the
multi-tier framework for household electricity access using off-grid DC appliances. Energy Effic. 2020, 13, 197–215.

a5 Zhang, L.; Zhang, B. Scenario frecasting of residential load profiles. arXiv 2019, 38, 84–95.

a6
Ji, T.Y.; Liu, L.; Wang, T.S.; Lin, W.B.; Li, M.S.; Wu, Q.H. Non-Intrusive Load Monitoring Using Additive Factorial
Approximate Maximum a Posteriori Based on Iterative Fuzzy c-Means. IEEE Trans. Smart Grid 2019, 10, 6667–6677.

a7
Ebrahim, A.F.; Mohammed, O.A. Pre-processing of energy demand disaggregation based data mining techniques for
household load demand forecasting. Inventions 2018, 3.

a8
Sepehr, M.; Eghtedaei, R.; Toolabimoghadam, A.; Noorollahi, Y.; Mohammadi, M. Modeling the electrical energy
consumption profile for residential buildings in Iran. Sustain. Cities Soc. 2018, 41, 481–489.

a9
Kong, W.; Member, S.; Dong, Z.Y.; Member, S.; Hill, D.J.; Fellow, L.; Ma, J.; Zhao, J.H.; Luo, F.J. A Hierarchical Hidden
Markov Model Framework for Home Appliance Modeling. 2018, 9, 3079–3090.

a10
Veras, J.M.; Silva, I.R.S.; Pinheiro, P.R.; Rabêlo, R.A.L. Towards the handling demand response optimization model for home
appliances. Sustain. 2018, 10, 1–18.

a11
Gao, B.; Liu, X.; Zhu, Z. A bottom-up model for household load profile based on the consumption behavior of residents.
Energies 2018, 11.

a12
Henao, N.; Agbossou, K.; Kelouwani, S.; Hosseini, S.S.; Fournier, M. Power estimation of multiple two-state loads using a
probabilistic non-intrusive approach. Energies 2018, 11, 1–15.

a13
Carrasqueira, P.; Alves, M.J.; Antunes, C.H. Bi-level particle swarm optimization and evolutionary algorithm approaches
for residential demand response with different user profiles. Inf. Sci. (Ny). 2017, 418–419, 405–420.

a14
Ramírez-Mendiola, J.L.; Grünewald, P.; Eyre, N. The diversity of residential electricity demand—A comparative analysis of
metered and simulated data. Energy Build. 2017, 151, 121–131.

a15
Stephen, B.; Tang, X.; Harvey, P.R.; Galloway, S.; Jennett, K.I. Incorporating practice theory in sub-profile models for short
term aggregated residential load forecasting. IEEE Trans. Smart Grid 2017, 8, 1591–1598.

a16
Casella, I.R.S.; Sanches, B.C.S.; Filho, A.J.S.; Capovilla, C.E. A Dynamic Residential Load Model Based on a
Non-homogeneous Poisson Process. J. Control. Autom. Electr. Syst. 2016, 27, 670–679.

a17
Journal, P.Q.; Rodrigues, F.; Cardeira, C.; Lisboa, U. De Energy Household Forecast with ANN for Demand Response and
Demand Side Management. 2016, 1, 2–5.

a18
Tascikaraoglu, A.; Sanandaji, B.M. Short-term residential electric load forecasting: A compressive spatiooral approach.
Energy Build. 2016, 111, 380–392.

a19
Chuan, L.; Ukil, A. Modeling and Validation of Electrical Load Profiling in Residential Buildings in Singapore. IEEE Trans.
Power Syst. 2015, 30, 2800–2809.

a20
Sandels, C.; Widén, J.; Nordström, L. Forecasting household consumer electricity load profiles with a combined physical
and behavioral approach. Appl. Energy 2014, 131, 267–278.

a21
Xu, Z.; Diao, R.; Lu, S.; Lian, J.; Zhang, Y. Modeling of electric water heaters for demand response: A baseline PDE model.
IEEE Trans. Smart Grid 2014, 5, 2203–2210.



Energies 2023, 16, 4072 19 of 27

ID Article’s Title

a22
Pipattanasomporn, M.; Kuzlu, M.; Rahman, S.; Teklu, Y. Load profiles of selected major household appliances and their
demand response opportunities. IEEE Trans. Smart Grid 2014, 5, 742–750.

a23
Abdelsalam, A.A.; Gabbar, H.A.; Musharavati, F.; Pokharel, S. Dynamic aggregated building electricity load modeling and
simulation. Simul. Model. Pract. Theory 2014, 42, 19–31.

a24
Zúñiga, K. V.; Castilla, I.; Aguilar, R.M. Using fuzzy logic to model the behavior of residential electrical utility customers.
Appl. Energy 2014, 115, 384–393.

a25
Cetin, K.S.; Tabares-Velasco, P.C.; Novoselac, A. Appliance daily energy use in new residential buildings: Use profiles and
variation in time-of-use. Energy Build. 2014, 84, 716–726.

a26
Ortiz, J.; Guarino, F.; Salom, J.; Corchero, C.; Cellura, M. Stochastic model for electrical loads in Mediterranean residential
buildings: Validation and applications. Energy Build. 2014, 80, 23–36.

a27
Santiago, I.; Lopez-Rodriguez, M.A.; Trillo-Montero, D.; Torriti, J.; Moreno-Munoz, A. Activities related with electricity
consumption in the Spanish residential sector: Variations between days of the week, Autonomous Communities and size of
towns. Energy Build. 2014, 79, 84–97.

a28
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Appendix B

ID Approach Method LP’s/Model’s Input
Time

Resolution

Number of
Simulated

Dwelling(s), hh(s)
Validation Model’s Scale Country

a1 Bottom-up: Statistical
Physical and
behavioural model

Behavioural, relevant
technology, diversity in
sizing and controller
settings

One-minute 1555 MFH and SFH
Compared with
the measured data

Household level Germany

a2 Bottom-up: Statistical

a multi-resolution
agent-based modelling
and simulation
(ABMS) framework

Neighbourhood, social
and appliances

One-minute 264 houses

Performance
metrics: MAD,
RMSE, MAPE%,
CV(RMSE)

Local
(neighbourhood)

Pakistan

a3
Hybrid: Combination
of top-down and
bottom-up: Statistical

Weighted proportion
People behaviour,
climater parameters,
appliance usage

Hourly 5 household profiles
Measured data:
NEDU

Local (City)
The Netherlands
Germany

a4 Bottom-up: Statistical Stochastic model

Type of the off-grid
appliances, power
rating, quantity, and
other operating
constraints

One-minute
5 households: tier
1-tier 5

Measured
data: SHS

Household level Rwanda

a5 Top-down

Machine learning
(Deep): flow-based
generative
models

Historical data
Daily based on
previous day
hourly resolution

105 households

Compared with
the realized data
generated in data
training and the
aggregated load
profiles

Single household,
neighbourhood
level

United States

a6
Bottom-up:
Engineering

additive factorial
approximate maximum
a posteriori (AFAMAP)
based on iterative fuzzy
c-means (IFCM)

active and reactive
power as input

Minutely A single household

Compared with
other models:
Hart’s and
bivariate

Household at
appliance level

Canada
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ID Approach Method LP’s/Model’s Input
Time

Resolution

Number of
Simulated

Dwelling(s), hh(s)
Validation Model’s Scale Country

a7 Bottom-up: Statistical
Feed-Forward
Artificial Neural
Network

Aggregated power
consumption for the
home: current and
historical consumption
hours

Hourly
2 houses-dataset from
UKDALE

Performance
metrics: RMSE,
NRMSE, MAE

Single household Not specified

a8 Bottom-up: Statistical
probability
density function
(PDF)

Behavioural One-minute 149 residences
compared with the
measured
profile

Single and local
level

Iran

a9 Bottom-up: Statistical
Hierarchical hidden
Markov model
(HHMM)

Appliance behaviour One-minute
7 appliance types: 30
generated cases

Evaluation metric
formula

Appliance level Not specified

a10 Bottom-up: Statistical
Mathematical
optimization model

Behavioural, climate
and price

Hourly 10 households Genetic algorithm Household level Brazil

a11 Bottom-up: Statistical Forecasting model Behavioural Hourly and daily 64 households Measured data Local level Not specified

a12 Bottom-up: Statistical

disaggregation
approach based on the
difference factorial
hidden Markov model
(DFHMM) and the
Kronecker operation

Usage of appliance Minutes
Appliance data: ECO
dataset

Metric evaluation Appliance level Not specified

a13 Bottom-up: Statistical
Two bi-level
population-based
algorithms

Usage of appliance
15 min
quarter-hour

Appliance data: actual
audit information

compared with the
existing hybrid
algorithm: HBLEA

Appliance level Not specified

a14 Bottom-up: Statistical
high-resolution
probabilistic model

Occupancy profiles One-minute 22 households
Compared with
the measured
data

Household level United Kingdom

a14 Bottom-up: Statistical
Autoregressive (AR)
models

conventional stationary
regression time series

Hourly 5 households

Error metrics:
MAE, MAPE,
Permutated
4-Norm

Household level United Kingdom
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ID Approach Method LP’s/Model’s Input
Time

Resolution

Number of
Simulated

Dwelling(s), hh(s)
Validation Model’s Scale Country

a16 Bottom-up: Statistical
stochastic load
model

NHPP model Hourly Brazilian homes
Compared with
the measured data

Household level Brazil

a17 Bottom-up: Statistical ANN
ANN-based forecasting
model

Daily and hourly
99 Households/1
random household

Performance
metrics: MAPE,
SDE and serial
correlation

Household level Portugal

a18 Bottom-up: Statistical

Multivariate
Autoregressive(M-
AR) model and
CST-LF

outdoor temperature
values, humidity and
the social activities
specific to some time
periods

Hourly 173 houses

Compared with
the measured data
and MAE, RMSE,
NRMSE

Household level United States

a19 Bottom-up: Statistical
Mathematical model
for load generation

Type of house, electrical
appliance

Hourly 323 houses
Compared with
the measured data

Local level Singapore

a20 Bottom-up: Statistical Stochastic model

Appliance usage,
people behaviour,
thermodynamical
aspects

One-minute 41 houses
Compared with
real data

household and
neighbourhood
level

Sweden

a21
Bottom-up:
Engineering

A developed partial
differential equation
(PDE) physics-based
model

Thermal behaviour Hourly EWH data
compared to the
field measurement
data

Appliance level United States

a22
Bottom-up:
Engineering

Measurement devices Appliance usage
One-second,
One-minute

2 houses No validation Appliance level United States

a23 Bottom-up: Statistical
The electric load
mathematical model

The building loads,
appliances usage

Hourly 1 house

Compared with
EnergyPlus, the
validated building
simulation
software

Household Not specified
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ID Approach Method LP’s/Model’s Input
Time

Resolution

Number of
Simulated

Dwelling(s), hh(s)
Validation Model’s Scale Country

a24 Bottom-up: Statistical fuzzy logic systems
Appliance usage,
lightings

Hourly 1 house
Compared with
other projects

Appliance level Spain

a25
Bottom-up:
Engineering

Use existing home
energy management
systems (HEMS)

Appliance usage Daily
40 single family
homes

Compared with
the measured data

Appliance level United States

a26 Bottom-up: Statistical Stochastic model
Dwelling
characterisation and
application usage

Hourly Na

Compared with
other data:
Spanish and
European

Neighbourhood
and household
level

Spain

a27 Bottom-up: Statistical Stochastic model
Active occupancy,
appliance use

Hourly 320 households

compared with the
occupancy profiles
directly obtained
from TUS data

Neighbourhood
and household
level

Spain

a28 Bottom-up: Statistical Probabilistic model
Household profile,
Appliance usage

Hourly Not mentioned
(na) Demonstrated
only of two case
examples

Household Not specified

a29
Bottom-up:
Engineering

Non-Intrusive Load
Monitoring (NILM)

Appliance usage One-minute Not mentioned
Compared with
other experiment

Appliance level Korea

a30 Bottom-up: Statistical

statistical or
probabilistic: Markov
chains
processes

Occupant behaviour,
weather condition

one-minute
800 households: 80
connections point = 10
hh

Compared with
measured data

Household Germany

a31 Bottom-up: Statistical Statistical analysis

Occupancy profiles,
appliance usage and
thermodynamical
aspects

Hourly 2 buildings
Compared with
the Italian
standard

household and
neighbourhood
level

Italy
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