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Abstract: Shunt Adaptive Power Filter (SAPF) is widely used in the performance of power quality
improvement activities in the power supply industry for processing industries or civil power sources
in the world today based on its simplicity, transparency, high reliability, efficiency, and reliability, and
their powerful compensating current-providing nature. The PI controller integrated into the SAPF
operation mechanism works with extra high efficiency in selecting the current to compensate for
the lost current generated in the power supply due to harmonics generated by the Kp, Ki parameter
values. The system operates by the PWM method for bridge rectifier circuits that perform the
function of selecting the appropriate compensating current, providing correct compensation for the
amount of current loss in the power supply. Adjusting the Kp, Ki parameter to reach the optimal
value by different methods is a promising and popular research direction at present. The Kp, Ki

parameter serves the right purpose for the PI controller to generate enough PWM pulses to excite the
bridge rectifiers to generate just the right amount of compensating current and enough current to
be compensated on the power supply. The commonly used Kp, Ki parameter adjustment methods
include the Ziegler Nichols closed-loop vibration method, the P-Q theoretical method, and several
other methods. This study conducts a comprehensive review of the literature on modern strategies
for adjusting the Kp, Ki parameters in the PI controller in the SAPF suite by using the meta-heuristic
optimization method. This study performs classification according to the operation mode of meta-
heuristic optimization methods to adjust the Kp, Ki parameter to control the PI to select the correct
PWM frequency to activate bridge rectifiers to select the most optimal compensation current to
compensate for the loss of current on the power supply to meet the goal of improving power quality
in accordance with IEEE 519-2022 standard, leading to the total harmonic distortion (THD) value
is below 5%. The study presents in detail some meta-heuristic optimization algorithms, including
applications, mathematical equations, and implementation of flow charts for SAPF and provides
some open problems for future research. The main objective of this study is to provide an overview
of applying meta-heuristic optimization algorithms to the Kp, Ki parameter tuning of PI controllers.

Keywords: shunt adaptive power filter; SAPF; harmonic mitigation; IEEE 519-2022; meta-heuristics;
swarm optimization

1. Introduction

Power quality and, in particular, reducing power loss during transmission or dis-
tribution caused by harmonic components and methods need to be taken urgently [1,2].
There are many methods, as well as models, for reducing and eliminating harmonics and
improving power quality in the transmission and distribution process [3,4] (Figure 1).

Energies 2023, 16, 3998. https://doi.org/10.3390/en16103998 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16103998
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-0200-7153
https://orcid.org/0000-0001-8655-778X
https://orcid.org/0000-0003-2054-143X
https://doi.org/10.3390/en16103998
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16103998?type=check_update&version=2


Energies 2023, 16, 3998 2 of 55

Figure 1. Methods to reduce and eliminate harmonics.

The power system has the problem of generating harmonics, causing a loss of produc-
tivity, and techniques to control and minimize harmonics are proposed [5]. To understand
these techniques, it is necessary to analyze the advantages and disadvantages of each tech-
nique and analyze the technical conclusions and their performance. To so harmonic-related
problems, there are different techniques like Line reactor [6], Isolation transformer [7],
K-factor transformer [8], tuned harmonic filter [9], IGBT-based fast switched harmonic
filter [10], Low pass harmonic filter [11], 12 and 18 pulse rectifier [12], Phase-shifting
transformer [13], and active harmonic filters [5]. The current reactor implements a series
connection with an individual nonlinear current and is the simplest means of harmonic
reduction [3,4]. The isolation transformer is known as an electrostatic shield between the
primary and secondary coil; they couple capacitance between each coil and shield together,
then a low impedance is created to reduce noise, transient current, and zero sequences
current [14]. The shielding helps to reduce harmonic interference in normal mode for the
initial side of the transformers [15]. The K-factor transformer is designed as a constant that
determines the transformer’s ability to handle transformer warming caused by generated
harmonics [16]. Usually made by coupling multiple insulated and interchanged conductors
to reduce phase effect, magnetic errors are designed with lower flux density [8]. Factor K
has two variables with harmonic current magnitude and harmonic order [15].

The turn harmonic filter is a device that is connected in a series of inductive and
capacitive reactance forming a tuned LC circuit, shaped like a shunt device, which is
a frequency-modulated resonant circuit that provides impedance short helps to reduce
harmonic distortion [17,18]. Insulated Gate Bipolar Transistor (IGBT) has a very fast circuit
switching function, about 60 times per second, meeting the requirements of reactive power
and ensuring harmonic distortion within the specified standard. A low-pass harmonic
filter is to connect multiple string elements into a set of tuning elements, increases input
impedance, effectively controls harmonics, and attenuates all harmonic frequencies in the
circuit [19]. A pulse rectifier is a device made up of many rectifiers and connected to a
special type of transformer and guarantees a displacement of each secondary phase of 360
divided by the number of rectifier pulses [20]. The Phase Shifting Transformer is made
up of two nonlinear loads fed by the two-phase shifting of the transformer windings and
acts as 12 pulses, canceling the fifth and seventh harmonics on the primary side of the
transformer [21,22]. Active filters are considered independent harmonic filters or combined
with technological techniques in the rectification stage of other power electronic devices.
It can analyze the frequency content and the magnitude of the current or filter out the
fundamental frequency of the current. It provides suitable inverting currents to eliminate
individual harmonics through Insulated Gate Bipolar Transistors (IGBTs) [3–5]. Considering
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the approximate cost (USD) and performance of the above harmonic reduction techniques
for 3-phase harmonics, the following table gives the comparison results (Table 1).

Table 1. Considering the approximate cost (USD) and performance of the above harmonic reduction
techniques for three-phase harmonics.

Harmonic Mitigation
Techniques

15 kW
(Price)

75 kW
(Price)

300 kW
(Price)

THD-I (%)
(Non-Linear Loads)

THD-I (%)
(Mixed (50–50) Loads)

Reactor (5%) 520 1100 3800 35 17.5
Isolation Transformer 2650 6340 18,000 35 17.5
K-factor (13) Transformer 5300 11,000 48,000 35 17.5
Tuned Filter 2800 3900 7000 12–20 3–12
Low Pass Filter 2400 5600 13,000 8–15 N/A
Active Filter N/A 27,000 65,000 5 5

In this study, the focus is on understanding meta-heuristic algorithm methods and AI
engineering models, combining the above models to improve power loss compensation
through a shunt adaptive power filter (Figure 2).

Figure 2. Block diagram of the system for compensation of higher harmonic components using Shunt
Active Power Filter (SAPF).

Combining AI engineering modeling with meta-heuristic algorithm models improves
the model’s prediction accuracy and improves the model’s convergence speed [23]. Along
with today’s trend, the amount of electricity is increasing, specifically in addition to the fact
that countries around the world want to gradually reduce their dependence on energy and
gas sources, improve the use of renewable energy sources and save electric energy, reduce
power loss caused by harmonics by applying [1] meta-heuristic algorithm techniques and
technical models. AI techniques to control active filter circuits, such as shunt adaptive
power filters [23,24]. This study has several implications as follows:

1. AI engineering models and meta-heuristic algorithm models are applied to SAPF to
perform the extraction of the harmonic component from the measurement signals of
the sensors and, at the same time, perform the selection of the optimal compensating
current value providing compensation to the power supply;
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2. Models that combine meta-heuristic algorithm techniques with AI engineering models
in shunt adaptive power filter to increase convergence speed into selecting current
compensation and improve the quality of the sine wave shape of the power signal.

3. The equation relationship between the meta-heuristic algorithm models is also com-
pared via the pseudo-code algorithm;

4. Overview of applying shunt adaptive power filter to compensate for power loss for
power sources that have been connected to the national power grid such as PV Solar,
wind power, and combined AI techniques models with meta-heuristic algorithm
models into the above power system;

5. Overview of current control circuits that compensate for power loss caused by har-
monics and harmonic analysis circuits generated in power systems are also described
in general.

Power quality problems are phenomena that arise in the power supply [1]. The causes
that give rise to the above problems are harmonic distortion [5] and the consequences
for the power system and electrical equipment when there is a voltage variation problem
as above [3,4]. The waveform of the voltage source or the current source of the power
source is distorted, and harmonics are measured as integer multiples of the fundamental
supply frequency or the waveform of the voltage or the waveform of the current source,
which has a non-sine shape [4,5]. Sources of classical equipment causing harmonics such
as arc furnaces, fluorescent lamps), welding machines, rectifiers (Microprocessors, motor
drives, any electronic loads), and DC brush motors. Modern sources of equipment cause
harmonics such as all non-linear loads such as power electronics equipment, including
ASDs, switched-mode power supplies, data processing equipment, and highly efficient
lighting [6].

Devices such as rectifiers, ASDs, soft starters, electronic ballasts for discharge lamps,
switched-mode power suppliers, and HVAC using ASDs use power and generate har-
monics. Harmonic is a form of noise signal that has a direct negative impact on power
quality. Harmonics are noticed when the sum of harmonic currents is above the allowable
limit. The frequency of the harmonic current is a set of times higher than the fundamental
signal frequency. Characteristic oscillations of complete harmonics are in the frequency
spectrum. The harmonic component in an AC source is the sine component of a wave
period whose frequency is integer times the fundamental frequency of the system [25].
Harmonics is the main cause of power quality loss and affects other electrical equipment
such as transformers, motors, cables, interrupters, capacitors, and protective switching
devices [3]. Bad switching will affect the performance of electrical appliances or electronic
control devices, and neutral current is also generated when the electronic devices perform
switching modes, devices such as PCs, printers, photocopies, and any triplets generators.
The temperature generated in the conductor is caused by the neutral current acting and
generated. In addition, the neutral current also adversely affects the performance of the
transformer continuously.

Harmonics are generated from static frequency converters, cycle converters, induction
motors, and arcing devices [5]. Power quality issues affect devices differently, just as
electrical equipment responds to the impact of power quality problems differently, the
presence of power electronics is also a factor related to power quality issues, and har-
monics management standards are regulated based on the IEEE 519-2022 standard [26]
(Tables 2 and 3).

Since 1980, harmonics have been considered an essential element that needs to be
controlled in electrical systems and electrical equipment [1]. Harmonics are the cause of
voltage source waveforms being distorted; they are causing wires to overheat, which is
a serious problem in power transmission and distribution systems [6]. Harmonics cause
transformers to generate heat and heat up transformers and are the cause of failures in
electrical equipment [26]. Harmonic control, eliminating or limiting the generation of
harmonics in the power supply, is an urgent issue; currently, solving problems related to
harmonics is done by shunt adaptive power filters (SAPF) [27,28].
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Table 2. Current distortion limits for systems rated 120 V–69 Kv (IEEE 519-2022, pg. 19).

Isc
IL

Harmonic Limits a,b TDD
Required2≤h<11 11≤h<17 17≤h<23 23≤h<35 35≤h≤50

<20 4.0 2.0 1.5 0.6 0.3 5.0

20 < 50 7.0 3.5 2.5 1.0 0.5 8.0

50 < 100 10.0 4.5 4.0 1.5 0.7 12.0

100 < 1000 12.0 5.5 5.0 2.0 1.0 15.0

>1000 15.0 7.0 6.0 2.5 1.4 20.0
a: For h ≤ 6, even harmonics are below 50% of the harmonic limit; b: Current distortion has resulted in a dc offset;
Where Isc: Maximum short circuit current is current that flows through a conductor with very low resistance,
almost zero at the point of common coupling (PCC). IL: Maximum demand load current at PCC under normal
operating conditions, a function of many factors over time P(t), so they do not obey a certain law. Therefore, it is
very difficult to identify them. The electrical load is an important parameter in selecting the equipment for the
power system at PCC.PCC (Point of Common Coupling): In many cases, when there is enough source reactance
calculated at the point we consider to reduce harmonics, a filter placed at this point can absorb harmonics from
many different harmonic sources flowing to them. Even harmonics are limited to 25% of the odd harmonic limits
above. Current distortions that result in a dc offset. Isc/IL: All power generation equipment is limited to these
values of current distortion.

Table 3. Voltage distortion limits (IEEE 519-2022, pp. 17).

Bus Voltage (V) at PCC Total Voltage Distortion
THD (%)

Individual Voltage
Distortion (%)

V ≤ 1.0 kV ≤8.0% ≤5.0%
1.0 kV ≤ V ≤ 69 kV ≤5.0% ≤3.0%
69 kV < V ≤ 161 kV ≤2.5% ≤1.5%

69 kV < V ≤1.5% ≤1.0%

Previous studies presented algorithms applied to SAPF to perform the harmonic
compensation task in the power source. However, many limitations still arise when
applying algorithms (Table 4).

Table 4. Brief summary of harmonic mitigation methods in SAPF.

Ref. Years Methodology Feature Result and Advantage Disadvantage

[29] 2019 p-q theory

Power 3 phase

THDi = 8.2%, Generate
reference currents for modern
power systems based on the
steady-state variation of
current and voltage vectors.

Unsatisfactory harmonic
compensation efficiency less
than 5% according to IEEE
519-2022 standard.

[29] 2019 DCAP method
THDi = 3.5%, Divide the
sinusoidal current into n parts
and balance the source side.

Satisfactory harmonic
compensation efficiency is less
than 5% according to IEEE
519-2022 standard.

[30] 2019 Predictive Direct Power
Control (P-DPC)

THDi = 1.2%, Maintain the DC
bus offset voltage to a specified
value and the anti-reverse
compensated PI controller to
regulate the DC bus voltage.

Effect of the sampling period
and parameter error on power
quality of distribution system.

[31] 2020 LCL Filter

THDi = 4.56%, The design is
higher than the harmonic
frequency compensation that
the SAPF has to compensate
for the higher order harmonics
of the grid.

The control algorithm is
complex. Resonance
generation. The parameters of
the LCL Filter are
very complicated.
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Table 4. Cont.

Ref. Years Methodology Feature Result and Advantage Disadvantage

[32] 2020 SiC-MOSFET

THDi = 4.15%. Using the
L-locator to suppress the
switch sub-harmonics to a
smaller level simplifies circuit
design and control algorithms.
The switching frequency is
increased to 50 kHz.

Increases the second harmonic.

[33,34] 2020 An ADALINE-based
Neural Network (ANN)

THDi = 2.39%, The current is
measured using the Least
Mean Square (LMS) algorithm;
the weights are obtained with
the help of online calculations.

Analysis under severe
abnormal conditions is the
direction of future research.

[35] 2021
Space Vector Pulse
Width Modulation
(SVPWM)

THDi = 3.73%, Trace and
identify the reference voltage
in a static coordinate system
through coordinate
transformation and determine
the reference voltage.

The reference structure has
only 4 transformation modes
and no vector 0. This reduces
the freedom of the composite
vector and is difficult
to control.

[36] 2021 Triangle Orthogonal
Principle (TOP)

THDi = 4.98%, Using the
phase signal from the
phase-locked loop is
synchronized with the grid
signal based on the principle of
triangle orthogonality.

Lack of selective
harmonic compensation.

[37] 2021 Computation Fluid
Dynamics (CFD)

THDi = 4.25%, Simulation of a
heat transfer coupling under
forced cooling conditions.

Designing power electronic
components requires
high precision.

[38] 2022 Least Mean
Square (LMS)

THDi = 3.7%, Separation of the
elementary active, reactive,
and harmonic components of
the distorted current.

Performance is low when
using the same speed for
components when estimating
the feedback operation.

[39] 2022
Modified Symmetrical
Sinusoidal Integrator
(MSSI)

THDi = 3.94%, Extract the basic
components of the
corresponding forward sequence
and use instantaneous reactive
power theory to process the
reference flow.

Look up the parameters of the
transfer function.

[40] 2020

Adaptive Backstepping
Fuzzy Neural Controller
based on Fuzzy Sliding
Mode (FNN-based FSM)

Power 1 phase

THDi = 4.48%, Establish a
subsystem and use virtual
controls to simplify
controller design.

Satisfactory harmonic
compensation efficiency is less
than 5% according to IEEE
519-2022 standard.

[41] 2021
Long and Short Term
Memory Fuzzy Neural
Network (LSTMFNN)

THDi = 4.67%, Combine fuzzy
neural network and long and
short-term memory
mechanism to enhance
self-learning ability and
high performance.

Improve control effect, new
neural network learning
strategies, finite time control
and reduction of system
chattering are future
research directions.

[42] 2022
Modified Multiport
Interleaved Flyback
Convertor (MMPIFC)

Photovoltaic
(PV) three-phase
power

THDi = 2.61%, Multi-port
interlaced flyback conversion
to connect n number of input
sources to DC bus to overcome
partial shadow problem.

Replacing fuzzy controls with
advanced artificial intelligence
algorithms like bio-inspired
optimization is the direction of
future research.
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The parts of the research paper are organized as follows: Section 2 shows the details
of random models and optimization models. Section 3 provides an overview of harmonic
mitigation using meta-heuristic algorithms and artificial intelligence. Section 4 presents a
discussion and future research problems, and Section 5 presents conclusions.

2. Random Models and Optimization Models

The input parameters of the optimal models are usually partially known, or they
are not defined to be known; these parameters can also be called uncertain parameters.
They are implemented through probabilistic statistical models or experimental design [6].
The model used to implement the above parameters is called the stochastic programming
model and is expressed through Formula (1) as follows:

min
x∈X
{g(x) = f (x) + E[Q(x, ε)]} (1)

With: X is a nonempty closed subset of Rn, ε is a random vector whose probability
distribution P is supported on a set [I] ⊂ Rd and Q : X× [I]→ R . In the framework of two-
stage stochastic programming, Q(x, ε) is given by the optimal value of the corresponding
second-stage problem. g(x) is well-defined and finite valued for all x ∈ X. This implies
that for every x ∈ X the value Q(x, ε) is almost surely finite.

The key to making the model change is the input parameters, and in particular,
the objective functions that are set up containing random parameters whose values are
unknown or known. However, the input variables of the objective function obey the
distribution law of a given probability previously [6]. There are many related studies
applying models using unknown, unspecified random input parameters and following
probability distributions, such as the meta-heuristic algorithm (Figure 3).

Figure 3. Classification of meta-heuristic algorithms.

Evolution-based algorithms are models that form algorithms inspired by natural evo-
lution to generate populations for algorithmic solutions [43,44]. Individuals are created
from the best solution of the mathematical model, mutation, or crossover, or select the best
solution in the mathematical model to create new individuals [45]. The genetic Algorithm
(GA) is a figure point. This mathematical modeling technique is based on Darwin’s evolu-
tionary technique. In addition, there are other techniques that have been developed, such
as evolution strategy, genetic programming, Backtracking Search Algorithm (BSA), and
Differential Evolution (DE).

Swarm Intelligence based Algorithms are social behavior from insects, animals such
as fish, birds, and so on while they are foraging or hunting, specifically their behavior
of moving to find the best location and space best for the process of social behavior.
Mathematical models are built from those social behaviors [46,47]. The most popular
is particle swarm optimization (PSO),developed by Kennedy and Eberhart. There are
also many other algorithm models, such as Ant Colony Optimization, Honeybee colony
optimization algorithm, and Cat Swarm Optimization (CSO).

Physics-based algorithms are based on the laws of physics in the universe around us,
re-modeled [48] into algorithms like Simulated Annealing (SA) and Gravitational Search
Algorithm (GSA).

Human behavior relation algorithms are based on human behavior modeled into
mathematical models. The performance of a mathematical model is directly related to
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human behavior [49,50]. The algorithms were conceived as a teaching-learning-based
optimization (TLBO) and a League Championship algorithm.

The above plans meet the requirements of high equivalence search criteria and have
fast convergence when using stochastic methods with unknown input parameter variables
or undefined according to the distribution law of probability statement. However, because
the input factor is a random variable, the meta-heuristic optimization methods can loop
around to find the approximate value of the criterion function over a long time or possibly
indefinitely [6]. This is a limitation of the above optimization models; the variables can be
used to optimize the randomness of the input parameter variables of the optimal model, to
reduce the randomness, reduce the size of the random data or eliminate the finite difference,
as well as remove the confounding factors, to bring the optimal results for the model [44,46].
Each meta-heuristic optimization model has its own characteristics, its own mainstream,
and at the same time, its own limitations [48,49]. Meta-heuristics-based optimization is
considered for use on the following grounds:

1. Meta-heuristic optimization is applied by many researchers to research many aspects
of optimization and is widely used, which means that there are many recent research
publications in many prestigious journals around the world catalog ISI/SCOPUS and
is used in almost every field from engineering to economics and other sciences;

2. Artificial intelligence uses meta-heuristic optimization models in training activities
and as well as improves the ability to predict results of artificial intelligence (AI)
technical models such as artificial neural network (ANN), fuzzy logic, and adaptive
neural fuzzy system (ANFIS);

3. Meta-heuristic optimization is done very simply with not too complicated mathe-
matical models, with no need for additional training data or initial implementation
solutions, just building suitable mathematical models and precise distribution func-
tions’ respective performance to improve the optimization level for the operations;

4. Researchers only need to use the population size and number of iterations to build an
optimal research model using meta-heuristic optimization without the need to delve
into the knowledge of complex mathematical models;

5. Researchers only need to build fitness functions and constraints to freely choose
meta-heuristic models and modify them to perform optimal problem-solving;

6. Meta-heuristic research models are integrated into the test models and validated
based on simulation models with various tools available;

7. Meta-heuristic optimization gives good processing results for multi-objective pro-
cessing models and, with many decision variables and constraints, does not restrict
solutions and is not dominated;

8. Meta-heuristic optimization is used to solve multi-disciplinary problems, and along
with many publications in prestigious journals in the world at the present time, it is
useful for analysis, comparison, and analysis activities to compare the research results
of the proposed work of the authors;

9. Compared with the training and learning requirements with complex mathematical
models of artificial intelligence (AI) techniques, meta-heuristic optimization shows
that the computation process is much simpler with the use of algorithms. Math
models are much simpler than those applied in AI techniques;

10. Nowadays, the development of computer technology needs to use optimization
models more and more to optimize the processing time of real-time problems.

3. Harmonic Mitigation Using Meta-Heuristic Algorithms and Artificial Intelligence

Models of harmonic control and reduction are often related to (1) analyzing and detect-
ing harmonic components. (2) Control and generate a suitable compensating current into
the power supply to compensate for the electrical loss caused by the harmonic component
(Figure 2). In some cases, researchers create analyzers that identify harmonics used in
single-phase [51] or three-phase power networks [52]. In many cases, the problem to be
optimized is necessary; the reason is that the problems are very complex. Nowadays,
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modern optimization methods implemented into SAPF filters are a promising research
direction. Meta-heuristic optimization and artificial intelligence techniques have been
applied by many researchers to SAPF control to generate a compensating current that
provides compensation to the power supply [46]. Finding the optimal power supply pa-
rameter to compensate for the harmonic component is a very complex problem. Applying a
mathematical model or more to solve a problem is necessary. Choose one or more available
information about the problem, or interactions between them, to apply to the optimization
algorithm, which produces an optimal result better than the individual algorithms [3,6].
Meta-heuristic optimization models using combined with shunt adaptive power filters to
control harmonics is a research direction that is interesting in scientists and managers at the
current time, as well as a development orientation for the application of advanced signal
processing control by computer in power quality improvement activities [26–28].

3.1. Analyze and Detect Harmonic Components

Detecting and extracting harmonic components of voltage and current sources is
essential for power quality improvement [3]. The purpose of this work is to find a suitable
method to select the compensating current to compensate for the current, or power voltage,
loss caused by harmonic components. Components such as amplitude and phase of
harmonics require a reasonable technique for extraction, detection, and classification at
the input source. Harmonics cause distortion of the voltage waveform or input voltage
current, and a suitable compensating current is required to compensate for the loss caused
by harmonic distortion to correct the waveform distortion of the voltage source or current
source [3]. To do this, a suitable method is needed (Figure 4). The methods for extracting,
detecting, and classifying harmonics are divided into two groups. Group 1 is a type of
frequency harmonic component analysis technique, and group 2 is a time domain harmonic
component analysis technique.

Figure 4. Harmonic detection methods.

Group 1 is a group of frequency harmonic component analysis techniques performed
by Fourier series analysis to extract the harmonic components of the input source. The
methods of analyzing and extracting harmonic components in the power source include
Discrete Fourier Transform (DFT) [53], Fast Fourier Transform (FFT) [54], and Sliding
Discrete Fourier Transform (SDFT) [55].The disadvantages to note when using the above
methods are that it takes a certain period of time to solve the problem, requires a large
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memory, the fundamental frequency must be synchronized with the frequency number
of samples, and sometimes generates an unnecessary reactive power under a transient
condition. However, the remarkable strength of the above methods is that the harmonic
components generated in the power supply are closely measured and monitored, and
the calculation formulas require very few mathematical equations, which leads to fast
processing speed during current compensation for voltage distortions caused by harmonics
faster. The p-q instantaneous power theory is a widely used method and has been ap-
plied by many researchers to operations that exploit harmonic components and eliminate
fundamental harmonics [56]. However, the harmonic component in the power supply
circuit is also analyzed and detected by applying a high pass filter (HPF) [57]. There is a
disadvantage of this method that if the system is unbalanced, the function will be damaged.
Their performance and computation are significantly affected. Currently, there are many
techniques for analyzing and extracting harmonics, which are SOGI [58], DCS [59,60],
MAF [60], DSOGI [61], MSOGI [62], DCS [63], and CDSC [64].

Group 2 includes time-domain-based harmonic analysis methods such as using a
phase- or frequency-locked loop (PLL/FLL) to analyze and monitor fundamental frequen-
cies of voltage waves in the source even if the voltage source is unbalanced [65,66]. The
advantages of the above method are that it can work well even when using single-phase or
three-phase power, and even when the source state is unbalanced, the above techniques
still work normally without the use of digital filters, the positive and negative wave se-
quences are also extracted and detected clearly. However, the above techniques also have
disadvantages when using such as frequency is prone to oscillation when using the SOGI
technique [58]. MSOGI has a lot of complicated calculation equations, which affect pro-
cessing speed and slow signal response [62]. SOGI and DSOGI techniques give rise to an
unstable state for the input source. The DSC technique has many complex computational
equations and the potential for errors in digital implementation [61,62]. Based on the results
of a brief analysis of the advantages and disadvantages of the above harmonic analysis and
extraction techniques, when using the above techniques, it is necessary to consider and use
the appropriate methods above for maximum performance. Optimizing the selection of
parameters in the operation of extracting harmonic components in the signal source using
meta-heuristic optimization methods is a promising research direction for the future. This
study does not focus on analyzing the overall harmonics extraction methods.

3.2. Harmonic Mitigation Using Meta-Heuristic Algorithms

This study conducts a literature review on the application of the optimization algo-
rithm to SAPF to find the optimal compensation power source that provides compensation
for the loss of current in the power supply to meet the THD value of less than 5% according
to the IEEE 519-2022 standard (Figure 5).

3.2.1. Evolution-Based Algorithms

Calculated in the period from 1966 to 2021, there are 16 methods to the advantage of
Evolution based Algorithms. However, the study authors have applied two methods to har-
monics mitigation in shunt adaptive power filters, which are Evolution based Algorithms
and Genetic Algorithms (GAs).

Difference Evolution Algorithms (DE) for SAPF

The DE method used to improve multi-object control integral scaling is applied to
the control currently used in the shunt adaptive power filter [67]. The performance of this
method is limited due to the use of the Maslin polynomial. The act of using the DE method
to optimally minimize the fitness function and generate the control current to reduce the
total harmonic distortion (THD) of the power supply, eliminating the error of the control
loop compensating current and the saturation of the controlled loop within limits [68,69].
The PI-MR controller is based on the frequency domain to analyze the harmonic component
generated in the power supply [70].
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Figure 5. Meta-heuristic optimization algorithms for SAPF.

GAINS controller is controlled through parameter adjustment by PI parameter ad-
justment. The extent to which the search for reliable parameters is performed in the
optimization process and the system performs well is due to the responsiveness of the
operating cost function. The global search region is not clearly defined. The model will be
stuck in the local minimum, and the optimal solution result will not be as expected. The
following requirements must be met for the model to respond well. (1) Determine the exact
benefit level of the PI control parameters (Equation (2)); (2) Apply the PI parameter to the
NP adjustment levels, aiming to improve the gain of PI-MR (Equation (3)); and (3) search
scope partitioning during DE optimization (Equation (4)).

GPI(S) = KPi +
KIi
s

(2)

GC(s) = GPI+4R(s) = KP +
KI
s

+
7

∑
n=1

Krn(s)
s2 + (nω1)

2 (3)

Grn(s) =
brn
(
1− z−2)

d1z−1 + d2(1 + z−2)
(4)
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The total harmonic distortion in the SAPF controller compared with IEEE 519-2022
is 5% and reaches the lowest level of 3.42%, and the third, fifth, and seventh harmonic
components are reduced compared to previous studies. The Levy flight method combined
with the DE method improves local area search, this is considered a promising research
direction to improve model accuracy, and another promising direction is combining with
the neural network at the output of the DE model to choose the best estimator for the model.

Genetic Algorithms (GAs) Algorithms for SAPF

The Genetic Algorithms (GAs) technique incorporates fuzzy logic into the power
supply current compensation time control via the SAPF controller, with the overall si-
nusoidal current control strategy (SCC) and total harmonics distortion control (THD) of
current and voltage sources [71]. However, the results are limited compared to the method
using CIPC; the result for SCC is THDi is 0.41% and THDv is 0.34%, and response time is
0.0032 s compared to for constant when applying GA-Fuzzy is THDi is 0.41% and THDv
is 0.62%, and the response time is 0.0040 s [72]. The optimal value of the inductors in the
SAPF filter is searched and determined by Gas [73,74]. The fuzzy logic control technique
controls the voltage loop in the SAPF filter, and the Artificial Neural Network (ANN)
technique controls and controls the operation of the SAPF to create a bias current that
multiplies reactive power compensation, controls components harmonics generated in the
current source while controlling the unbalance point in the source current, the GA-FL-ANN
Combined Controller gives a THDi of 0.99%, and a THDv of 1.4% and a response time of
0.0058 s [75]. The compensating current-controlled GAs in the SAPF filter circuit improve
the performance of reactive power compensation, control total harmonic distortion (THD)
and speed up the frequency response [76].

The GAs technique applied to SAPF control in a three-phase PI factor control circuit
seeks the optimal value of the dc-link capacitor and the optimal value of the inductor cou-
pling (Figure 6). The processing system depends on the SAPF controller values, which are
the dc link capacitor parameter values, the coupled inductor parameter values, the current
controller parameter values, and the voltage source of the power circuit [71,72]. Taking a
lot of time to process parameter adjustment in SAPF, GAs also has some benefits such as
ease of understanding, ease of design and ease of implementation. Several parameters of
SAPF optimized the minimum value of the total harmonic distortion (THD) to select the
fitness value from the objective function (Equation (5)).

THD = f
(

L f , Cdc, V∗dc, KpC, KiC, Kp, Ki

)
(5)

With: Inductor L f , DC link voltage Cdc, DC link voltage V∗dc, KpC, KiC of the PI DC
link voltage, Kp, Ki of the PI current controller.

The GA code for optimizing objective function step-by-step is shown in Table 5; the
population is the collection of individual parameters into a solution to the problem. Initially,
a population is generated naturally from basic GA parameters, including chromosome
length and population size.

Table 5. GAs code for optimizing.

Step Step-By-Step Explanation of the GA Method

Step 1: Determining the ranges of the parameters; the upper and lower bound

Step 2: Set the value

Step 3: Set population size

Step 4: Set the initial population by random within the space of parameters

Step 5: Set maximum numbers of generations

Step 6: Set the selection process following the tournament method, mutation, and crossover
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Figure 6. The GA approach for SAPF.

The GA working principle for optimizing the parameters of SAPF is illustrated via the
flowchart shown in Figure 7.

Figure 7. The flowchart of the GAs Algorithm.
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The GA algorithm is based on natural selection and genetics. Chromosomes convert
decision variables into coding alphabetic sequences of finite length and the fitness function
GAs (Equation (6)). ISE = integrate square error between actual capacitor voltage and
reference dc voltage.

ISE =
∫ T

0

(
Vre f −Vdc

)2
(6)

The strength of GA is that it is possible to fine-tune the PI controller to achieve the
optimal gain value for SAPF conversion. GA performs global optimization and fitness
functions because of SAPF’s corresponding transition state selection. The switching state is
coded and selected by the fitness function linking the cost function to the output current
fault input reactive power system making the SAPF easy to handle.GA combined with
SAPF achieves noise-free performance with a balance condition. GA demonstrates the
ability to localize regions of high efficiency in complex domains without the difficulties
associated with signal highs.

The SAPF controller generates many uncertain and time-varying parameters. For
the GAs technique to give good results, the ANN technique combined with GAs is a
good direction to improve the performance of the model [76]. GA techniques can also be
combined with other algorithms in meta-heuristics, such as the Bee familiarization method
(QBGAs), to improve model performance [77].

3.2.2. Swarm Intelligence-Based Algorithms

Between 1992 and 2021, Swarm Intelligence-based Algorithms has a total of 38 algo-
rithms developed. Up to now, 11 algorithms have been deployed to harmonic mitigation
for shunt adaptive power filters. Specifically, Artificial Bee Colony (ABC) Algorithm,
Ant Colony Optimization (ACO), Ant Lion Optimizer (ALO), Bat Algorithm (BA), Bacte-
rial Foraging Algorithm (BFA), Firefly Algorithm (FA), Gray Wolf Optimization (GWO),
Whale Optimization Algorithm (WOA), Moth Flame Optimization (MFO), Particle Swarm
Algorithm (PSO), and Bees Algorithm (BA).

Artificial Bee Colony (ABC) Algorithm for SAPF

Implement the Artificial Bee Colony (ABC) algorithm to remove harmonics in power
circuits by solving nonlinear equations and turning seven power supplies to perform direct
isolation of unequal power sources [78]. In 2005, Dervis Karaboga was inspired by the
foraging behavior of honeybee swarms, based on a multi-dimensional, multi-modal hyper-
simulation and optimization process, and applying a mathematical model of neighborhood
search combined with random search. There are three main groups of bees that perform
foraging behavior: hired bees, observation bees and scout bees. The work is specified
as follows, the global foraging work is performed by observation bees and scout bees,
and the purpose is to find random food sources and find out which areas have the most
nectar [79,80]. The procedure for applying the ABC algorithm to the shunt adapter power
filter is specified in the flowchart of the ABC algorithm (Figure 8). The ABC algorithm
performs SHE optimization of the cascaded seven-level inverter. The DC voltage sources
are assumed to be unequal and determine the magnitude value of the parameter Ki and
the ABC algorithm code step-by-step (Table 6).

ABC algorithm is applied to current control in photovoltaic (PV) system to improve
frequency, improve fast response and estimate input amperage of phase-locked loop (PLL)
model and adjust the parameters Kp, Ki, Kv, and Ko. Another application of the ABC
algorithm is to control the predictive current to control the future value and select the best
switching state for the power converter. An application of the ABC algorithm is to modify
the three-phase PLL to prevent DC error of the three-phase bridge input signal. The loop
adjusts this quantity to zero and converts the ϕ value to the θ value. Values in DC power,
such as (da, db, dc)

T , will overlap the value of Vd and if an imbalance occurs when the DC
compensation will generate the same frequency error. An ABC algorithm applied to the
shunt adaptive power filter circuit to perform the reactive power compensation operation
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in the power supply mistakenly reduces the harmonics generated by the DC electric motor
as the main cause. The ABC algorithm performs the search for the controller parameters.
The performance of the ABC-SAPF filter gives better results than the ANN-SAPF filter or
the Fuzzy Logic-SAPF filter [76,81].

Figure 8. Flowchart of Artificial Bee Colony (ABC) algorithm.

Table 6. The ABC algorithm code step-by-step.

Step Step-By-Step Explanation of the ABC Algorithm Method

Step 1: Parameters are set like colony number, size, the value of limits, restrictions and
maximum number of cycles for foraging

Step 2:

Initial conditions of level 2 of the algorithm like (θ = [θ1θ2θ3]), with constraints set
up for each bee at random (Equation (7)).

0 < θi <
π
2 ; θ1 < θ2 < θ3 (7)

Step 3:

The function value is established (Equations (8) and (9))

f (i) =
(

100 V∗1 −V1
V∗1

)4
+ 1

5

(
50 V5

V1

)2
+ 1

7

(
50 V7

V1

)2
(8)

Fitness(i) = 1
f (i)+1 (9)

where V∗: The desired value of the input voltage source and f (i): The i-th root
obtained in the cost function.

Step 4:

Establish a foraging process for hired bees, observers and scout bees. There, the role of
the hired bees is to search and evaluate the quality of the found food source; if the
food source is unsatisfactory, they store it in memory and start looking for a new and
better food source, and they divide this information to the observer bees in the hive.
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Table 6. Cont.

Step Step-By-Step Explanation of the ABC Algorithm Method

Step 5:

bees observe, receive information, evaluate the information received and choose a
quality food source. They then pass the information back to the swarm, and together
they rate the quality of the nectar and compare it to the quality of the previous nectar.
Where the quality of the nectar is better than the quality of the previous nectar, they
switch to a source with better quality nectar. At the same time, they also change the
memory of the old nectar information (Equation (10)).

P(i) = α×Fitness(i)
max(Fitness)+b (10)

With, i: is the i-th food source. P(i): Probability that the observed bee chooses a
food source.

Step 6: The old food source is also removed and improved with a new food source after each
establishment, and this work is performed by scout bees.

Step 7:
Loop when reaching the maximum value, the algorithm terminates. Otherwise, the
loop is updated next with the formula iter = iter + 1 and goes back to step 4 to
continue executing the program.

The ABC method solves the nonlinear equation of the Harmonic and Selective
rejection sample considering unequal DC current sources. The ABC method classifies
the fundamental components that respond to the rejection of low-order harmonics. ABC
method is one of the powerful and new evolutionary optimization patterns, finding
optimized transformation angles with higher accuracy and higher convergence than
others. The ABC algorithm determines the optimal switching angles and finds the opti-
mal switching angles to generate the desired voltage. The ABC algorithm outperformed
algorithms such as GA, PSO and BA in 30 runs with the same initial values according to
the criteria of convergence and accuracy. ABC algorithm finds the optimal gain value
of controller PI for SAPF for different errors as functional fitness variables. The ABC
algorithm gives good results for monitoring the reference voltage and adjusting the PI
for THD minimization. Stable dc-link voltage is in less than 1 cycle during transient
load. ITSE is a performance indicator that shows better dynamic response harmonic
compensation in a current source. ABC algorithm is a good tool to find the optimized
gain of PI controller with ITSE as a fitness function.

Ant Colony Optimization (ACO) for SAPF

Ant Colony Optimization (ACO) is applied to Shunt Adaptive Power Filter (SAPF)
with the goal of optimizing the gain Kp, Ki of the PI controller [82,83], and optimize the
indicators of Integral Square Error (ISE), Integral Time Square Error (ITSE), Integral Abso-
lute Error (IAE) and Integral Time Absolute Error (IATE) [84]. Dorigo (1992) introduced
the ACO method based on the foraging behavior of ants used when foraging, such as
(1) positive feedback, (2) distributed computation, and (3) constructive greedy heuristics.
The goal of the ant colony’s foraging behavior is to find the best solutions to discover the
fastest food source, evaluate and select the best food source for the ant colony, prevent
mistakes in choosing food sources, and choose the best method for the ants to find the best
food source [84,85].

Artificial ants mimic the behavior of biological ants and find the best way to find food
sources. The leader ant emits hormones; the ant follows the shortest distance, with many
hormones remembering positive feedback. All the ants in the ant colony move at the same
speed and send the same proportions of hormones [78]. The ACO modulating the Kp, Ki
gain in the PI controller is depicted in the block diagram (Figure 9).
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Figure 9. ACO tuning approach for SAPF PI controller.

The cost function e(t) provides a mathematical model for ACO’s optimal search. Each
ant moves through the Kp, Ki nodes, and the Ki search space for 100 nodes. Each node
Kp in the range (0.1~1.0) and Ki in the range of 1–300 and is condensed in two different
vectors. The goal of ACO is to find the path with the smallest cost function, that is, to find
the most suitable Kp, Ki parameters. Each ant is made to move according to the probability
function. When the Kth ant moves to the ith position and builds each part Sp, according
to the distribution law of the Kth ant selected according to the j nut from the i nut. The
distribution function is:

ρk
ij =


[
τα

ij(n)
][

µ
β
ij(n)

]
∑ N(sP)

[
τα

il (n)
][

µ
β
il(n)

] i f CijεN(Sp)

 (11)

where τij and µij: pheromone and metaheuristic intensity value index information between
nodes i and j. Indexes N(Sp) and l are the set values of nodes and paths that may not have
been visited by ant k.

The ant deposit updates hormone value (Local hormone) according to Formula (12).

τk
ij(n) = τk

ij(n− 1) +
(

0.2 ∗ α

C

)
(12)

The global hormone is updated according to Formula (13).

τij(n)
best = τij(n)

best +

(
α

Cbest

)
(13)

The negative hormone is updated according to Formula (14).

τij(n)
worst = τij(n)

worst −
(

0.3 ∗ a
Cworst

)
(14)

Global hormones are updated after each hour according to Formula (15).

τij(n) = τij(n)
∂ + ∆ (15)

where τij(n)
best and τij(n)

worst is the hormone of the paths for the ant to follow in its search
for a food source with the lowest cost (Cbest) and maximum cost (Cworst) values. λ is the
evaporation constant, and ∆ is the sum of Formulas (13) and (14). The ACO algorithm for
PI tuning is shown in Table 7.
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Table 7. The ACO algorithm code.

Step 1: (Parameter Initiation) SettherangeforKp, Ki, tour = 0, m = 20, maximumtour = 100,
α = 0.06, l = 0.95

For every combination (i, j)

Set an initial value τij(0) = 1, ∆τijlocal(0) = 0 and ∆τijglobal(0) = 0

End

Step 2: (Local Update Rules)

For k = 1 to m and choose Kp, Ki with a transition probability given in Equation (12).

Calculate cost k

End

For ∀(i, j)

For k = 1 to m

For ∀(i, j)

For k = 1 to m

Update the pheromone using Equation (11)

End

End

Step 3: (Global update rules) Update pheromone for best and worst tours of ant using
Equations (11) and (12).

Globally update pheromone using Equation (16)

Tour = tour + 1

If (tour < maximum tour)

Go to step 2

Else

Print the best node values for the minimum cost function

End

Details of the steps to implement the ACO algorithm in SAPF are described in Figure 10
in the flow chart of ACO for SAPF.

The ACO method performs optimal tuning of the membership functions and nor-
malized gain in SAPF. The ACO method is a choice for an effective DC link voltage to
compensate for harmonic currents in the power supply [86]. The ACO algorithm is the
best for the controller, and satisfactory performance is an effective solution for the growing
energy demands now and in the future. Ant colony optimization (ACO) is a technique that
optimizes the gain values of the PI controller used in the Shunt Active Power Filter (SAPF),
improving its dynamic performance [87]. The minimization of Integral Square Error (ISE),
Integral Time Squared Error (ITSE), Integral Absolute Error (IAE), and Integrated Time
Absolute Error (ITAE) are considered functional costs of the ACO-SAPF system and the
ACO method improve the resolution time (Ts) with ISE as the cost function.

Ant Lion Optimizer (ALO) for SAPF

ALO is implemented in SAPF to adjust the control parameters and KP KI in the PI
controller to adjust the compensatory current for the power supply in order to reduce
harmonic according to IEEE 519-2022 standards for both power and current on the load [88].
ALO implements the gain and loss adjustment method of the PI controller to adjust the
required DC current at the output and meet the required voltage compensation on the
power supply [89]. The synchronous and theoretical P-Q reference method is implemented
in the circuit to generate a suitable compensating current [90,91].
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Figure 10. Flow chart of ACO for SAPF.

ALO uses two search agents, including ant lions and ants, in a swarm. Ant lions are
always looking for the best food element, and their location is always known to be fixed.
Ants in the swarm are always free to move in space foraging and are likely to be caught
when trapped in a wormhole [90]. The position of Ants in the swarm is done according to
Formula (16).

Antk
j =

PK
A − PK

E
2

(16)

where PK
A represents the nearest random path of the Ant lion. PK

E represents the position of
the ith ant closest to the ant lion in the E group of the ant.

The distance between ant j and ant lion g after ant j moves in loop K is determined by
Formula (17).

MK
g =

(
wj − rj

)
∗
(
dj − Cj

)(
bK

j − rj

) (17)

where rj, bj determines the largest and smallest steps of ants in the foraging zone of size
K. C, d the random walk region of ant j and the maximum and minimum limits of the
threshold are in the range [0.5].

In the natural environment, ants roam randomly around in search of food sources.
This behavior is expressed by Formula (18).

X(it) = [0, cusu(2r(it1)), cus(2r(it2)), . . . , cusu(2r(itn)− 1)] (18)
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where cusu: cumulative sum spending time r(it) and is valued according to Formula (19)

r(it) =

{
1, i f rand > 0.5

0, i f rand ≤ 0.5
(19)

The antlion senses that prey has entered the hole. The antlion throws sand to re-
assemble the prey and captures the prey into the hole. This action is described by
Formulas (20) and (21).

Cit =
Cit

10w. it
itmax

(20)

dit =
dit

10w. it
itmax

(21)

where Cit, dit: the low and high variables are converged. W: the constant is fixed at the
current loop and is determined by Formula (22).

w =



2, i f it > 10%. itmax

3, i f it > 50%. itmax

4, i f it > 75%. itmax

5, i f it > 90%. itmax

6, i f it > 95%. itmax

(22)

The final stage is ALO traps the prey and stops the trap, and this action is built
according to Formula (23)

Antlionit
j = Antit

i ; i f f
(

Antit
i

)
> f

(
Antlionit

j

)
(23)

where Antlionit
j : the jth chosen location of the antlion at ith. Antit

i :the ant’s i-th position.
The pseudo-code (Algorithm 1) and flow chart of ALO for SAPF are shown in Figure 11.

Algorithm 1: The pseudo-code of the ALO Algorithm

1 Input (Set input data of SAPF. Set parameters of ALO)
2 K = 1
3 Create 3 initial sizes of ant and ant lion are Kp, Ki, Gα

4 Run SAPF with Kp, Ki, Gα and evaluate the fitness function value of ants and ant lions
5 Identify the best ant lion
6 While K ≤ Kmax do
7 For i = 1 to the number of agents, do:
8 Choose the antlion based on the movement circle
9 Update the position of ants according to Formulas (18) and (19)

10
Update the location of the antlion (update the Kp, Ki, Gα value) according to
Formula (17).

11
Run SAPF updates the Kp, Ki, Gα value and evaluates the fitness function value
of the ant lion

12 Substitute the antlion with ants according to Formula (24)
13 Update elite position
14 K = K + 1
15 End for
16 End while
17 Return optimization elite

18
Output: Print optimization gains Kp, Ki, Gα of the PI controller in SAPF according to the
optimal elite value
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The objective function f (g) performs error minimization of the two gains, KP and KI,
of the PI controller according to Formula (24).

f (g) = ITSE = f (q, t) =
∫ ∞

0
e2(q, t)tdt (24)

where ITSE = Integral Time Square Error. ITSE extracts and provides data for ALO to
optimize the parameters of gain, KP and KI, of the PI controller. The error(e) of the index
showing the agreement between the reference voltage Vdc,ref and the voltage of the capacitor
Vdc is shown by Formula (25).

Error(e) = Vdc,re f −Vdc (25)

The gain controller KP, KI is determined according to Formula (26). Gain Control
(GC) is a closed-loop feedback regulating circuit in an amplifier or chain of amplifiers to
maintain a suitable signal amplitude. The average or peak output signal level is used to
dynamically adjust the gain of the amplifiers, allowing the circuit to work satisfactorily
with a greater range of input signal levels.

q =
(
Kp, Ki

)T ∈ M (26)

where M is a positive real value index.
The foraging space is expressed by Formula (27).

S = {q ∈ M, qmin ≤ x ≤ qmax} (27)

Figure 11. Flow chart of ALO for SAPF.
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The ALO method searches for the parameter values of Kp and Ki that achieve the
minimum value of the fit function, then is provided as the optimal parameter at the output
of ALO-SAPF. The goal is to reduce the maximum overshoot and lower the DC-link voltage
with reduced power ripple and as low THD as possible. The ALO method properly adjusts
the circuit to reduce harmonics in the source current and load voltage, adjusting the gain of
the controller to adjust the required DC output voltage. The ALO method is used to extract
the optimal values of frequency and increase the PI voltage of the PI controller in SAPF. The
reception ALO algorithm maintains sinusoidal patterns for the source current waveform
with a good terminal voltage and frequency within a limited range under unbalanced and
variable load conditions. THD is less than 5%. The reception control algorithm with ALO
integrated into SAPF is very efficient in terms of power quality.

Bat Algorithm (BA) for SAPF

BA is implemented into SAPF, which performs DC voltage rectifier controller opti-
mization and reactive power theory and P-Q theory used to extract the reference current of
the power supply [92].

BA builds on the bat’s perceptual behavior by using echolocation to recognize and
classify food sources and barriers. Bat’s velocity speed (Vi) and Bat’s position (Xi), Bat’s
broadcast frequency (Fmin), the wavelength of echo (∂) and reverberation (A0) during the
search for food sources. The magnitude of A0 is calculated according to the Amin constant.
BA adjusts the DC index value to optimize the PI controller. However, BA is limited by the
foraging region (in this case, the tuning parameters KP and Ki in the PI controller) [93].

BA follows two main activities, including exploration and exploitation. Exploration to
find new solutions is given by Formula (28), and exploitation to search for food sources in
the vicinity is given by Formula (29).

Xi(t + 1) = Xi(t) + Vi(t) (28)

Xnew = Xold + ε× A0(t) (29)

BA pseudo codes are done in the following steps (Table 8).

Table 8. BA Algorithm code.

Step Step-By-Step Explanation of the ABC Algorithm Method

Step 1: Establish the function of the bat according to the formula F.

Step 2:

Initialize functional variables, including upper bound information and lower bound
information of each bat, number of bats, maximum number of repetitions, and number
of variables looking for food sources. Each bat has different upper and lower bound
parameters in the foraging zone.

Step 3: Call and Find the initial value of the objective function

Step 4:
The maximum number of repetitions is to be performed from the start of the main
loop, and the frequency is randomly chosen according to Formula (30).

F(i) = Fmin + (Fmax − Fmin)× rand (30)

Step 5:
Update the speed and position of the bat. After each update of the upper and lower
bound values, the new position of the bat is updated according to Formula (31).

Xnew =
(
Xold +

(
X+ − X−

))
+ ub× X+ + lb× X− (31)

Step 6: Check the pulse rate of each bat. The random step size limiting factor is 0.001.

Step 7:

Recalculate the fitness value after optimization according to Formula (32). Plot the
convergence curve for the best fit and repeat. The best position is also called the
optimized value.

Fmin = f itnessnew (32)
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The results of applying BA to SAPF (Figure 6) and THD coefficient = 0.7% meet the
requirements of IEEE 519-2022 standard. The objective function is for the optimization
controller parameter, according to Formula (33).

F = min
(
min(ITAE) + min(Tr) + min(Ts) + min

(
Mp
)
+ min(ess)

)
(33)

where ITAE: Integral Time Absolute Error, Tr : rise time, Ts: setting time, Mp : peak
overshoot, and ess : steady state error.The flow chart of BA for SAPF is shown in Figure 12.

Figure 12. Flow chart of BA for SAPF.

The BA method performs dc-link voltage regulator optimization. The stability of the
current controller with the SAPF system is a mathematical model evaluated in terms of
time and frequency area. The BA method implements a PI controller to adjust the harmonic
current in SAPF theoretically analyzed for stability and suitability; dc-link optimization
performs well harmonic harmonization and reactive power consumption of the load. The
harmonics in the current are effectively suppressed by the SAPF, the reactive power required
by the load is compensated by the SAPF, and the power supply operates the power required
by the load and the inverter losses. A faster SAPF dynamic response is achieved to sudden
load changes of nonlinear loads.
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Bacterial Foraging Algorithm (BFA) for SAPF

BFO deployed in SAPF adjusts the control coefficients KP and KI of the PI controller
(Figure 13) to provide compensatory power for the power system to improve the quality
of power supply for balanced loads and unbalanced [94,95]. The results show that the
THD = 1.37% value is within the IEEE 519-2022 standard.

Figure 13. Block diagram of BFO for PI controller.

BFO was built inspired by microbial foraging with the goal of optimizing bacte-
rial energy consumption per unit of time (T). BFO works by four observed mechanisms
of micro-emergent, including chemotaxis, swarming, reproduction, and elimination or
dispersal [96,97]. The four mechanisms of action of BFO are explained as follows (Table 9).

Table 9. BFO Algorithm code.

Step Step-By-Step Explanation of the BFO Algorithm Method

Step 1:

(Chemotaxis): bacteria move to find a source of more nutrients in the intestines thanks
to the mechanism of bladder action in directions such as swimming or somersaults.
Assume θi(j, k, l) is the ith bacterium in the jth trophic zone, the kth spawning zone,
and the lth elimination dispersal step. The bacteria in motion were calculated
according to Formula (34).

θi(j + 1, k.l) = θi(j, k, l) + C(i) ∆(i)√
∆T(i)×∆(i)

(34)

where C(i) is the size of a single step and movement in a random direction, and ∆(i) is
the vector in an arbitrary direction of the elements in the range [−1, 1].

Step 2:

(Swarming): bacteria move in swarms with high density in the activity of sourcing
nutrients through mechanisms of attracting and repelling substances given by
Formula (35).

Jcc(θ(i, j, k, l)) =
S
∑

i=1
Jcc

(
θ, θi(j, k, l)

)
=

=
S
∑

i=1

[
−dattractantexp

(
−wattractant

p
∑

m=1

(
θm − θi

m

)2
)]

+ (35)

+
S
∑

i=1

[
hrepellantexp

(
−wrepellant

p
∑

m=1

(
θm − θi

m

)2
)]

where Jcc(θ(i, j, k, l)) is the objective function used to optimize goals over time.
S : Totalnumber of bacteria in the population. p is the optimization variable and
θ =

[
θ1, θ2, . . . , θp

]T is a point in the p− dimension in the search for nutrients.
dattractant, wattractant, hrepellant, wrepellant are measures of the number, rate of diffusion,
and strength of the forward and backward effects of bacteria, respectively.

Step 3:

(Reproduction): the acclimatization value of bacteria i in NC migration and calculated
according to Formula (36).

Ji
health =

Nc+1
∑

j=1
Ji(j.k.l) (36)

where Ji
health is the health of the representative ith bacterium. The healthy bacteria

eventually eliminate other healthy bacteria, and the population stays the same in
the end.
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Table 9. Cont.

Step Step-By-Step Explanation of the BFO Algorithm Method

Step 4:

(Elimination or Dispersal) : the bacteria are removed and dispersed with probability
ped after the Nre spawning event with the goal that the bacteria are not trapped and
ensure that the local optimum replaces the global optimal. The objective function is
optimized following Formula (37).

J =
∫ t

0 (∆Vdc)
2dt = β ∗ ∆Vdcmax + (1− β)(ts − t0) + α ∗ |Ess| (37)

where α: steady−
state voltage error correction index Ess. β is the decisive index of the value of
voltage (∆Vdcmax ). ts is the maximum value of β without overshoot, and t0 is the start
time, ts is the steady-state time of the transition period.

The BFO method gives optimal results that outperform traditional methods by ensur-
ing excellent SAPF functionality and rapidly overpowering harmonics in the current source,
even when the power supply is unbalanced [98]. The BFO method is implemented to
adjust the coefficients of the PI controller in SAPF to improve the performance of the power
system under balanced and unbalanced supply voltage conditions. The dc link voltage is
stable for about one cycle, and also the voltage variation is less than that of conventional
PI controllers. The BFO-SAPF method performs harmonic rejection and function superior
to the PSO-SAPF method and has excellent functional confirmation of its superior and
powerful harmonic compensation.

Firefly Algorithm (FA) for SAPF

Predator-Prey-based firefly optimization (PPFO) is implemented into SAPF to select
the appropriate compensation current to provide compensation for the loss of mains current
to improve power quality [99,100]. Shape the sine wave shape of the power supply for
balanced and unbalanced loads. The results for the THD = 1.909% index belong to the IEEE
519-2022 standard [99].

PPFO is inspired by the flickering light of fireflies to explore and exploit food sources
in the search for food sources [101]. The proposed problem variables form fitness functions,
and these variables formed in SAPF include Cdc, Vdc,re f , L f , R f , Kp, and Ki and randomly
generate a swarm of fireflies from initialization. Each firefly represents an optimal solution
in the foraging zone and has as many dimensions as the number of designed variables.
Each firefly is parameterized according to Formula (38).

f =
[
Cdc, Vdc,re f , L f , R f , Kp, Ki

]
(38)

The final search area space is limited according to Formula (39)

f K(min) ≤ f K ≤ f K(max), K = 1, 2, . . . , n (39)

A mathematical model is established from bioluminescence communication to change
into the motion of fireflies in the foraging space. Every firefly is mesmerized by other
fireflies’brightness, and they try to fly toward where the light is. Firefly’s brightness has an
impact on the efficiency of the designed problem point [99,101]. In repeating theprocess,
the algorithm model is evaluated by each firefly’s brightness and attractiveness, and the
position value of the firefly is updated based on these values. The brightness function
(BFun) is made to reduce total harmonic distortion (THD) and is calculated by Formula (40).

MaximizeBFun =
1

1 + THD
(40)

Attractiveness of the ith and jth fireflies are shown by Formula (41).

βij = β0 exp
(
−γrij

2
)

(41)
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where rij is the distance between the ith and jth fireflies calculated by Formula (42).

rij = || fi,−, f j || =
√

n

∑
k=1

(
f k
i − f k

i
)2 (42)

The flow chart of BFO for SAPF is shown in Figure 14.

Figure 14. Cont.
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Figure 14. Flow chart of BFO for SAPF.

In the swarm, the ith firefly flies to the jth firefly and updates the position change in case
the BFunj value is greater than the BFuni value at time t and is calculated by Formula (43).

fi(t) = fi(t− 1) + βij
(

f j(t− 1)− fi(t− 1)
)
+ α(rand− 0.5) (43)

The common fireflies (prey) are attacked by predators, and they often find places
where there are no enemies and see this as a better position.

Enemies help fireflies explore the search area more efficiently, and enemy hunting is
done probabilistically (µ). This enemy is modeled by Formula (44).

fpredator(t) = fworst(t) + ρ

(
1− 1

Tmax

)
(44)
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Firefly is always looking for a way to stay away from its enemies and is modeled by
Formula (45).

f(t+1) = f(t) + ρ.e−|d|, ifd > 0
f(t+1) = f(t) + ρ.e−|d|, ifd < 0

(45)

PPFO does not converge in the search area but improves detection and population
enhancement to enhance the best possible global solution. The solution starts with generat-
ing random values within the corresponding limit for each firefly in the population. Based
on the BFun value, the firefly moving to the side with the best light represents the better
solution [102,103]. The enemy chases the fireflies based on the probability of the fireflies
escaping and getting out of the suboptimal trap. This process is repeated until convergence.
The pseudo-code of PPFO is shown in Table 10.

Table 10. PPFO algorithm code.

Step Step-By-Step Explanation of PPFO Algorithms

Step 1: Read the problem data

Step 2: Choose parameter $, n f , β0, α, . . .

Step 3: Generate the initial population of fireflies as represented by Equations (38) and (39)

Step 4: Set the iteration counter t = 0

While termination requirements are not met, do

For i = 1 : n f

Assign the value of the ith firefly as a design parameter in the Simulink model
of SAPF.

Run the Simulink model and compute THD

Evaluate BFuni using Equation (40)

For j = 1 : n f

Assign the value of the jth firefly as a design parameter in the Simulink model
of SAPF.

Run the Simulink model and compute THD

Evaluate BFunj using Equation (40).

If BFuni > BFunj

Compute rij using Equation (42).

Evaluate βij using Equation (41).

Move jth firefly toward ith firefly through Equation (43).

End if

If rand < n?.

Hunt jth firefly using Equations (44) and (45).

End

End-(i)

End-(j)

Rank the fireflies and find the current best and worst fireflies.

End-(while)

The firefly possessing the largest brightness is the optimal solution.

Predator-prey-based firefly optimization (PPFO) adjusts the gain parameters of the PI
controller in SAPF to provide high efficiency in current selection operation to compensate
for distorted current in power supply due to wave comedy caused [104]. PPFO guarantees
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global value optimization and does not depend on optimization traps. PPFO is designed
with the FO function to avoid optimization traps during problem optimization in SAPF.
Parameters such as Cdc, Vdc;ref, Lf, Rf, kp, and ki are designed as variables in SAPF and
are necessary problems for PPFO to perform their optimization. The results of optimal
implementation of the above parameters in SAPF show that PPFO selects and provides an
appropriate compensating current to compensate for the disturbed current in the power
system that the harmonics generate and shapes the sine wave shape of the power source to
improve the power quality.

3.2.3. Spider Net Search (ASNS) for SAPF

Spider Net Search is used to optimize the controller used in shunt adaptive power
filters (SAPF) in balanced and unbalanced conditions [105]. Source current is controlled
by standard sinusoidal control and givesthe load; the results of THDI and THDv are
1.21%, 1.42%, 1.11%, 2.93%, 3.44%, and 3.48%, respectively. All of them meet the IEEE
519-2022 standard.

The three-phase power system supplies balanced, unbalanced, and distorted loads
with a 50 Hz frequency and voltage source. The SAPF circuit performs the function of
compensating the current for the power source when the source current is lost. The adaptive
Spider Net Search (ASNS) algorithm solves complicated math problems. ASNS performs a
discretization of the search space and performs a reverse search of them in that space. The
search performance of the ASNS method is correspondingly enhanced within the radius
of search space. ASNS is proposed to search for the optimal Kp and KI values in the PI
controller [106,107].

First, the surrounding values of Kp , KI are the highest and lowest levels. Next, the
radius value, ASNS rollback condition.The objective function and stopping criterion are
defined at specific lines.A random value of Kp , KI is placed in the hexagon to set the initial
value. The optimal value will be updated, replacing the original value after each iteration.
This process stops when the stopping criterion meets the most optimal value level.

The evaluation function of research is the THD power index. The aim is to find the
lowest THD value and the shortest computation time algorithm. Algorithm’s reliability is
evaluated the less computation time. Standard equation of the Kp , KI is set according to
the setting time (Tsetting), rise time (Trise), and percentage overshoot (P.O) is used for the
objective function, Formula (46).

O.F
(
Trise, Tsetting, P.O

)
= R(Trise) + S(Tsetting) + P(P.O) (46)

with: R + S + P = 1, where R, S, and P are the priority factors of Trise, Tsetting, and P.O. The
ASNS algorithm is explained in Table 11, and the flow chart of ASNS for SAPF is shown
in Figure 15.

Table 11. ASNS algorithm’s code.

Step Step-By-Step Explanation of ASNS Algorithms

Step 1: The first value of Kp , KI is set to 0, and the value of Kp , KI is updated after
each iteration

Step 2: The value of the objective function is calculated according to the first value of Kp , KI

Step 3: The objective function value of ASNS is compared to step 2 and updated at the first
corner starting from the left of the hexagon

Step 4: If the value does not meet the optimal level, the value automatically updates to
the value of Kp , KI and replaces the objective function. Then, turn back to step 3

Step 5: If the value meets the optimal level, ASNS is selected as the optimal solution and saved
in the best solutions list

Step 6: If the loop runs to the end, the value will be updated for Kp , KI . Then, update the
objective function and reperform step 3
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Figure 15. Flow chart of ASNS for SAPF.

The ASNS algorithm adjusts the value of the gain factor in the PI controller designed
in the SAPF block and provides a compensating current that matches the current generated
by the harmonic measurement noise to improve the quality. Electrical Power and enhance
the sine wave shape of the power supply. The ASNS algorithm does a good job of power
supply disturbance current compensation under balanced, unbalanced, and distorted
current supply conditions. The noise current compensation time is fast in just a few
seconds, and compared with the GA algorithm in SAPF, the ASNS algorithm applied to
SAPF has more advantages.

Adaptive Tabu Search (ATS) for SAPF

Artificial intelligence engineering Tabu Search into shunt control adaptive power filter
(SAPF) to find compensating power for source to improve the quality of power [108,109].

Active ATS includes a reverse tracking mechanism and search area radius adaptation
mechanism [110]. The ATS algorithm’s code is explained in Table 12.

Reverse tracking activity helps the system turnback the previous solutions in TL.Flow
chart of ATS algorithm for SAPF (Figure 16). The Tabu search algorithm is considered
an artificial intelligence algorithm applied to SAPF, which performs well the function of
adjusting gain parameters in the PI controller in SAPF to choose a suitable compensating
current power supply to eliminate harmonics and improve power quality [111,112]. The
Tabu search algorithm applied in SAPF brings high efficiency in SAPF’s compensating
current supply operation for power supply.
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Table 12. ATS algorithm’s code.

Step Step-By-Step Explanation of ATS Algorithms

Step 1: Initialize Tabu TL and count values to 0

Step 2: Randomly select the initial solution So in the search space. So is set as the local minimum,
and So is the best neighbor

Step 3: Update the count value and choose N new solutions randomly at the R radius, which
is in the search space. Call S1(r) is the set of N solutions

Step 4: Calculate the cos t value of each member S1(r), then choose the optimal value and
assign it to the best neighbor 1

Step 5:
If best neighbor 1 < best neighbor, save the best neighbor in TL. Set the best neighbor
as thebest neighbor 1 and set So as thebest neighbor. In addition, set the best neighbor 1
in TL

Step 6:
Evaluate the last criteria (TC) and the aspiration criteria (AC). If count max = count (the
maximum number allowed in the search area), stop the search process. The current best
solution is the best overall solution. If not, go back to step 2 and continue the process

Figure 16. Flow chart of ATS for SAPF.

Whale Optimization Algorithm (WOA) for SAPF

WOA is inspired by the foraging activity of whales using the bubble-net method. The
process of whales diving into and out of the water creates swirling bubbles that surround
their prey [113,114]. The WOA code is explained step-by-step in Table 13, and the flow
chart of WOA for SAPF is shown in Figure 17.
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Table 13. WOA code.

Step Step-By-Step Explanation of ATS Algorithms

Step 1:

At first, the whale acquaints itself with the prey, then surrounds the prey. The whale
predicts the best solution and calls it objective prey and is substituted when there is
another better solution. Variables are updated according to the Formulas (47) and (48).

→
D =

∣∣∣∣→C .
→
X∗(t) −

→
X(t)

∣∣∣∣ (47)

→
X(t + 1) =

→
X∗(t) −

→
A.
→
D (48)

Vector of coefficients
→
A and

→
C are updated by Formulas (49) and (50)
→
A = 2

→
a .
→
r −→a (49)

→
C = 2.

→
r (50)

wheret = indicates the current iteration.
→
X∗ = position vector of the current best

solution obtained.
→
X = position vector should be updated whenever there is a

better solution.
→
A = coefficient vector.

→
C = coefficient vector.

→
a = linearly

decreased vector from 2 to 0.
→
r = random vector between [0, 1].

Step 2:

Exploitation phase, whales will attack their prey with a bubble net strategy and do so
with twomethods, including shrinking, encircling, and spiral updating.
Shrinking encircling performs a new search defined between the current best range
and the updated

→
a value search range with Formula (11) and the

→
a value is assigned

from 1 to − 1. Sprial updating performs a calculation of the distance between whale
X and Y from the prey X∗ and Y∗. Spiral is shown according to Formulas (51) and (52).

→
X(t + 1) =

→
D′ .eb1 . cos(2πL) +

→
X∗(t) (51)

→
D′ =

∣∣∣∣→X∗(t)−→X(t)
∣∣∣∣ (52)

Formula (13) calculates the distance from the ith whale compared to the best updated
solution. L = random number in [−1,1], b = fixed number for the spiral algorithm. The
algorithm model is built as Formula (53).

→
X(t + 1) =


→
X(t)−

→
A.
→
Di f p ≤ 0.5

→
D′.tt +

→
X∗(t)i f p ≥ 0.5

(53)

where the random value of p is selected in [0, 1] and H = eb1 . cos(2πL).

Step 3:

The search for prey or the exploration phase and the
→
a vector number is selected

randomly to update the search location and perform according to
Formulas (54) and (55).

→
D =

∣∣∣∣→C .
→
Xrand −

→
X
∣∣∣∣ (54)

→
X(t + 1) =

→
Xrand −

→
A.
→
D (55)

where
→
X rand = random vector chosen from whales’ location from the current

population.
After applying WOA and SAPF, the THD = 1.49%, within the IEEE 519-2022 standard,
where the objective function is according to Formula (56).

PLoss = Kp.Error + Ki
∫ t

0 (Error)dt (56)
With : Error = Vdc re f −Vdc actual

The WOA algorithm implemented in SAPF performs optimization of gain parameters
in the PI controller to select the current to compensate for the disturbance current in the
power supply and compare the results of optimal performance parameters with other
parameters. For other algorithms, the WOA algorithm gives the best results [115,116]. The
WOA algorithm used in SAPF shows that the signal processing by Width Modulation
(PWM) is very simple and uses the Technical Width Modulation (PWM) parameter to tune
the controller in SAPF [117]. The WOA method addresses power quality problems caused
by interruptions caused by electrical equipment using electricity, such as nonlinear loads
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or renewable energy sources. The WOA method performs direct tuning of the relevant
parameters to facilitate power quality improvement.

Figure 17. Flow chart of WOA for SAPF.

Swarm Particle Swarm Optimization (PSO) for SAPF

PSO is applied in compensating current control for the shunt adaptive power filter
(SAPF). The goal is to ensure the quality of the power supply to the load [118–120].

PSO is inspired by the swarm, and PSO’s mechanism generates particles randomly
and is assigned an arbitrary parameter. The velocities of particles in space group together
to form a global convergence value [98,121–129]. The flight movements of the particles in
the respective search area of each individual and their particles in the swarm population,
the position of the ith particle in the swarm xid(t) moving with speed Vid(t), the positions
and the velocities of the particles repeated successive times, xid(t + 1) and Vid(t + 1),
respectively, are updated as Formulas (57) and (58):

Vid(t + 1) = n.Vid(t) + C1.r1[Pid(t)− xid(t)] + C2.r2[gid(t)− xid(t)] (57)

xid(t + 1) = xid(t).Vid(t + 1) (58)

where w isthe inertia constant which maintains the balance between the neighborhood and
global search regions. C1, C2 = accelerator constant. r1, r2 = two random constants are
generated independently and evenly distributed in the interval [−1, 1]. Pid(t) = coordinate-
sof the best position detected at the ith particle. gid(t) = coordinates of the best-detected
location for the entire swarm or global optimal.

The value of the inertia constant w specifies the search space operation and is per-
formed according to Formula (59).

w = wmax − (wmax − wmin)
g
G

(59)
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where g = the current number of evolutionary generations. Wmax, Wmin = maximum and
minimum weight. The initial value w = 0.9 allows the fastest global optimal value search.
W = 0.4 isoptimal for search switching from exploratory mode to exploitative mode. The
search process ends when the global optimal value is defined to be the best. PSO algorithms
are explained step-by-step in Table 14.

Table 14. PSO algorithm’s code.

Step Step-By-Step Explanation of PSO Algorithms

Step 1:
Initialization particle size, search space size, maximum number of iterations and
constant values of the PSO included w, C1, C2 and determine the random number
r1, r2, find the current fitness of each particle in the population.

Step 2:

Assign the particles a random initial position (x) and velocity (v). Set initial counter
value = 0. Initial population value, current best Fitness value of each county with its
own matching value and global best position Pid of each county at their respective
current position according to Formula (60).

Pid = current position of ith particle (60)

Step 3:
The global best fitness value is calculated according to Formula (61)

Global best fitness = min(local best fitness) (61)
The position that meets global best fitness is the position that meets global best gid.

Step 4: Update the position and velocity of the particles according to Formulas (62) and (63).

Step 5:

Increase the number of iterations of K = K + 1 and find the current fitness of
each particle.
If current fitness < local best fitness, set.

Local best fitness = current fitness, (62)
Pid = current fitness (63)

Step 6:

After calculating the local best fitness of
each particle, the current global best fitness of the each kth loop is calculated
as follows:

Current global best fitness = min(local best fitness) (64)
If current global best fitness < global best fitness, then.

Global best fitness = current global best fitness (65)
Position that meets global best fitness value, assigned for gid.

Step 7: Repeat steps 5 and 6 until k is equal to the maximum value of the loop defined in
step 1 or there is no global best fitness improved.

Step 8: End the algorithm loop or until no more loops are executed

The flow chart of the PSO algorithmis shown in Figure 18. The PSO algorithm is
applied in SAPF to adjust the gain parameter of the PI controller in order to improve
the performance of SAPF in the process of selecting suitable and accurate compensating
current to provide current compensation. The interference in the distribution system is
generated by harmonics and reactive power compensation to improve the power factor
of the power supply. The PSO method implements DC link voltage regulation to adjust
the offset current. The PSO method adjusts the gain of the PI controller and calculates
the parameters according to IEEE 519-2022 conventions. The PSO algorithm applied in
SAPF helps the system operate with little overshoot, providing the correct amount of
compensation current to compensate for the noise current, helping to minimize the sine
wave of the power supply and the compensation implementation time to the power supply
with the least amount of time compared to other algorithms.

PSO + ANN
PSO and ANN hybrid method control parameter Kp, Ki of PI controller of SAPF filter

to reduce THD value in power supply meeting IEEE 519-2022 standard. The PSO performs
the optimization of the supply voltage and DC voltage of the SAPF filter operating under
different load conditions. Optimal data set to improve the optimization prediction with the
lowest error of SAPF [130,131].
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Figure 18. Flow chart of PSO algorithm.

PI amplification parameters are optimized by PSO and ANN (Figure 19), in which the
optimal solutions are performed by the PSO algorithm after many iterations. The output of
the PSO optimization serves as the input of the ANN for accurate PWM around prediction
for increased minimal error tolerance. The result of this combined method is that the THD
value reaches 2.22 to meet the IEEE 519-2022 standard [132].
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Figure 19. Schematic diagram of PSO ANN.

PSO is used for dataset generation. PSO starts with a group of random variables, then
finds optimal solutions according to Formula (66).

Is1
Is2
Is3

=

 sin(wst) cos(wst)
sin
(
wst− 2π

3
)

cos
(
wst− 2π

3
)

sin
(
wst + 2π

3
)

cos
(
wst + 2π

3
)
[Id∗

Iq∗

]
(66)

PSO updates the twobest values after each iteration; the first best solution is Pbest, and
the second best value solution is called the global best value Gbest. The optimization process
is done as follows:

Pbest = Pbestk1, Pbestk2, . . . Pbestkd (67)

The best global particle Gbest is defined, and the velocity of the kth particle is calculated
by Formula (68).

Vk = Vk1, Vk2, . . . Vkd (68)

The current velocity is recalculated according to the newly calculated position and
velocity. Then the distance is calculated from Pbest kd to Gbest kd using Formulas (69) and (70).

xt+1
k1m = wV(t)

k1m + C1rand()
(

Pbestk1m − xt
k1m

)
+ C2rand()

(
Pbestk1m − xt

k1m

)
(69)

xt+1
k1m = xt

k1m + V(t+1)
k1m (70)

The optimal solution is calculated so that the PSO reaches the minimum error value,
and the system calculates those parameters by Formula (71).

xi =

 K11
p K11

i K12
p K12

i
. . . K1n

p K1n
i

K21
p K21

i K22
p K22

i
. . . K2n

p K2n
i

Km1
p Km1

i Km2
p Km2

i . . . Kmn
p Kmn

i

 (71)

In the control scheme of ANN, the proposed parameters are implemented by PSO.
ANN is implemented as a three-layer network, including threenodes in the input layer,
20 nodes in the hidden layer, and one node in the output layer. The optimized performance
of core functions and training time is done by the hidden layers. Selected hidden layers are
validated by cross-validation. Sigmoid functions are used as the hidden layers and show all
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effects obtained from a random mapping of standard sigmoidal functional variables in the
range [0, 1]. The weights of the neural network are updated by the Levenberg–Marquardt
back-propagation algorithm (LMBP) [133].The output of the ANN is used for a three-phase
reference current. The LMBP algorithm is a combination of Gauss–Newton and Gradient
using good responses for local or global transport. The 2D recursive neural network used
restricts overtraining of the whole process. The ANN network is performed according to
the following steps (Table 15).

Table 15. The ANN network’s code.

Step Step-By-Step Explanation of ANN Network Algorithms

Step 1: The training network generates a control pulse (z) with a time interval (t) input

Step 2: The error target of x(1), x(2), . . . , x(n) is made using Formula (72)

LMBP1
error = Z(1)

NN(target) − Z(1)
NN(out)

LMBP2
error = Z(2)

NN(target) − Z(2)
NN(out)

LMBPn
error = Z(n)

NN(target) − Z(n)
NN(out)

(72)

Step 3:
The above equation is the output of the network.

Z(1)
NN(out) = a1 +

N
∑

n=1
w1n.z(1)

NN(k)

Z(2)
NN(out) = a2 +

N
∑

n=1
w1n.z(2)

NN(k)

Z(n)
NN(out) = an +

N
∑

n=1
w1n.z(1n)

NN(k)

(73)

where a is a function node deviation of one or two and n

Step 4: The weight of each neuron is calculated using Formula (74).

z(1)
NN(k) = 1

1+exp(−h1n .z(1)−h2n .z(2))

z(2)
NN(k) = 1

1+exp(−h2n .z(2)−hnn .z(n))

z(n)
NN(k) = 1

1+exp(−hnn .z(n)−h1n .z(1))

(74)

Step 5: Weight adjustment is calculated as follows:
∆h1 = Lr.z(1).LMBP1

error

∆h2 = Lr.z(2).LMBP1
error

∆hn = Lr.z(n).LMBP1
error

(75)

Step 6: All above steps repeat until LMBP min (LMBP < 1)

The desired control signal is generated from the SAPF after the ANN is successfully
trained. ANN training performance was assessed using Root Mean Square Error (RMSE),
coefficient of determination (R2) and Mean Absolute Error (MAE). The Artificial Neural
Adaptive Linear Neural Network (ADALINE) (ANN) acts as the reference flow selector
of the PSO and ANN application system in the SAPF. Meanwhile, the PSO performs the
role of the gain parameter adjustment controller in the SAPF PI controller and controls the
DC voltage to select the correct compensating current for the system with a noisy power
source. The PSO algorithm has strengths in accurate estimation in terms of adjusting the
gain parameters of the PI controller and is superior in performance compared to traditional
methods. The application system that combines the ANN algorithm and the PSO algorithm
into the SAPF shows high efficiency in providing compensating current for the power
supply and improving the quality of the power supply.

Flower Pollination Algorithm (FPA)

FPA is used to maintain a constant DC voltage by controlling the PI ratio integrator of
the SAPF unit between voltage reference V∗dc and the actual DC voltage value Vdc in order
to reduce harmonics in the power system.FPA is used to select the best value of Kp, KI in
the PI controller system [134–138].
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FPA works based on flower pollination or the process of transferring pollen from one
species to another, including two main activities: self-pollination/biological and cross-
pollination/abiotic. The self-pollination process is the movement of pollen of the same
species by wind. The cross-pollination process is the movement of pollen by honey bees,
birds or bats. In fact, 90% is cross-pollination, and the remaining 10% is self-pollination. FPA
performs self-pollination of flowers according to the following rules (Table 16) step-by-step
to implement the FPA algorithm (Table 17).

Table 16. FPA algorithm’s rule.

Rule Explanation of the FPA Algorithm’s Rules

Rule 1:

Pollen and the best global solutions are defined by Formula (76)
xk+1

i = xk
i + L

(
Gbest − x−k

i

)
(76)

where Gbest is the most recent best pollen with oneset of pollen. L = represents theLevy
factor that is responsible for the movement of the pollen group, and this factor follows
the Levy distribution and is calculated using Formula (77)

L =
λΓ(λ) sin( πλ

2 )
π

1
s1+λ

(
S� S0 > 0

) (77)

where Γ(λ)= standard gamma value for the biggest move
(
S� S0 > 0

)
Rule 2:

The equation for local pollination or self-pollination, following Formula (78)
xk+1

i = xk
i + ε

(
xk

m − xk
i

)
(78)

where xk
m and xk

i is a random number in the range 0–1.

Rule 3: Set the probability switch value in the range p ε[0, 1], make the transition from local
to global search, and a p-value = 0.8 often gives the optimal result.

Table 17. FPA algorithm’s code.

Step Step-By-Step Explanation of FPA Algorithms

Step 1:
Set the initial parameters. The first step is setting the initial parameters consisting of
population size (N), probability switch (p), the max number of iterations (itermax) ,
decision variable size (d), and scaling factor (λ)

Step 1: Main FPA algorithm

First of all, the first decision variable is chosen randomly in the lower and upper
bounds, as shown in the flowchart below.

For i = 1:n;

x(i) = Lbi + (Ubi − Lbi). rand(d, 1);

End

Next, identify the fitness or error of the first population and do the
following flowchart.

For i = 1:n;

CF(i) = PIC
(

x(i))

End

Where CF = current fitness and PIC is a function that combines the Matlab and
Simulink models of SAPF. Normally, CF is in 50 × 1 size

Following that, find the pollen variable/ best decision variable. Pollen has aminimum
fitness value of Kp, KI

In the next step, pollen is updated according to rules 1 and 2, and the probability
p-value is randomly selected in the range 0–1. If the random number is greater than p,
then the pollen value is calculated according to Formula (79)[

vα

vβ

]
=
√

2
3

[
1 −1

2
−1
2

0
√

3
2

√
3

2

]va
vb
vc

 (79)
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Table 17. Cont.

Step Step-By-Step Explanation of FPA Algorithms

Provide by rule 1. On the other hand, if the random number is less than p, then the
pollen obeys rule 2

Evaluate the fitness value after updating the pollen value according to the
following equation.

For I = 1:n

CFUi = PIC(x.u(i));
where CFUi: updated value of fitness and x.u: updated pollen value

End

Updating the current global best fitness value from local best fitness is described in
detail by the following equation

If CFU < CF

BESTP = PIC(x()i);

CF = CFU

End

These steps are repeated until the value of the mathematical equation reaches
convergence and the iteration becomes more than the maximum number of iterations
initially set; then, the program is stopped.

Find the Kp, KI flower pollination value achieved with the minimum error value

The FPA algorithm applied in SAPF performs the function of stabilizing the DC link
value in the SAPF filter to improve the efficiency of current compensation for noisy power
sources. The issue of power quality improvement is important, and the FPA algorithm
applied in SAPF has fulfilled the role of controlling the gain values in the PI controller
to help SAPF select the correct compensating current to compensate for the current noise
caused by the PI controller as a result of harmonics. The FPA algorithm takes care of the
gain parameter adjustment to help minimize the error between the reference voltage and
the actual DC link voltage. The FPA algorithm applied in SAPF optimizes the gain values
to help the system reduce harmonic distortion with high efficiency and compensate current
compensation time to reach the system setting in a short time with 0.01 s.

Grey Wolf Optimization (GWO) Algorithm for SAPF

GWO applied to SAPF optimizes the THD value in the power supply to meet IEEE
519-2022 standards and achieve THD = 3.815%, and the configuration applied by GWO to
the SAPF is shown in detail in Figure 20.

GWO is built on action inspired by the hunting behavior of gray wolves. Gray wolves
have a herd behavior of 5–12 animals and organize the herd according to four levels,
including Alpha (aGWO), Beta (bGWO), Delta (dGWO), and Omega (xGWO). In it, the
aGWO-level gray wolf performs hunting, arranging sleep and wake times for the whole
pack and the gray wolf aGWO is the leader of the pack. The bGWO-level gray wolf is the
second tier in the pack that does the job of helping the aGWO-grade gray wolf make other
decisions in the pack. Gray wolves of rank xGWO are the lowest level in the pack and
always perform tasks under the direction of gray wolves of other ranks, namely aGWO,
bGWO and Dgwo [139–144]. The mathematical equation of GWO in the process of tracking,
encircling and attacking slugs is described by Formulas (80) and (81).

→
DGWO =

∣∣∣∣ →
CGWO·

→
Xp(it)−

→
X(it)

∣∣∣∣ (80)
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→
X(it + 1) =

∣∣∣∣ →
Xp(it)−

→
AGWO.

→
DGWO

∣∣∣∣ (81)

where it: Current iteration;
→

AGWO·
→

CGWO.: Coefficient vector;
→
Xp: Position vector of sar-

dines;
→
X: Grey wolf position vector;

→
DGWO: Distance between gray wolves and sardines

and
→

CGWO = 2· →
r1GWO;

→
AGWO = 2· →aGWO·

→
r2GWO −

→
aGWO where

→
r1GWO;

→
r2GWO: Random

parameter with a value in the range 0–1, and these two parameters are loop variables.
→

aGWO: Starting from value two, this runs to zero until the end of the loop. The distance
→
Dα,

→
→
Dβ,

→
Dδ between gray wolves and sardines is determined by Formula (82).

→
Dα =

∣∣∣∣→C1·
→
Xα −

→
X
∣∣∣∣

→
Dβ =

∣∣∣∣→C2·
→
Xβ −

→
X
∣∣∣∣

→
Dδ =

∣∣∣∣→C3·
→
Xδ −

→
X
∣∣∣∣

(82)

where
→
Dα,

→
Dβ,

→
Dδ: the distance between αGWO, βGWO, δGWO gray wolves and sardines;

→
C1,

→
C2,

→
C3: the vector coefficients of the three best positions

→
X1,

→
X2,

→
X3;

→
Xα,

→
Xβ,

→
Xδ: the first-,

second-, and third-best search areas. The three best positions of gray wolves are updated
according to Formula (83). 

→
X1 =

→
Xα −

→
A1·

→
Dα

→
X2 =

→
Xβ −

→
A2·

→
Dβ

→
X3 =

→
Xδ −

→
A3·

→
Dδ

(83)

Update gray wolf position in best location search area by Formula (84).

→
X(it+1) =

→
X1 +

→
X2 +

→
X3

3
(84)

Figure 20. Configuration of GWO in SAPF.
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The Pseudocode of GWO used for PI controller in SAPF by the algorithm below
(Algorithm 2):

Algorithm 2: Pseudocode of GWO Algorithms

1 Input (Set input data of SAPF. Set initialize parameters of GWO)
2 K = 1

3
Create an initial population of search agent (Xi with i = 1, 2, 3, . . . , N) with 3 dimension
Kp, Ki, Gα

4 Run SAPF using Kp, Ki, Gα and evaluate the fitness function value in the search area
5 Sort the Xα, Xβ, Xγ positions in the order of first-, second-, and third-best in the search area.
6 While K ≤ Kmax do
7 For i = 1 to the number of search agents, do
8 Update the position

→
X(it+1) and update the value of Kp, Ki, Gα following Equation (84)

9 Update α

10 Update
→

CGWO and
→

AGWO

11
Run SAPF using updated values of Kp, Ki, Gα and evaluate the fitness function value of
the search area.

12 Update Xα, Xβ, Xγ

13 K = K + 1
14 End for
15 End while
16 Return Xα (best solution)
17 Output: Print the optimum again Kp, Ki, Gα of the PI controller in SAPF in terms of Xα

The GWO algorithm applied in SAPF brings many benefits, such as simple calculation
because the algorithm requires few control parameters, and the algorithm is flexible and
easy to optimize globally. The gain parameters of the PI controller in SAPF are optimized
by the GWO algorithm to help the SAPF unit select the correct amount of offset current to
compensate for the power supply. The GWO algorithm applied in SAPF shows outstanding
feedback architecture and optimization of high-performance parameters. Interference in the
system is responded to quickly; the SAPF unit responds to interferences highly efficiently
and provides a timely compensating current to improve power quality. The GWO-SAPF
system helps the power system to measure the voltage and frequency of the power supply,
helping the system to control overshoot and quickly stabilize the power system, improving
the quality of electricity in operation and electrical system safety. The distribution power
network currently has the participation from many renewable energy power sources, and
these are also considered sources of harmonics generation and also an opportunity for
researchers to apply the technique to calculate GWO in SAPF into activities to improve the
quality of distribution power in the future.

3.2.4. Physics-Based Algorithms

Calculated in the period from 1966 to 2021, there are 21 methods to the advantage
of Physics based Algorithms. However, the study authors have applied two methods
to harmonics mitigation in shunt adaptive power filters, which is Gravitational Search
Algorithm (GSA). This demonstrates that there is a large scaling problem for researchers
using the remaining methods in SAPF in the future, including the direct implementation of
each individual method and the possible implementation of a single method or a hybrid
method in corporating individual methods.

Gravitational Search Algorithm (GSA) for SAPF

GSA applied to SAPF performs optimal compensating current selection to compensate
for the loss of current on the power source and minimizes the THD value of the power
supply [145,146] that meets IEEE 519-2022 standard (Figure 21), and the THD = 4.0% value
meets the THD standard less than 5%.
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Figure 21. Block diagram applying GSA to SAPF.

The research objective function applying GSA to SAPF is performed according to
Formula (85).

F = f (ITHD) (85)

The optimal tuning parameters, including Kp and Ki, and the output function of the PI
controller are calculated according to Formula (86).

Gc(S) = Kp +
Ki
S

(86)

The Kp, Ki gain value is updated in the PI controller according to Figure 4, and the
output value of the PI controller is updated according to Formula (87).

U(t) = Kp·e(t) + Ki·
∫ t

0
e(t)dt (87)

The system performed Kp, Ki tuning in the PI controller.
GSA works on the basis of Newton’s gravity. In the universe, cashews tend to attract

each other, and particles are directly proportional to the product of their mass and inversely
proportional to the square of their distance. The GSA algorithm’s step-by-step explanation
is shown in Algorithm 2 and Table 18, and the GSA flow chart is shown in Figure 22.

Table 18. GSA algorithm’s code.

Step Step-By-Step Explanation of the GSA Algorithms

Step 1:

The position of the third agent in the N agents is determined by Formula (88)

Xi =
(

X1
i , . . . , Xd

i , . . . , XN
i

)
, f or i = 1, 2, . . . ., N (88)

where Xid: the ith position in the din dimension; N: the size of the search space.

Step 2:

At time t, the i-th force is applied from the j-th, and this applied force is calculated by
Formula (89)

Fd
ij = G(t) Mpi(t).Maj(t)

Rij+ε

(
X(t)− Xd

i (t)
)

(89)

where Maj: active gravity of agent j; Mpi: passive gravity of agent I; G(t):: small
constant; Rij: euclidean distance between regions i and j.

Step 3:

The total force acting on i in the dimension d over time t is calculated by Formula (90)

Fd
i (t) =

N
∑

J
Kbest , j 6=i

randj.Fd
ij(t)

(90)

where r and i : random numbers in the range 0–1; Kbest: first K-zone with the best
fitness value.
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Table 18. Cont.

Step Step-By-Step Explanation of the GSA Algorithms

Step 4:
Acceleration relative to mass i in time t in terms of size d is calculated by Formula (91)

ad
i =

Fid(t)
Mij(t)

(91)

where Mij: mass of inertia of agent i

Step 5:

The next velocity of space is a fraction of the current velocity plus its acceleration. The
position and velocity of the agent are calculated according to Formulas (92) and (93)

(t + 1) = t + ai.dt (92)
(t + 1) = t + vd

i (t + 1) (93)

Step 6:

The weight constant (G) is first set at the start of the search, and its value is decreased
over time to achieve the goal of controlling accuracy when searching in the search
space and following Formula (94)

G(t) = Goe − at
T (94)

where T : number of loops; Goe and a: constants.

Step 7:

Gravitational mass and initial mass are updated according to Formulas (95)–(97)
Mai = Mpi = Mii = . . . 1, 2, . . . N (95)

Mi(t) =
f iti(t)−worst(t)
best(t)−worst(t)

(96)

Mi(t) =
mi(t)

∑N
j mj(t)

(97)

where f iti: fitness value of region i at time t.

Step 8:

worst(t) and best(t): the minimum and best value of the problem is calculated by
Formulas (98) and (99).

best(i) = minj ∈ {1, 2, . . . , N}. f itj(t) (98)
worst(t) = maxj ∈ {1, 2, . . . , N}. f itj(t) (99)

Figure 22. Flow chart of GSA for SAPF.
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The GSA algorithm applied in SAPF performs optimal adjustment of parameters,
including the value of SAPF filter communication impedances and the value of the DC
link capacitor in SAPF and optimally adjusts the gain values in the SAPF. The PI controller
helps SAPF improve efficiency, reduce power line shape distortion, improve reactive power
compensation efficiency and improve the power factor value of the power supply.

3.2.5. Human Behavior Relation Algorithms

Calculated in the period from 1966 to 2021, there are 14 methods to the advantage
of Human behavior relation Algorithms. However, the study authors have applied two
methods to harmonics mitigation in shunt adaptive power filters, which are Teaching-
Learning-Based Optimization (TLBO). Optimizing a problem requires multiple methods.
Comparing the results of the methods in terms of execution time and optimal efficiency
of each method as well as performing a combination of multiple optimization methods
together to solve an optimization problem, is a study in the future.

Teaching-Learning-Based Optimization (TLBO)

TLBO is applied to SAPF control current to compensate for the current loss from the
power supply and price THD = 1.06% to meet the IEEE 519-2022 standard with a THD
value requirement less than 5% (Figure 23).

Figure 23. Block diagram of TLBO into SAPF.

TLBO performs an optimal search through learners trying to get experience as teachers
and learners getting optimal results when gaining experience as teachers. Convergence
speed is the most important point of all optimization algorithms. The TLBO algorithm
follows the teaching and learning capacity of teachers and learners [147,148]. The TLBO
algorithm adopts two operating mechanisms including through teachers and interactive
activities with other learners. The flowchart of TLBO for the SAPF algorithm is shown
in Figure 24.

TLBO performs optimization of the inductance and resistance values of the SAPF
collector. The objective function j for optimization is the integrated time square error (ITSE)
according to Formula (100):

j = ITSE =
∫ t

0

(
e2

r ·t
)
·dt (100)

where error: the fitness function.
The TLBO algorithm applied in SAPF optimizes the reference current generated from

the ideal voltage source by sensing the source voltage; the current on the load is the DC
link voltage source [149,150]. The TLBO algorithm optimally controls the pulses in SAPF’s
bridge rectifier, helping SAPF improve its performance in providing current compensation
for noisy power supplies.
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Figure 24. Flow chart of TLBO for SAPF.

4. Discussion and Future Research Problems

Modern meta-heuristic algorithms have many achievements in optimization applica-
tions for simple optimization models. However, the limitations of meta-heuristic algorithms
are still too much and need some feasibility studies to improve the performance of meta-
heuristic optimization algorithms. Meta-heuristic algorithms are hardly proven by specific
mathematical models. In recent decades, there have been many studies proving meta-
heuristic optimization algorithms by mathematical models, but not really close. Because of
this, this is considered an open research direction for future researchers.

The convergence of algorithms that do not have a specific mathematical model is
still too dynamic for meta-heuristic optimization algorithms. Therefore, mathematical
models proving their convergence are considered an interesting research direction for
future researchers. Building a new mathematical model or approaching a new mathematical
model for meta-heuristic optimization algorithms is necessary, and they are considered an
interesting research direction in the future. The individual variables in the meta-heuristic
optimization algorithms interact with each other to produce better optimal results than
using a single meta-heuristic optimization algorithm when solving optimization problems,
and this is considered an optimization problem for researchers to establish hybrid methods
to solve optimization problems with higher optimal performance.
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In the future, the method of finding the parameters of the meta-heuristic optimization
algorithms precisely so that the optimal results when solving the problem of needing to be
optimized of the meta-heuristic optimization algorithms achieve the most optimal efficiency
as well as a promising future study for researchers. The one-objective optimization model
is not suitable for the two-objective optimization model. Therefore, it is not possible to
prove a specific metric to compare the optimal performance between the optimal results of
each meta-heuristic optimization algorithm. Therefore, the researchers suggest using an
index of absolute objective value and numerical evaluation of the function as an alternative
in comparing the efficient performance of meta-heuristic optimization algorithms, and
there is no literature review to support this, and this is also an open matter for researchers
and doctoral students to conduct a literature review in the future.

An optimization problem always has many options to be considered to solve, and
modern meta-heuristic optimization methods are always prioritized to be carefully con-
sidered for application. In particular, the biological evolution of humans and creatures
that form intelligence is increasingly high. This proves that, in the future, there will be
more smart modifications to smart solutions to provide smarter solutions, more efficient in
optimizing simple to complex problems.

The growing trend uses simple modern meta-heuristic optimization algorithms to
solve complex optimization problems. However, sophisticated modern meta-heuristic
optimization algorithms are developed to solve big data problems in the short and long
term in the future, responding to the industrial 4.0 environment with the big data trend.

The variables, parameters, and components of each modern meta-heuristic optimiza-
tion algorithm have been clearly understood and demonstrated. However, the connection
between them in the optimal performance of problem-solving that needs to be optimized
to achieve the highest efficiency is still not well understood or known as a mystery for
researchers. There is a specific explanation in the future. A mathematical model that proves
the convergence of the PSO algorithm has been demonstrated. However, there is no specific
mathematical model that proves the convergence of meta-heuristic optimization algorithms.
Research on this mathematical model is an open problem in the future.

Solving a specific problem requires determining the correct and correct meta-heuristic
optimization algorithm for that problem to achieve the best optimization goal. The process
of selecting a meta-heuristic optimization algorithm to solve a problem that needs to be
optimized is considered the most important and urgent publicity for solving that problem.
Currently, there is no review document that specifically guides the method of choosing
the corresponding meta-heuristic optimal algorithm for solving the problem to be solved
for nonlinear optimization for large problems. In the industrial 4.0 era, using Internet of
Things (IOT) devices to connect and collect information between activities in the company’s
business processes together and save it as big data. Optimization problems associated
with big data are often complex problems. Therefore, there is no modern meta-heuristic
optimization algorithm that is sure enough to solve them with the most optimal results.
Some suggested future research directions are as follows:

1. Implement improvements to some modern meta-heuristic optimization algorithms
to improve functionality and improve optimal performance. In particular, PSO has a
fast convergence speed but is limited in the search area, and there is a risk of virtual
convergence; it is necessary to have a method to solve the search area which ensures
the provision of a complete and accurate hammock number to respond to the best
converged PSO optimization algorithm. For example, hybrid optimization methods
include GA-PSO and DE-PSO;

2. Development of hybrid optimization algorithms between modern meta-heuristic optimiza-
tion algorithms to solve each other’s weaknesses and enhance each other’s strengths;

3. Further changes and improvements are needed to the local and global models of some
meta-heuristic optimization algorithms as the trade-off changes the complexity level
between them;
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4. The operation of fine-tuning the parameters of meta-heuristic optimization algorithms
in solving optimization problems to be solved thoroughly in order to improve the
optimal efficiency;

5. Some meta-heuristic optimization algorithms need to develop more parameters to
improve the accuracy of convergence results;

6. Evaluating the performance of meta-heuristic optimization algorithms by statistical
models needs to be developed;

7. Solving big data-related content problems with meta-heuristic optimization algo-
rithms needs to use transformation learning to enhance its optimal performance;

8. A population parameter is the cause of delay in optimal processing time in optimiza-
tion problem solving of modern meta-heuristic optimization algorithms;

9. The parameters of meta-heuristic optimization algorithms, including exploration,
mining, searchability, convergence, and local convergence, need to be proven by
specific theoretical models and mathematical models;

10. The strong growth of IOT devices used in the industrial 4.0 environment creates big
data problems with their complexity and imbalance. Many numbers of decision-
making variables are formed. The self-expanding meta-heuristic optimization algo-
rithms feature self-adjusting and evolving to respond to solving big data problems;

11. There is a need for a specific way to identify subsets or classes of problems that meet
the criteria for selecting the optimal meta-heuristic algorithm that meets the best
convergence performance.

5. Conclusions

This study performs a literature review and provides an overview of applying modern
meta-heuristic optimization algorithms to the optimization of the Kp, Ki parameterof PI
controller to perform parameter selection PWM activates the bridge rectifier of the SAPF
unit, which fulfills the objective of selecting the correct and suitable compensating current
to compensate for the lost current on the power supply caused by the harmonics generated
by the non-linear load and improve power quality. An attempt by researchers to apply
meta-heuristic optimization algorithms to SAPF was studied in this study to perform an
overview including mathematical models, algorithm flowcharts and their applications
to SAPF.

The process of formation and development over the years of meta-heuristic optimiza-
tion algorithms is evaluated in the literature review over the corresponding time. The block
diagram of SAPF overview architecture and harmonic extraction methods in the power
supply are also considered to perform the review in this study. This study conducts a
specific survey to apply meta-heuristic optimization algorithms to SAPF with the role of
optimizing the control parameter Kp, Ki of the PI controller in SAPF to realize the objective
of selecting the optimal compensating current and compensate for the current loss on the
power supply meeting the target of a THD value of less than 5% in the power supply as
required by IEEE 519-2022. However, the difficult problem when applying meta-heuristic
optimization algorithms to SAPF is to effectively meet the reduction of THD value on
power sources that meet IEEE 519-2022 standards and some other problems of optimization
algorithms. Meta-heuristic chemistry is also preferred to generalize in this study.

Provide a complete overview of the application of meta-heuristic optimization al-
gorithms to SAPF. Suggestions suggest advanced solutions for the weaknesses of the
meta-heuristic optimization algorithms that are still encountered. This proves that meta-
heuristic optimization algorithms need to be developed in the future and is a promising
research direction for researchers to improve the solution when applying optimization algo-
rithms to problem-solving and optimizing the control parameter Kp, Ki of the PI controller
to improve the optimal efficiency of the model by applying the meta-heuristic optimization
algorithm to SAPF. The goal of this study is to provide a springboard for researchers and
graduate students to have an overview of the application of meta-heuristic optimization
algorithms to SAPF and is also seen as a typical platform for future research (Table 19).
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Table 19. Summary application of meta-heuristic in SAPF.

Ref. Method Results and Benefits of Applying
Meta-Heuristic Optimization to SAPF Limitation or Future Research

[67–70] DE
Improve turning of the proportional-integral
control loop of SAPF. The THD value reaches
3.42% to meet the IEEE 519-2022 standard.

The meta-heuristic hybrid method is different
from DE; the aim is to reduce the THD value to
meet the IEEE 519-2022 standard.

[71–77] GA

Controller turning to obtain optimum gain values
to switch SAPF and THD in the supply current
present in the hardware is 1.4%, more than the
simulation results of 1.24%.

Control technique for the SAPF system with
time-varying parametric uncertainties.

[78–82] ABC

To solve the nonlinear equation of selective
harmonic elimination patterns considering
unequal direct current sources, satisfying
fundamental components, and eliminating
low-order harmonics. The THD of the hardware is
11.78%, more than the simulation results of 10.46%.

Propose a hybrid method that combines
meta-heuristics and ABC to reduce THD and meet
the IEEE 519-2022 standard.

[83–87] ACO

Optimize the gain values of the PI controller used in
SAPF. The setting time (Ts) is 28 ms, and the THD of
the supply current is 3.85%, 2.92%, and 3.49% for
phase a, phase b, and phase c, respectively.

Consider the proposed systems to be an efficient
solution to the growing demand forpower at the
present and in the future.

[88–91] ALO

To properly tune the circuit in order to reduce the
harmonics in the source current and load voltages,
the THD of the supply current with RL load is
3.73%, and the RLC load is 4.03%. The THD of the
supply voltage with RL load is 4.2%, and the RLC
load is 4.44%.

The technique works for different load variations
in the system.

[92–94] BA

Proportional resonant controller-based pulse
width modulation. Current control for three-phase,
three-leg SAPF with the optimized DC-link
controller. The THD value reaches 0.7% to meet
the IEEE 519-2022 standard.

BA is very promising for solving other
multi-objective optimization problems.

[95–97] BFO

To optimize the parameters of the PI controller
through an online self-adaptive self-turning
algorithm. The THD value reaches 1.9% to meet
the IEEE 519-2022 standard.

BFO-based SAPF proves to be a significant
approach to reducing the ripple current harmonics.

[98–106] FA

Optimization problems with the objective of
minimizing the THD and solving it using
predator-prey-based firefly optimization. The THD
is 1.9092%.

The proposed method can be extended to
designing hybrid active power filters in
future works.

[107,108] ASNS

The optimization of conventional control scheme
used in SAPF. THD of supply current is 1.21%,
1.14%, and 1.11% for balanced, unbalanced, and
distorted loads, respectively. Compensation time
(Ts) is 0.055 (s), 0.003 (s), and 0.001 (s) for balanced,
unbalanced, and distorted loads, respectively.

Design for all different types of HAPF.

[109–112] TS
The instantaneous power theory with Fourier and
the optimal design of the current predictive
controller. The THD of the supply current is 0.96%.

The proposed novel active filter can be applied to
higher-frequency systems.

[113–119] WOA

To control the DC−
link voltage to a constant value, a PI controller is
used by the gains of the controller

(
Kp, Ki ). The

THD of the supply current is 3.07%

A tuned PI controller can be used in hardware for
real-time implementation. The proposed modern
industrial optimization should be tested under
various range constraints by using new techniques
to handle the constraints.
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Table 19. Cont.

Ref. Method Results and Benefits of Applying
Meta-Heuristic Optimization to SAPF Limitation or Future Research

[120–133] PSO

The selection of a proper reference compensation
current extraction scheme plays the most crucial role
in the performance of SAPF and includes
conventional instantaneous active and reactive power
(p-q),modified p-q, and instantaneous active and
reactive current component (id-iq) schemes.THD of
supply current is 3.45%, 2.97%, and 3.07%, based on
phase a, phase b, and phase c, respectively.

A hybrid method that combines other
meta-heuristic methods into the search area of PSO
to help limit the fast convergence error of PSO,
such as DE-PSO, GA-PSO, and Levy-flight-PSO.

[133–138] FPA

To maintain the DC link voltage constant, the
proportional-integral (PI) controller being
employed on the DC side of SAPF is used to
minimize the error between voltage and actual
value. The THD of the supply current is 3.13%,
and Ts is 0.001 s.

Application of some hybrid optimization
algorithm for the determination of optimal
controller parameters.

[139–144] GWO

To reduce the maximum overshoot and
undershoot of the DC-link voltage variation and
minimize power ripples with current distortion in
IEEE 519-2022. Improve the predictive direct
power control of three-phase SAPF. The THD of
the supply current is 3.8% and 57%, based on
simulation and experimental data, respectively.

Propose a hybrid method that combines
meta-heuristics and GWO to enhance
work efficiency.

[145,146] GSA

The harmonic content reduction in the source
current is carried out with optimal turning of the
PI controller. The THD of the supply current is
1.76%.

Propose a hybrid method that combines
meta-heuristics and GSA with the aim of
maximizing work efficiency.

[147–150] TLBD

The reference current signals are generated by
sensing the source voltage load current and DC
bus voltage; with these signals, the gate driving
pulses are generated by a band current controller.
THD of the supply current is 1.06%.

Propose a hybrid method that combines
meta-heuristics and TLBO to
maximize productivity.
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104. Buła, D.; Grabowski, D.; Maciążek, M. A Review on Optimization of Active Power Filter Placement and Sizing Methods. Energies
2022, 15, 1175. [CrossRef]

https://doi.org/10.1109/iceeot.2016.7755081
https://doi.org/10.1109/icaml48257.2019.00046
https://doi.org/10.1007/s42835-020-00437-2
https://doi.org/10.1145/3330089.3330110
https://doi.org/10.1016/j.rser.2021.110898
https://doi.org/10.1080/09720529.2019.1668145
https://doi.org/10.1109/iceeot.2016.7754791
https://doi.org/10.1002/2050-7038.12335
https://doi.org/10.1109/IECON48115.2021.9589134
https://doi.org/10.1016/j.asej.2021.04.028
https://doi.org/10.23919/CJEE.2020.000022
https://doi.org/10.1007/s12652-021-03086-z
https://doi.org/10.1002/2050-7038.12369
https://doi.org/10.3390/electronics12041058
https://doi.org/10.1080/15567036.2021.1943068
https://doi.org/10.1109/indcon.2011.6139533
https://doi.org/10.1016/j.ijepes.2014.03.051
https://doi.org/10.1155/2012/897127
https://doi.org/10.4314/njt.v38i2.16
https://doi.org/10.1016/j.swevo.2018.06.008
https://doi.org/10.1016/j.compeleceng.2021.107606
https://doi.org/10.1109/peoco.2013.6564523
https://doi.org/10.1109/ICTS52701.2021.9608829
https://doi.org/10.3390/en15031175


Energies 2023, 16, 3998 54 of 55

105. Nagarajan, A.; Sivachandran, P.; Suganyadevi, M.V.; Muthukumar, P. A study of UPQC: Emerging mitigation techniques for the
impact of recent power quality issues. Circuit World 2020, 47, 11–21. [CrossRef]

106. Saifullah, K. THD and Compensation Time Analysis of Three-Phase Shunt Active Power Filter Using Adaptive Spider Net Search
Algorithm (ASNS) for Aircraft System. Int. J. Com. Dig. Sys. 2016, 5, 1–18. [CrossRef]

107. Chau, M.T. A new design algorithm for hybrid active power filter. Int. J. Electr. Comput. Eng. (IJECE) 2019, 9, 4507–4515.
[CrossRef]

108. Ravi, T.; Sathish, K. Analysis, monitoring, and mitigation of power quality disturbances in a distributed generation system, Front.
Energy Res. 2022, 10, 989474. [CrossRef]

109. Saifullah, K. Application of Adaptive Tabu Search Algorithm in Hybrid Power Filter and Shunt Active Power Filters: Application
of ATS Algorithm in HPF and APF. Sustain. Power Resour. Through Energy Optim. Eng. 2016, 1, 1–4. [CrossRef]

110. Khalid, S. Performance evaluation of Adaptive Tabu search and Genetic Algorithm optimized shunt active power filter using
neural network control for aircraft power utility of 400 Hz. J. Electr. Syst. Inf. Technol. 2017, 5, 723–734. [CrossRef]

111. Tiyarachakun, S.; Areerak, K.; Areerak, K. Instantaneous Power Theory with Fourier and Optimal Predictive Controller Design
for Shunt Active Power Filter. Model. Simul. Eng. 2014, 2014, 381760 . [CrossRef]

112. Saifullah, K. A novel Algorithm Adaptive Autarchoglossans Lizard Foraging (AALF) in a shunt active power filter connected to
MPPT-based photovoltaic array. E Prime-Adv. Electr. Eng. Electron. Energy 2023, 3, 100100. [CrossRef]

113. Yusuf, S.D.; Loko, A.Z.; Abdullahi, J.; Abdulhamid, A.A. Performance Analysis of Three-Phase Shunt Active Power Filter for
Harmonic Mitigation. Asian J. Res. Rev. Phys. 2022, 6, 7–24. [CrossRef]

114. Darvish Falehi, A. Optimal harmonic mitigation strategy based on multiobjective whale optimization algorithm for asymmetrical
half-cascaded multilevel inverter. Electr. Eng. 2020, 102, 1639–1650. [CrossRef]

115. Abhishek, S.; Dushmanta, K.D. A Whale Optimization Algorithm Based Shunt Active Power Filter for Power Quality Improve-
ment. Int. J. Electr. Energy 2018, 6, 7–12. [CrossRef]

116. Son, T.J.; Yun, L.K.; Haur, Y.K. Shunt Active Power Filter Design with Whale Optimization Algorithm for Three Phase Power
System. In Proceedings of the 2020 2nd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE),
Kuala Lumpur, Malaysia, 28 November 2020; Volume 1, pp. 1–10. [CrossRef]

117. Alasali, F.; Nusair, K.; Foudeh, H.; Holderbaum, W.; Vinayagam, A.; Aziz, A. Modern Optimal Controllers for Hybrid Active
Power Filter to Minimize Harmonic Distortion. Electronics 2022, 11, 1453. [CrossRef]

118. Shrivastava, N.; Baliyan, A.; Alam, S.J. Hybrid Series Active Power Filter for Harmonic Compensation Using PI Controller Tuned
with WOA Technique. Russ. Electr. Eng. 2022, 93, 129–140. [CrossRef]

119. Thakur, N.; Awasthi, Y.K.; Hooda, M.; Siddiqui, A.S. Parametric Analysis of Adaptive Whale Optimization Technique for Power
Quality Enhancement in Restructured Electricity Market. In Proceedings of the 2019 2nd International Conference on Power
Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India, 18–19 October 2019; pp. 1–7. [CrossRef]

120. Aguilar-Mejía, O.; Minor-Popocatl, H.; Tapia-Olvera, R. Comparison and Ranking of Metaheuristic Techniques for Optimization
of PI Controllers in a Machine Drive System. Appl. Sci. 2020, 10, 6592. [CrossRef]

121. Gali, V.; Gupta, N.; Gupta, R.A. Improved dynamic performance of shunt active power filter using particle swarm optimization. In
Proceedings of the 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing
(INCOS), Srivilliputtur, India, 23–25 March 2017; pp. 1–7. [CrossRef]

122. Nasyrov, R.R.; Aljendy, R.I.; Diab, A.A.Z. Adaptive PI controller of active power filter for compensation of harmonics and
voltage fluctuation based on particle swarm optimization (PSO). In Proceedings of the 2018 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (EIConRus), Moscow/St. Petersburg, Russia, 29 January–1 February 2018;
pp. 1–6. [CrossRef]

123. Cao, W.; Liu, K.; Wu, M.; Xu, S.; Zhao, J. An Improved Current Control Strategy Based on Particle Swarm Optimization (PSO)
and Steady State Error Correction for SAPF. IEEE Trans. Ind. Appl. 2019, 55, 4268–4274. [CrossRef]

124. Awasthi, A.; Chandra, D.; Rajasekar, S.; Singh, A.K.; Karuppanan, P.; Raj, A.-D.-V. An Improved PSO approach for optimal
tuning of PI controller for shunt active power filter using FPGA with hardware co-simulation. In Proceedings of the 2016 IEEE
International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016;
pp. 1–6. [CrossRef]

125. Gowtham, N.; Shankar, S. PI tuning of Shunt Active Filter using GA and PSO algorithm. In Proceedings of the 2016 2nd
International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB),
Chennai, India, 27–28 February 2016; pp. 1–7. [CrossRef]

126. Diab, M.; El-Habrouk, M.; Abdelhamid, T.H.; Deghedie, S. Switched Capacitor Active Power Filter Optimization Using Nature-
Inspired Techniques. In Proceedings of the 2019 21st International Middle East Power Systems Conference (MEPCON), Cairo,
Egypt, 17–19 December 2019; pp. 1–6. [CrossRef]

127. He, N.; Xu, D.; Huang, L. The Application of Particle Swarm Optimization to Passive and Hybrid Active Power Filter Design.
IEEE Trans. Ind. Electron. 2009, 56, 2841–2851. [CrossRef]

128. Patnaik, S.S.; Panda, A.K. Real-time performance analysis and comparison of various control schemes for particle swarm
optimization-based shunt active power filters. Int. J. Electr. Power Energy Syst. 2013, 52, 185–197. [CrossRef]

129. Ravinder, K. Fuzzy particle swarm optimization control algorithm implementation in photovoltaic integrated shunt active power
filter for power quality improvement using hardware-in-the-loop. Sustain. Energy Technol. Assess. 2022, 50, 101820. [CrossRef]

https://doi.org/10.1108/CW-09-2019-0125
https://doi.org/10.12785/IJCDS/050607
https://doi.org/10.11591/ijece.v9i6
https://doi.org/10.3389/fenrg.2022.989474
https://doi.org/10.4018/978-1-4666-9755-3.ch012
https://doi.org/10.1016/j.jesit.2017.04.003
https://doi.org/10.1155/2014/381760
https://doi.org/10.1016/j.prime.2022.100100
https://doi.org/10.9734/ajr2p/2022/v6i3118
https://doi.org/10.1007/s00202-020-00983-y
https://doi.org/10.18178/ijoee.6.1.7-12
https://doi.org/10.1109/icecie50279.2020.9309556
https://doi.org/10.3390/electronics11091453
https://doi.org/10.3103/S1068371222020110
https://doi.org/10.1109/peeic47157.2019.8976539
https://doi.org/10.3390/app10186592
https://doi.org/10.1109/itcosp.2017.8303154
https://doi.org/10.1109/eiconrus.2018.8317194
https://doi.org/10.1109/TIA.2019.2908609
https://doi.org/10.1109/pedes.2016.7914499
https://doi.org/10.1109/aeeicb.2016.7538274
https://doi.org/10.1109/mepcon47431.2019.9008148
https://doi.org/10.1109/tie.2009.2020739
https://doi.org/10.1016/j.ijepes.2013.03.014
https://doi.org/10.1016/j.seta.2021.101820


Energies 2023, 16, 3998 55 of 55

130. Torabian, E.; Hosseinian, B.; Vahidi, B. A new optimal approach for improvement of active power filter using FPSO for enhancing
power quality. Electr. Power Energy Syst. 2015, 69, 188–199. [CrossRef]

131. Sujith, M.; Padma, S. Implementation of PSOANN Optimized PI Control Algorithm for Shunt Active Filter. Comput. Model. Eng.
Sci. CMES 2020, 122, 863–888. [CrossRef]

132. Djerboub, K.; Allaoui, T.; Champenois, G.; Denai, M.; Habib, C. Particle Swarm Optimization Trained Artificial Neural Network to
Control Shunt Active Power Filter Based on Multilevel Flying Capacitor Inverter. Eur. J. Electr. Eng. 2020, 22, 199–207. [CrossRef]

133. Abdedjebbar, T.; Zellouma Mohamed, T.; Benchouia Abdelbasset, K. Adaptive linear neuron control of three-phase shunt active
powerfilter with an anti-windup PI controller optimized by particleswarm optimization. Comput. Electr. Eng. 2020, 96, 107471.
[CrossRef]

134. Ismael, K.S.; Kamal, S. Power quality improvement of distribution systems asymmetry caused by power disturbances based on
particle swarm optimization-artificial neural network. Indones. J. Electr. Eng. Comput. Sci. 2022, 25, 666–679. [CrossRef]

135. Patel, R.; Samal, P.; Panda, A.K.; Guerrero, J.M. Implementation of Bio-Inspired Flower Pollination Algorithm in Distribution
System Harmonic Mitigation Scheme. In Proceedings of the 2021 1st International Conference on Power Electronics and Energy
(ICPEE), Bhubaneswar, India, 2–3 January 2021; pp. 1–7. [CrossRef]

136. Patel, R.; Samal, P. Performance analysis of bio inspired flower pollination algorithm based 3-phase shunt active power filter for
dynamic condition in distribution system. Int. J. Syst. Assur. Eng. Manag. 2023, 2, 1–15. [CrossRef]

137. Prince, S.K.; Panda, K.P.; Patowary, M.; Panda, G. FPA tuned Extended Kalman Filter for Power Quality Enhancement in
PV integrated Shunt Active Power Filter. In Proceedings of the 2019 International Conference on Computing, Power and
Communication Technologies (GUCON), New Delhi, India, 27–28 September 2019; pp. 257–262.

138. Riad, N.; Anis, W.; Elkassas, A.; Hassan, A.E.-W. Three-Phase Multilevel Inverter Using Selective Harmonic Elimination with
Marine Predator Algorithm. Electronics 2021, 10, 374. [CrossRef]

139. Ranjan, S.; Jaiswal, S.; Latif, A.; Das, D.C.; Sinha, N.; Hussain, S.M.S.; Ustun, T.S. Isolated and Interconnected Multi-Area Hybrid
Power Systems: A Review on Control Strategies. Energies 2021, 14, 8276. [CrossRef]

140. Reddy, A.K.V.K.; Narayana, K.V.L. Optimal total harmonic distortion minimization in multilevel inverter using improved whale
optimization algorithm. Int. J. Emerg. Electr. Power Syst. 2020, 21, 1–25. [CrossRef]

141. Golla, M.; Chandrasekaran, K.; Simon, S.P. PV integrated universal active power filter for power quality enhancement and
effective power management. Energy Sustain. Dev. 2021, 61, 104–117. [CrossRef]

142. Lakshmi Kanthan Bharathi, S.; Selvaperumal, S. MGWO-PI controller for enhanced power flow compensation using unified
power quality conditioner in wind turbine squirrel cage induction generator. Microprocess. Microsyst. 2020, 76, 103080. [CrossRef]

143. Rao, B.C.; Sahu, P.; Jhapte, R. Comparative analysis of SRF based Shunt Active Filter using Grey Wolf and Eagle Perching
Optimization. In Proceedings of the 2022 Second International Conference on Advances in Electrical, Computing, Communication
and Sustainable Technologies (ICAECT), Bhilai, India, 21–22 April 2022; pp. 1–7. [CrossRef]

144. Mishra, A.K.; Das, S.R.; Ray, P.K.; Mallick, R.K.; Mohanty, A.; Mishra, D.K. PSO-GWO Optimized Fractional Order PID based
Hybrid Shunt Active Power Filter for Power Quality Improvements. IEEE Access 2020, 8, 74497–74512. [CrossRef]

145. Almani, A.A.; Han, X.; Umer, F.; ul Hassan, R.; Nawaz, A.; Shah, A.A.; Mustafa, E. Optimal Solution for Frequency and Voltage
Control of an Islanded Microgrid Using Square Root Gray Wolf Optimization. Electronics 2022, 11, 3644. [CrossRef]

146. Alam, S.J.; Arya, S.R. Observer-based control for UPQC-S with optimized gains of PI controller. Int. Trans. Electr. Energy Syst.
2020, 30, e47233. [CrossRef]

147. Manimegalai, M.; Sebasthirani, K. An Optimal Model for Power Quality Improvement in Smart Grid using Gravitational
Search-based Proportional Integral Controller and Node Microcontroller Unit. Electr. Power Compon. Syst. 2022, 50, 989–1005.
[CrossRef]

148. Pattnayak, S.K.; Choudhury, S.; Nayak, N.; Bagarty, D.P.; Biswabandhya, M. Maximum Power Tracking & Harmonic Reduction
on grid PV System Using Chaotic Gravitational Search Algorithm Based MPPT Controller. In Proceedings of the 2020 Interna-
tional Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE), Keonjhar, India,
29–31 July 2020; pp. 1–6. [CrossRef]

149. Mishra, S.; Ray, P.K. Power quality improvement with shunt active filter under various mains voltage using Teaching Learning
Based optimization. In Proceedings of the 2015 2nd International Conference on Recent Advances in Engineering & Computational
Sciences (RAECS), Chandigarh, India, 21–22 December 2015; pp. 1–6. [CrossRef]

150. Ali, S.; Bhargava, A.; Saxena, A.; Kumar, P. A Hybrid Marine Predator Sine Cosine Algorithm for Parameter Selection of Hybrid
Active Power Filter. Mathematics 2023, 11, 598. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ijepes.2014.12.078
https://doi.org/10.32604/cmes.2020.08908
https://doi.org/10.18280/ejee.220301
https://doi.org/10.1016/j.compeleceng.2021.107471
https://doi.org/10.11591/ijeecs.v25.i2.pp666-679
https://doi.org/10.1109/icpee50452.2021.9358509
https://doi.org/10.1007/s13198-023-01869-5
https://doi.org/10.3390/electronics10040374
https://doi.org/10.3390/en14248276
https://doi.org/10.1515/ijeeps-2020-0008
https://doi.org/10.1016/j.esd.2021.01.005
https://doi.org/10.1016/j.micpro.2020.103080
https://doi.org/10.1109/ICAECT54875.2022.9807876
https://doi.org/10.1109/ACCESS.2020.2988611
https://doi.org/10.3390/electronics11223644
https://doi.org/10.1002/2050-7038.12406
https://doi.org/10.1080/15325008.2022.2143940
https://doi.org/10.1109/cispsse49931.2020.9212268
https://doi.org/10.1109/raecs.2015.7453308
https://doi.org/10.3390/math11030598

	Introduction 
	Random Models and Optimization Models 
	Harmonic Mitigation Using Meta-Heuristic Algorithms and Artificial Intelligence 
	Analyze and Detect Harmonic Components 
	Harmonic Mitigation Using Meta-Heuristic Algorithms 
	Evolution-Based Algorithms 
	Swarm Intelligence-Based Algorithms 
	Spider Net Search (ASNS) for SAPF 
	Physics-Based Algorithms 
	Human Behavior Relation Algorithms 


	Discussion and Future Research Problems 
	Conclusions 
	References

