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Abstract: The need for energy has significantly increased in the world in recent years. Various research
works were presented to develop Renewable Energy Sources (RESs) as green energy Distributed
Generations (DGs) to satisfy this demand. In addition, alleviating environmental problems caused by
utilizing conventional power plants is diminished by these renewable sources. The optimal location
and size of the DG-RESs significantly affect the performance of Radial Distribution Systems (RDSs)
through the fine bus voltage profile, senior power quality, low power losses, and high efficiency. This
paper investigates the use of PV (photovoltaic) and (Wind Turbine) WT systems as a DG source in
RDSs. This investigation is presented via the optimal location and size of the PV and WT systems,
which are the most used DG sources. This optimization problem aims to maximize system efficiency
by minimizing power losses and improving both voltage profile and power quality using White
Shark Optimization (WSO). This algorithm emulates the attitude of great white sharks when foraging
using their senses of hearing and smell. It confirms the balance between exploration and exploitation
to discover optimization that is considered as the main advantage of this approach in attaining the
global minimum. To assess the suggested approach, three common RDSs are utilized, namely, IEEE
33, 69, and 85 node systems. The results prove that the applied WSO approach can find the best
location and size of the RESs to reduce power loss, ameliorate the voltage profile, and outlast other
recent strategies. Adding more units provides a high percentage of reducing losses by at least 93.52%
in case of WTs, rather than 52.267% in the case of PVs. Additionally, the annual saving increased
to USD 74,371.97, USD 82,127.257, and USD 86,731.16 with PV penetration, while it reached USD
104,872.96, USD 116,136.57, and USD 155,184.893 with WT penetration for the 33, 69, and 85 nodes,
respectively. In addition, a considerable enhancement in the voltage profiles with the growth of PV
and WT units was confirmed. The ability of the suggested WSO for feasible implementation was
validated and inspected by preserving the restrictions and working constraints.

Keywords: renewable energy sources; white shark optimizer; distributed generation; radial
distribution systems

1. Introduction

Owing to being the cheapest and easiest to construct, radial distributed systems (RDSs)
are frequently employed in sparsely populated areas. In these systems, a single power
source provides electricity to many customers; yet, they have several drawbacks [1]. One
of these disadvantages is that a power outage, short circuit, or damaged power line will cut
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off energy to the entire line and that power cannot be restored until it is rectified. Another
drawback is the increasing power losses that would reduce the efficiency, which has a
detrimental effect on the economy [2].

Using compensators is one of the primary remedies for these disadvantages [1–4].
Many compensators are used in RDSs to ameliorate voltage profile, improve power quality,
reduce power loss, and increase the reserve of generation [3,4]. The principle of operation
for these compensators is to support the reactive power of the system. Inserting some
distributed generations (DGs), especially those that are based on renewable energy sources
(RESs), is another important approach. DGs are distributed, flexible, and more adaptable
technologies that are positioned near the load. They reduce the power transmitted through
the transmission lines, which results in a reduction in the amount of power lost in the
transmission lines and an increase in efficiency. One of the primary benefits of adopt-
ing DG-RESs is to provide customers with reliable, cost-effective, and environmentally
friendly power [5].

RESs’ integration into the electrical grid has emerged as a critical remedy for the
increasing load demand as well as environmental concerns. Many RESs were incorporated
into the electrical grid, including Solar PV, wind, and fuel cells [6]. Using RESs as DG bene-
fits the functioning of the electricity system in three ways: environmentally, economically,
and technically [7,8]. Additionally, the quality of the distribution power systems may be
improved by installing RESs in the appropriate place with a sufficient capacity, which can
boost the voltage profile and reduce network power losses [8–11].

Studies have shown that integrating DGs in improper locations and with good sizes
might cause a reverse flow of power toward the distribution substation. The system may
experience overloads as a result, increasing system losses [12]. Several studies in this area
have recently concentrated on proposing an optimal location and size of DG implantation
methods. These studies focused on proposing an approach for selecting the optimal size
of the DG in distribution systems, for example, novel power stability indexes [13], lowest
voltage buses [14], most sensitive buses [15], and solving multi-objective functions [16].
Most of these works used some optimization techniques to solve the optimal location and
size issues for DGs. Genetic Algorithm [17], Particle Swarm Optimization [18,19], Modified
Bacterial Foraging Optimization [20], Bat Approach [21], Invasive Weed Optimization [22],
Water Cycle Algorithm [23], Ant Colony Algorithm [24,25], Modified Teaching–Learning-
based Optimization Algorithm [26], Hybrid Big Bang–Big Crunch Approach [27], Gray
Wolf Optimization [28], Cuckoo Search Algorithm [29–31], Heuristic Methods [32], Chaotic
Symbiotic Organisms Search Algorithm [33], and Marine Predators Optimizer [34] were
introduced to deal with the DG placement process. Using three typical radial systems,
IEEE 33 [35–51], 69 [52–61], and 85 [62–65] systems, these studies attempted to identify the
optimum position and size of DGs in RDSs taking voltage support and minimal power
losses into consideration. These studies were successful in determining the ideal position
and size, while taking into consideration the voltage level and power losses. The option
still exists to address this optimization problem using more recent optimization methods
than those described in [35–65]. As a result, the current work presents a novel optimization
approach for figuring out the best placement and size of DGs in RDSs, while taking into
account reducing net losses and enhancing voltage profiles under all requirements and
limitations for the optimization assignment. This new optimization approach is called
White Shark Optimizer (WSO) [66,67].

WSO is one of the most recent nature-inspired algorithms that emulates the successful
behavior of white sharks when foraging in the depths of the ocean to survive while
depending on their senses of smell and hearing [68]. WSO has distinct advantages for
optimization tasks, such as flexibility in dealing with various types of problems, simplicity,
robustness, speed, and accuracy to find solutions [69]. It confirms its supremacy in various
fields, which are addressed in [70–73]. The optimization of RESs via WSO has not been
believed yet. This motivates us to promote WSO to handle this task. It is applied to detect
the optimum allocations and capacity of DG in RDSs. The results of the WSO are compared
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with distinct algorithms to discover its notability in resolving the process of optimum
allocations and the capacity of DGs, thus lowering the real power losses and attenuating
the voltage profiles.

The contributions of this article are as follows:

• The most advisable values of the weight factors of the developed objective function
are discovered.

• WSO as a successful optimization tool to handle the issue of the optimum position
and size of PVs and WTs in RDSs is adopted to reduce power losses and reinforce the
system voltage profile.

• The economic charge is examined to find the power losses and net savings after placing
the DGs in the standard IEEE 33, 69, and 85 point systems. Moreover, the voltage
stability index (VSI) is inspected for all RDSs.

• The sensibleness of the method for real implementation has been validated and inves-
tigated by calculation of the losses and voltage profile before and after installing the
DG strategy with achieving the restrictions and working constraints.

This article is arranged as follows: the suggested WSO is discussed in Section 2; then,
the developed objective function is addressed in Section 3; the outcomes and discussion are
developed in Section 4, and finally, Section 5 presents the conclusion.

2. White Shark Optimizer

This section explains the proposed WSO mathematical models for foraging and prey-
tracking. Although the senior white shark can mark prey in the depths of the ocean, there
is no understanding of the position of the food resource in a specific investigation.

2.1. Inspiration

The WSO algorithm simulates the dynamic attitude of white sharks as they possess
many intrinsic features. White sharks are among the most adaptable predators as they are
distinguished hunters with powerful muscles, amazing eyesight, well-contrasted vision
with a strong sense of smell, giant jaws, and sharp, pointed teeth. The shark ambushes its
prey and tries to dash its prey using sudden and powerful deadly blows. Great white sharks
adopt collective behavior when hunting prey using their distinct swimming methods and
senses, such as smelling the odor of their prey and good hearing.

2.2. Track Victim

White sharks, similar to any living creature, roam the ocean looking for prey and
change their positions according to the location of their prey using all their senses to track
and locate them. Figure 1 shows some of their combined and integrated senses.
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First, great white sharks possess an amazing sense of hearing that they utilize to
explore large spaces when looking for prey using their strong sense of smell to scout the
whole zone and every potential location of the victim [66–70].



Energies 2023, 16, 3983 4 of 27

2.3. Exploration

Great white sharks use their unfamiliar sense of hearing to search for prey in large
areas, as they hear through the two sidelines along their bodies. These duo lines may
distinguish any variations in the water pressure as evidence of the prey’s movements.
The water pressure changes caused by the turbulence created by prey attract the sharks’
attention to swim towards it. Sharks possess organs that detect the tiny electromagnetic
fields generated by the locomotion of prey taking into account the speed and drift of the
waves during their turbulent movements, so they can accurately detect the site of the prey
in addition to its size. Then, the shark moves towards the prey in an undulating movement
that can be represented by the following arithmetical formulation [66]:

v = x · f (1)

where v is the wave motion speed, x is the wavelength that indicates the distance covered
in an undulating motion that a white shark travels to complete a whole revolution, and
f symbolizes the frequency of the wave activity that equals the inverse of the number of
revolutions per second.

2.4. Exploitation

Great white sharks use their strong sense of smell to explore possible places in their
field to find prey, and when the white shark approaches its victim, its sense of smell
functions in an exceptional manner. When the shark approaches, its sense of smell devel-
ops exponentially to precisely determine the location of its prey; the following constant
acceleration motion equation may be employed [66]:

x = xi + vi∆t +
1
2

a(∆t)2 (2)

where x is the updated white shark location, xi is the initial location, vi is the premier
velocity, ∆t is the time interval between the new and initial white shark locations, and a is a
fixed acceleration factor.

Most prey leave behind their scent after leaving a location; therefore, great white sharks
cannot find their prey when this smell is present. They must randomly search nearby and
distant areas using their distinct senses, such as sight, hearing, and smell [70–73].

2.5. Algorithm Steps

White sharks must search the ocean depths on a large scale to locate their prey using
three behaviors:

(1) Their activity toward their prey depends on the frequency of the waves that occur
due to the turbulent motion caused by the prey, taking advantage of the senses of hearing
and smell.

(2) Randomly seeking prey in the depths of the ocean, where great white sharks’ move
toward the location of prey while remaining close to it.

(3) The attitude of the white shark in determining the nearest prey.
The great white shark employs a school-fish attitude and moves toward the closest

ideal prey.

2.6. Initialization of WSO

The approach starts by assuming a random set of initial solutions at the beginning
of the used optimization process as a population-based approach. The population size of
n white sharks where each white shark location indicates an elected solution is expressed
by Equation (3) [66]:

ω =


ω1

1 ω1
2 · · · · · · ω1

d
ω2

1 ω2
2 · · · · · · ω2

d
...

...
...

...
...

ωn
1 ωn

2 · · · · · · ωn
d

 (3)
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where ω represents the site of white sharks in the inspection area, d defines a variable
number for the process, and ωi

d assigns the site of the ith white shark in the dth dimension.
The premier population is determined by the following equation [72]:

ωi
j = lj + r× (uj − lj) (4)

where ωi
j is the ith white shark in jth, uj and lj symbolize the superior and minimal limits of

the inspection area in the jth size, and r is a random value in [0–1].
The benefit of every elected solution for every novel white shark position was evalu-

ated based on the fitness charge function. If the location was better than the current one,
the current location was renewed, unless the white shark stayed in its location.

2.7. Movement Speed toward Prey

The survival instinct of white sharks makes them spend most of their time tracking
and hunting prey using all methods of hunting based on their unusual senses, such as
hearing, sight, and smell. The white shark locates its prey based on the frequency of the
waves caused by the prey while moving; the white shark exhibits an undulating movement
towards the prey represented by the following formula [72]:

vi
k+1 = µ

[
vi

k + p1

(
ωgbestk

−ωi
k

)
× c1 + p2

(
ω

vi
k

best −ωi
k

)
× c2

]
(5)

where i = 1, 2, . . . .., n, is the index of white sharks for n populations, vi
k+1 is the ith white

shark’s new speed vector in the (k + 1)th step, vi
k is the ith white shark’s actual speed vector

in the kth step, ωgbestk
is the comprehensive best location vector observed at a great distance

by any white shark in the kth generation, ωi
k is the ith white shark’s actual location vector in

the kth step, ω
vi

k
best is the ith best discovered location vector marked for the herd, and vi is the

ith index vector of the white sharks with a superior location, as in Equation (6), where c1
and c2 are regularly random values with the domain [0–1]; p1 and p2 are the white shark’s

values that control ωgbestk
and ω

vi
k

best, as shown in Equations (7) and (8), µ is the shrinkage
agent used to analyze the white shark’s convergence attitude, as in Equation (9).

v = [n× rand(1, n)] + 1 (6)

where rand(1, n) is a regularly random vector with the domain [0–1].

p1 = pmax + (pmax − pmin)× e−(4k/K)2
(7)

p2 = pmin + (pmax − pmin)× e−(4k/K)2
(8)

where k and K are the instant and supreme generations, respectively, pmin and pmax are
the initial and dependent velocities for the perfect movements of the white sharks. The
amounts of pmin and pmax are set as 0.5 and 1.5, respectively [72].

µ =
2∣∣∣2− τ −
√

τ2 − 4τ
∣∣∣ (9)

where τ is the acceleration value that is set to be 4.125 [72].

2.8. Movement toward Optimum Kill

Great white sharks spend a great amount of their time locating their prey, and when
the motion of the waves is caused by their prey or if they smell it, they head towards it;
however, in some cases, the prey vacates its site, leaving behinds its smell, and then the
white shark moves randomly, according to the following formula [72,73]:

ωi
k+1 =

{
ωi

k · ¬ ⊕ωo + u · a + l · b; rand < mv
ωi

k + vi
k/ f ; rand ≥ mv

(10)
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where ωi
k+1 is the new vector location of the ith white shark in the (k + 1)th generation, ¬ is

a negation operator, and a and b are presented in Equations (11) and (12) as one-dimensional
binary vectors. l and u are the minimum and maximum limits of the search era. ωo is
defined as a logical vector, as presented by Equation (13). ⊕ is a bitwise XOR operation.
The frequency of the wave movement f is defined by Equation (14). rand is a random value
with the domain [0–1]; mv is the motion force that increases with iterations and is defined
by Equation (15) [72].

a = sgn(ωi
k − u) > 0 (11)

b = sgn(ωi
k − l) > 0 (12)

ωo = ⊕(a, b) (13)

f = fmin +
fmax − fmin
fmax + fmin

(14)

where fmin and fmax are the lower and superior frequencies of the wave movement, and
are taken as 0.07 and 0.75, respectively, after testing [72,73].

mv =
1(

a0 + e(K/2−k)/a1
) (15)

where a0 and a1 are positive values that represent the exploration and exploitation of nature [72].

2.9. Motion toward the Great White Shark

A great white shark’s location close to its prey is evaluated by the following equation [66]:

ω′
i
k+1 = ωgbestk

+ r1
→
Dωsgn(r2 − 0.5) r3 < Ss (16)

where ω′ ik+1 is the new ith white shark’s location regarding the prey, sgn(r2 − 0.5) indicates
either 1 or −1 for the search direction, the parameters r1, r2, and r3 are random values

that fill in [0, 1],
→
Dω is the distance between white shark and its prey and is presented in

Equation (17), and Ss indicates the strength of the senses of sight and smell, which are
realized as displayed in Equation (18) [72,73].

→
Dω =

∣∣∣rand×
(

ωgbestk
−ωi

k

)∣∣∣ (17)

where ωi
k is the white shark’s current location regarding ωgbestk

.

Ss =
∣∣∣1− e(−a2×k/K)

∣∣∣ (18)

where a2 is a positive value that represents the exploration and exploitation factors and is
taken as 0.0005 [72].

2.10. Fish-School Attitude

To imitate the nature of the school of white sharks, the first two optimal resolutions
were maintained, and then the location of the other white sharks was updated regarding
the best locations, according to the following formula [66]:

ωi
k+1 =

ωi
k + ω′ ik+1

2× rand
(19)

Equation (19) shows that white sharks position themselves in accordance with the best
site, very close to the prey. The great white sharks reach their location and thus the best
position of the great white sharks is somewhere within the investigation zone, very close to
the optimum prey. The flowchart of the WSO is shown in Figure 2.
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3. Objective Charge Function

The developed objective charge function was exercised to reduce the power losses and
to improve the voltage profiles and VSIs. The DG sites and their capacities can be found
optimally by resolving the subsequent objective charge function [10]:

Ft = w1 · o f1 + w2 · o f2 + w3 · o f3 (20)
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where o f1 displays the minimization in real losses, and it can be realized as shown in the
subsequent equation:

o f1 =

L
∑

i=1
(PLineloss(i))a f terDG

L
∑

i=1
(PLineloss(i))be f oreDG

(21)

o f2 offers the refinement of the voltage profiles and it may be extracted using the
following equation:

o f2 =

N
∑

i=1

∣∣∣Vi −Vi,re f

∣∣∣
a f terDG

N
∑

i=1

∣∣∣Vi −Vi,re f

∣∣∣
be f oreDG

(22)

o f3 presents the amelioration of the VSI. Then, it can be addressed as:

o f3 =
1

VSI(k)a f terDG
(23)

where the VSI is organized as Equation (2):

VSI(k) = |Vi|4 − 4(Pk · Xik −Qk · Rik)
2 − 4(Pk · Rik + Qk · Xik) · |Vi|2 (24)

w1, w2, and w3 are weighting factors. The sum of the weights specific to all sharks can
add up to one [10], as can be observed in the following equation:

w1 + w2 + w3 = 1 (25)

To provide the most suitable values of three weighted parameters, various settings for
these parameters were obtained, where w1 should be greater than w2 and w3, as discussed
in [42]. The most appropriate values of these parameters were discovered by installing a
single DG in a 33-node RDS, and then the optimization process via WSO was performed.
The results for various weighting parameters and the corresponding values of the cost
function are presented in Table 1. The best cost function was found when the weighting
parameters were 0.5, 0.1, and 0.4. This result is proven, compared with the setting in [42].
Therefore, these values were used for all the systems in this study.

Table 1. Effect of various values of the weighting parameters in Equation (20).

w1 w2 w3 Cost Function

0.5 0.1 0.4 0.317

0.5 0.2 0.3 0.362

0.5 0.3 0.2 0.407

0.5 0.4 0.1 0.452

0.5 0.25 0.25 0.385

0.6 0.1 0.3 0.365

0.6 0.2 0.2 0.41

0.6 0.3 0.1 0.455

0.6 0.25 0.15 0.432

0.6 0.15 0.25 0.387

0.7 0.1 0.2 0.412

0.7 0.2 0.1 0.457

0.7 0.15 0.15 0.435

0.8 0.1 0.1 0.46
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3.1. Equality and Inequality Restrictions

Equation (20) is optimized while achieving the following equality and inequality
restrictions.

3.1.1. Equality Restriction

Power-conservation restrictions
The algebraic expression for the incoming and outgoing power flows over the RDSs

could be equalized [10]; thus:

PSwing +
NDG

∑
i=1

PDG(i) =
L

∑
i=1

PLineloss(i) +
N

∑
q=1

Pd(q) (26)

QSwing +
NDG

∑
i=1

QDG(i) =
L

∑
i=1

QLineloss(i) +
N

∑
q=1

Qd(q) (27)

3.1.2. Inequality Restrictions

Voltage restriction
The rate of voltage at every node must be restricted by the following Equation:

Vmin ≤ |Vi| ≤ Vmax (28)

where Vmin, Vmax are considered as 0.90 and 1.05 p.u, respectively, as specified in [3,4].
DG limit restrictions
To prohibit an inverse power flow, the installed size of DGs in the grid were restricted

so as not to exceed the power provided by the substation [10].

NDG

∑
i=1

PDG(i) ≤
3
4
×
[

L

∑
i=1

PLineloss(i) +
N

∑
q=1

Pd(q)

]
(29)

NDG

∑
i=1

QDG(i) ≤
3
4
×
[

L

∑
i=1

QLineloss(i) +
N

∑
q=1

Qd(q)

]
(30)

Pmin
DG ≤ PDG(i) ≤ Pmax

DG (31)

Qmin
DG ≤ QDG(i) ≤ Qmax

DG (32)

Line Capacity Restriction
The power of any line should be less than its rating amount, as shown by Equations (1)

and (2)
SLi ≤ SLi(rated) (33)

4. Outcomes and Discussion

The superiority of the developed WSO was investigated for distinct RDSs. The out-
comes of 33, 69, and 85 bus RDSs are discussed in detail, below. The developed approach
was executed via MATLAB.

4.1. The 33-Node Test System

The first studied case through WSO was a 33-node system. Figure 3 displays the
schema of the system that contains prime feeders and three sides. This system possesses a
net demand of 3720 kW and 2300 kVar at a voltage scale of 12.66 kV. The superiority of the
developed WSO to detect the best allocations and capacity of PVs and WTs was proved,
compared to those found in [35–51]. Table 1 explains the influences of establishing various
figures of PVs and WTs on system attitudes.



Energies 2023, 16, 3983 10 of 27

Energies 2023, 16, x FOR PEER REVIEW 11 of 27 
 

 

4. Outcomes and Discussion 

The superiority of the developed WSO was investigated for distinct RDSs. The out-

comes of 33, 69, and 85 bus RDSs are discussed in detail, below. The developed approach 

was executed via MATLAB. 

4.1. The 33-Node Test System 

The first studied case through WSO was a 33-node system. Figure 3 displays the 

schema of the system that contains prime feeders and three sides. This system possesses 

a net demand of 3720 kW and 2300 kVar at a voltage scale of 12.66 kV. The superiority of 

the developed WSO to detect the best allocations and capacity of PVs and WTs was 

proved, compared to those found in [35–51]. Table 1 explains the influences of establishing 

various figures of PVs and WTs on system attitudes. 

 
Figure 3. IEEE 33-node distribution grid. 

In Figure 4, the voltage profile is promoted after using the developed WSO to obtain 

the optimum placements and capacities of PVs and WTs. It was clear that the power loss, 

percentage reduction, yearly savings, charge of losses, and VSIs improved by increasing 

the number of DGs, as presented in Table 2. If the energy loss charge of USD 0.06 was 

selected in the investigation, the cost of losses and annual energy savings were USD 

54,027.212 and USD 56,863.87 via the suggested WSO by the penetration of 2600 kW for 

bus 6, while they were USD 34,238.95 and USD 76,652.129 for 2550 kVA with a power 

factor of 0.825. Additionally, the results are better for the WT rather than PV penetration 

due to the attainability of reactive power generation, as presented in Table 2. 

Table 2. Outcomes for the 33-node grid. 

Items Without DG 
DG (kVA/p.f) 

1 PV 2 PVs 3 PVs 

Net losses (kW) 210.98 102.7915 82.6 69.4808 

Loss reduction (%) - 51.28 60.85 67.068 

Lower voltage/bus 0.9134/18 0.9525/18 0.9732/33 0.9726/33 

Net DG/p.f/bus - 2600/1/6 
850/1/13  

1191.1/1/30 

790/1/13  

1070/1/24  

Figure 3. IEEE 33-node distribution grid.

In Figure 4, the voltage profile is promoted after using the developed WSO to obtain
the optimum placements and capacities of PVs and WTs. It was clear that the power loss,
percentage reduction, yearly savings, charge of losses, and VSIs improved by increasing
the number of DGs, as presented in Table 2. If the energy loss charge of USD 0.06 was
selected in the investigation, the cost of losses and annual energy savings were USD
54,027.212 and USD 56,863.87 via the suggested WSO by the penetration of 2600 kW for
bus 6, while they were USD 34,238.95 and USD 76,652.129 for 2550 kVA with a power factor
of 0.825. Additionally, the results are better for the WT rather than PV penetration due to
the attainability of reactive power generation, as presented in Table 2.
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Table 2. Outcomes for the 33-node grid.

Items Without DG
DG (kVA/p.f)

1 PV 2 PVs 3 PVs

Net losses (kW) 210.98 102.7915 82.6 69.4808

Loss reduction (%) - 51.28 60.85 67.068

Lower voltage/bus 0.9134/18 0.9525/18 0.9732/33 0.9726/33

Net DG/p.f/bus - 2600/1/6 850/1/13
1191.1/1/30

790/1/13
1070/1/24
1080/1/30

VSI 25.887 28.8655 29.4794 29.6384

Charge of losses (USD) 110,891.08 54,027.212 43,414.56 36,519.1085

Saving (USD/year) - 56,863.87 67,476.52 74,371.9715

1 WT 2 WTs 3 WTs

Net losses (kW) 210.98 65.1426 28.4 11.45

Loss reduction (%) - 69.124 86.54 94.57

Lower voltage/bus 0.9134 0.9581/18 0.9803/25 0.985/33

Net DG/p.f/bus - 2550/0.825/6 945/0.9/13
1550/0.73/30

800/0.88/13
1100/0.9/24

1200/0.73/30

VSI 25.887 29.2610 30.8679 30.4412

Charge of losses (USD) 110,891.08 34,238.95 14,927.04 6018.12

Saving (USD/year) - 76,652.129 95,964.04 104,872.96

4.1.1. Outcomes for Establishing 1 Unit in the 33-Node Grid

For a single DG establishment, the optimum siting and capacity were obtained using
WSO, as presented in Table 3. Node 6 is the best site for PV establishment with a capacity
of 2600 kW, while a capacity of 2550 kVA with a p.f of 0.825 was required for the WT
establishment. The power losses were diminished to 102.7915 kW with a percentage
reduction of 51.28%, and the lower voltage exceeded from 0.9134 to 0.9525 p.u using PV.
Additionally, much better results were obtained using a WT rather than PV. The cost of
losses and annual savings for both the PV and WT are presented in Table 2. The developed
WSO can discover less power losses than other algorithms [35–43] from 0.2615 to 39.5485 kW.
Likewise, the corresponding values represented the enhancement level from 0.2537% to
27.78% for the PV-type system. Furthermore, these values ranged from 2.6874 to 16.2874 kW
and the corresponding values represent the enhancement level from 3.96% to 20% for the
WT-type system, as compared with [41,42,44]. Additionally, the effect of DGs establishing
voltage profiles is introduced in Figure 4.

Table 3. Outcomes for establishing 1 DG in the 33-node grid.

DG Type Mechanism Year
DG Installation Power Loss (kW)

Lower Voltage
Size (Kva/p.f) Bus Value Percentage

PV

Without - - 210.98 - 0.9134

GA [35] 2017 2580/1 6 105.481 48.21 NR

EVPSO [36] 2013 763/1 11 140.19 33.55 0.9284

PSOPC [36] 2013 1000/1 15 136.75 35.18 0.9318
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Table 3. Cont.

DG Type Mechanism Year
DG Installation Power Loss (kW)

Lower Voltage
Size (Kva/p.f) Bus Value Percentage

PV

AEPSO [36] 2013 1200/1 14 131.43 37.7 0.9347

ADPSO [36] 2013 1210/1 13 129.53 38.60 0.9348

DAPSO [36] 2013 1212/1 8 127.17 39.7 0.9349

Analytical [37] 2006 2490/1 6 111.24 47.27 NR

GA [38] 2010 2380/1 6 132.64 37.13 NR

[39] 2013 1000/1 18 142.34 33.29 0.9311

ALOA [40] 2017 2450/1 6 103.053 51.15 0.9503

ALOA [41] 2018 1542.67/1 30 125.161 40.67 0.9272

ROA [42] 2021 2590.2/1 6 111.027 47.37 0.7886

HHO [42] 2021 2590.2/1 6 111.03 47.3717 NR

HGSO [42] 2021 2616.8/1 6 111.038 47.3703 NR

ECOA [43] 2021 1000/1 30 127.28 39.67 0.9285

Proposed - 2600/1 6 102.7915 51.28 0.9525

WT

ALOA [41] 2018 2238.8/0.87 6 71.75 65.99 0.9528

GWO [44] 2019 1000/0.8011 30 81.43 61.404 NR

ROA [42] 2021 2558.4/0.82 6 67.83 67.85 NR

Proposed - 2550/0.825 6 65.1426 69.123 0.9581

4.1.2. Outcomes for Establishing Two DGs in the 33-Node System

The validation of the suggested WSO for searching the optimum site and capacity
of DGs with two units of penetration was inspected. Nodes 13 and 30 were the best sites
for the DG composition. The power losses were reduced to 82.6 kW with a percentage of
60.85%, and the lower voltage increased to 0.9732 p.u for the PV with capacities of 850
and 1191.1 kW, respectively. Additionally, inserting two WTs with capacities of 945 and
1550 kVA with p.f values of 0.9 and 0.73, respectively, reduced losses to 28.4 kW with a
percentage of 86.54%, and the lower bus voltage increased to 0.9803 p.u. The yearly savings
were USD 67,476.52 and USD 95,964.04 for the PV and WT, respectively, as recorded in
Table 2. Moreover, the suggested approach provided the best outcomes in terms of power
loss, reduced percentage of losses, and lower voltages, as compared to [35,36,38,42–44], as
shown in Table 4. Furthermore, the effect of the composition of two PVs and WTs on the
voltage profiles is presented in Figure 4.

Table 4. Outcomes for establishing 2 units in the 33-node grid.

DG Type Mechanism Year
DG Installation Power Loss (kW)

Lower Voltage
Size (kVA)/p.f Bus Value Percentage

- Without - - 210.98 - 0.9134

PV
GA [35] 2017

837.5/1 13
82.7 60.8 0.96846

1212.2/1 29

PSOPC [36] 2013
916/1 8

111.45 47.17 0.9418
767/1 12
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Table 4. Cont.

DG Type Mechanism Year
DG Installation Power Loss (kW)

Lower Voltage
Size (kVA)/p.f Bus Value Percentage

PV

EVPSO [36] 2013
540/1 14

108.05 48.78 0.9457
569/1 31

AEPSO [36] 2013
600/1 14

106.38 49.57 0.9447
600/1 29

ADPSO [36] 2013
550/1 15

106.24 49.64 0.9467
621/1 30

DAPSO [36] 2013
1227/1 13

95.93 54.53 0.9651
738/1 32

GA [38] 2010
1718/1 6

96.580 54.22 NR
840/1 8

ROA [42] 2021
851.5/1 13

87.165 58.68 0.96
1157.6/1 30

HHO [42] 2021
855.93/1 13

87.1682 58.684 NR
1150.6/1 30

HGSO [42] 2021
1128.8/1 11

89.999 57.342 NR
806.199/1 30

ECOA [43] 2021
893/1 10

86.55 58.977 0.9629
1000/1 30

Proposed
850/1 13

82.6 60.85 0.9732
1191.1/1 30

WT

ALOA [41] 2018
1039.5/0.862 13

30.9251 85.34 NR
1463/0.837 30

ROA [42] 2021
858.4/0.91 13

28.50 86.49 NR
1089.09/0.7 30

GWO [44] 2019
861/0.8742 10

32.17 84.75 NR
1000/0.8091 30

Proposed
945/0.9 13

28.4 86.539 0.9803
1550/0.73 30

4.1.3. Outcomes for Establishing Three DGs in 33-Node System

The efficacy of the suggested WSO for detecting the optimum siting and capacity
of DGs for three locations of PVs and WTs was investigated. Nodes 13, 24, and 30 were
the best locations for the DG compositions. With capacities of 790, 1070, and 1080 kW
for the PV-type system, the power losses were reduced to 69.4808 kW with a percentage
of 67.068%. With capacities of 800, 1100, and 1200 kVA for the WT-type system with p.f
values of 0.88, 0.9, and 0.73, respectively, the power losses were reduced to 11.45 kW with a
percentage of 94.57%, which was much better than the PV installation. The yearly savings
were USD 104,872.96 for the WT, which was better than USD 74,371.9715 for the PV system,
as presented in Table 2. The lower voltage increased to 0.985 p.u with the WT, while
it was 0.9726 p.u with the PV system. Moreover, the suggested approach produced the
best outcome in terms of reducing power loss, improving the percentage of losses, and
enhancing lower voltages, as recorded in Table 5, compared to [42–51]. Furthermore, the
effect of DG installations on the voltage profiles is presented in Figure 4.
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Table 5. Outcomes for establishing three DGs in 33-node grid.

DG Type Mechanism Year
DG Installation Power Loss (kW)

Minimum Voltage
Size (kVA)/p.f Bus Value Percentage

- Without - - 210.98 - 0.9134

PV

QOSIMBO_Q [45] 2016

801.6/1 13

72.8 65.49 NR1090.6/1 24

1054.2/1 30

QOCSOS [46] 2020

801.7/1 13

72.7869 65.5 NR1091.3/1 24

1053.7/1 30

CSCA [47] 2020

871/1 13

71.94 65.9 NR1091.5/1 24

954.1/1 30

HHO [48] 2020

775.5/1 14

72.79 65.5 NR1080.8/1 24

1066.7/1 30

SFSA [49] 2018

802/1 13

72.785 65.5 NR1092/1 24

1053.7/1 30

2014

880.8/1 12

74.101 64.88 NR1059.2/1 24

1059.2 /1 30

I-GWO [51] 2022

758/1 14

70.64 66.51 NR1073/1 24

1099/1 30

ROA [42] 2021

790.3/1 14

72.786 65.5 0.96870/1 24

1119.51/1 30

HGSO [42] 2021

919.2/1 12

83.981 60.19 NR1237.1/1 27

504.8/1 24

ECOA [43] 2021

737.6/1 14

74.6 64.64 0.9666651.8/1 25

1070.5/1 30

COA [43] 2021

709.6/1 14

76 63.977 0.9637595.4/1 25

997.2/1 30

Proposed

790/1 13

69.4808 67.068 0.97261070/1 24

1080/1 30
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Table 5. Cont.

DG Type Mechanism Year
DG Installation Power Loss (kW)

Minimum Voltage
Size (kVA)/p.f Bus Value Percentage

WT

ROA [42] 2021

793.8/0.9 13

11.74 94.43 NR1069.9/0.9 24

1029.8/0.71 30

GWO [44] 2019

1000/0.8122 13

13.68 93.5 NR789/0.8726 24

997/0.8659 30

Proposed

800/0.88 13

11.45 94.57 0.9851100/0.9 24

1200/0.73 30

4.2. Simulation Results for the IEEE-69 Bus RDS

The second studied case via the WSO approach was a 69-bus system. Figure 5 displays
the system graph that consists of major feeders and seven branches. This system has a
net load of 3800 kW and 2690 kVAr at 12.6 kV. It is clear that the power loss reduced
while the percentage reduction, yearly saving, voltage, and VSI improved with increasing
numbers of DGs, as presented in Table 6. Additionally, the systems with WT penetrations
presented superior results than with the PV penetration, due to the use of both active and
reactive powers.
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Table 6. Outcomes for the 69-node grid.

Items Without DG
With DG (kVA/p.f)

1 PV 2 PVs 3 PVs

Net losses (kW) 224.94 81.5033 70.4556 68.6857

Loss reduction (%) - 63.766 68.678 69.465

Lower voltage/bus 0.9102 0.9685/27 0.9828/65 0.9836/65

Net DG/p.f/bus - 1890/1/61 525/1/17
1775/1/61

480/1/11
380/1/17

1740/1/61

VSI 61.2379 64.5914 65.8988 66.1004

Cost of losses (USD) 118,228.46 42,838.1345 37,031.463 36,101.203

Saving (USD/year) - 75,390.325 81,196.996 82,127.257

1 WT 2 WTs 3 WTs

Net losses (kW) 224.94 23.1551 6.98 3.98

Loss reduction (%) - 89.7 96.89 98.23

Lower voltage/bus 0.9102 0.9718/27 0.9851/65 0.9878/65

Net DG/p.f/bus - 2250/0.82/61 680/0.83/17
1795/0.814/61

528/0.81/11
527/0.83/17

1800/0.814/61

VSI 61.2379 65.3928 66.6257 66.9666

Cost of losses (USD) 118,228.46 12,170.32 3668.688 2091.888

Saving (USD/year) - 106,058.14 114,559.77 116,136.57

4.2.1. Outcomes for Establishing One DG in the 69-Node Grid

For a single DG composition, the optimal allocation and capacity were obtained via
the WSO. Table 6 summarizes the developed outcomes for installing a single DG. Node
61 was the best site for the DG composition. With a capacity of 1890 kW for the PV-type
system, a reduction in the real power losses to 81.5033 kW occurred, which indicated
a 63.766% reduction. The yearly saving was USD 75,390.325 and the minimum voltage
increased to 0.9685 p.u. For the WT-type system with a capacity of 2250 kVA with a p.f
of 0.82, the power loss decreased to 23.1551 kW with educed reduction to 89.7%, a net
saving of USD 106,058.14, and a voltage lowered to 0.9718 p.u, as reported in Table 6.
Additionally, the developed WSO presented better outcomes in terms of power losses
and the percentage minimizations of power losses, as recorded in Table 7, compared
to [35,42–44,52–58]. Furthermore, the effect of the DG composition on the voltage profiles
is presented in Figure 6.

Table 7. Outcomes for establishing one DG in the 69-node grid.

DG Type Mechanism Year
DG Installation Power Loss (kW)

Size (kVA/p.f) Bus Amount Percentage

- Without - - - 224.94 -

PV

ABC [52] 2011 1900/1 61 83.31 62.96

GA [35] 2017 1872/1 61 83.18 63.02

Analytical [37] 2006 1810/1 61 81.54 63.64

Analytical [53] 2009 1807.8/1 61 92 59.1

Grid search [53] 2009 1876.1/1 61 83 63.1
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Table 7. Cont.

DG Type Mechanism Year
DG Installation Power Loss (kW)

Size (kVA/p.f) Bus Amount Percentage

PV

GA [54] 2009 1794/1 61 83.4252 62.91

PSO [55] 2010 1337.8/1 61 83.206 63.01

CSA [56] 2012 2000/1 61 83.8 62.74

SGA [56] 2012 2300/1 61 89.4 60.3

PSO [56] 2012 2000/1 61 83.8 62.75

MTLBO [26] 2013 1819.691/1 61 83.323 62.95

BB-BC [57] 2015 1872.5/1 61 83.2246 63

ALOA [58] 2018 1800/1 61 81.776 63.645

ROA [42] 2021 1872.7/1 61 83.19 63.01

HHO [42] 2021 1901/1 61 83.24 62.99

HGSO [42] 2021 1890/1 61 83.25 62.99

ECOA [43] 2021 1000/1 61 111.56 50.40

Proposed 1890/1 61 81.5033 63.766

WT

ALOA [41] 2018 2227.9/0.82 61 23.1622 89.7

ROA [42] 2021 1828.47/0.814 61 23.1681 89.7

GWO [44] 2019 1000/0.8 61 58.8 73.86

Proposed 2250/0.82 61 23.1551 89.706
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4.2.2. Outcomes for Establishing Two DGs in the 69-Node Grid

For two DG compositions, the optimal site and capacity were achieved by the WSO, as
shown in Table 8. Nodes 17 and 61 were the best sites for PV compositions with capacities
of 525 and 1775 kW, respectively. The power loss reduced to 70.4556 kW, with a percentage
minimization of 68.678%. For WTs with capacities of 680 and 1795 kVA and p.f values of
0.83 and 0.814, respectively, the power loss reduced to 6.98 kW with percentage losses of
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96.89%. The yearly savings increased to USD 81,196.996 and USD 114,559.77 and the lower
voltage was updated to 0.9828 p.u and 0.9851 for PVs and WTs, respectively, as displayed
in Table 6. Additionally, the developed WSO discovered less power losses than the others
presented in Table 8, increasing from 0.2944 to 13.7774 kW. Likewise, the corresponding
values enhanced from 0.4161% to 16.356% for the PV-type system. Moreover, these values
ranged from 0.21 to 16.25 kW, and the corresponding values enhanced from 2.92% to 69.8%
for the WT-type system. Furthermore, the effect of DG penetration on the voltage profiles
is presented in Figure 6.

Table 8. Outcomes for establishing two DGs in the 69-node grid.

DG Type Mechanism
DG Installation Power Loss (kW)

Size (kVA/p.f) Bus Value Percentage

- Without - - 224.94 -

PV

GA [38] 2010
1777/1 61

71.7912 68.08
555/1 11

GA [54] 2009
6/1 1

84.233 62.55
1794/1 62

CSA [56] 2012
600/1 22

76.4 66
2100/1 61

SGA [56] 2012
1000/1 17

82.9 63.1
2400/1 61

PSO [56] 2012
700/1 14

78.8 64.97
2100/1 62

MTLBO [26] 2013
519.705/1 17

71.776 68.09
1732.004/1 61

ALOA [58] 2018
538.777/1 17

70.750 68.547
1700/1 61

ROA [42] 2021
531.48/1 17

71.674 68.13
1781.5/1 61

HHO [42] 2021
814/1 12

72.52 67.76
1735.3/1 61

HGSO [42] 2021
502/1 17

72.9 67.59
1998/1 61

ECOA [43] 2021
1000/1 61

83.34 62.95
863/1 62

Proposed
525/1 17

70.4556 68.678
1775/1 61

WT

ALOA [58] 2018
726.637/0.83 17

20.9342 90.69
1500/0.8 61

ROA [42] 2021
432.3717/0.7 17

7.19 96.80
1750.06/0.8195 61

GWO [44] 2019
1000/0.8 61

23.28 89.65
820/0.8328 62

Proposed
680/0.83 17

6.98 96.89
1795/0.814 61
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4.2.3. Outcomes of the 69-Bus System and Three DGs

The optimum site and capacity values were obtained using WSO, as seen in Table 9,
for three DG installations. Nodes 11, 17, and 61 were the best sites for DG compositions
with sizes of 480, 380, and 1740 kW for PV and 528, 527, and 1800 kVA with p.f values
of 0.81, 0.83, and 0.814 for WTs. The power losses decreased to 68.6857 and 3.98 kW,
with percentage increases of 69.465% and 98.23% for PVs and WTs, respectively. The
yearly saving increased to USD 82,127.257 and USD 116,136.57 and the lower voltage was
updated to 0.9836 and 0.9878 p.u for PVs and WTs, respectively, as presented in Table 6.
Compared with [42–49,59–61], WSO produces better outcomes in terms of power losses
and the percentage attenuation of power, as indicated in Table 9. Furthermore, the effect of
DG compositions on voltage profiles is presented in Figure 6.

Table 9. Outcomes for establishing three DGs in the 69-node system.

DG Type Mechanism Year
DG Installation Power Loss (kW)

Size (kVA/p.f) Bus Value Percentage

- Without - - 224.94 -

PV

SFSA [49] 2018

527.3/1 11

69.428 69.14380.5/1 18

1719.8/1 61

QOSIMBO_Q [45] 2016

833.6/1 9

71.00 68.44451.1/1 18

1500/1 61

CSCA-64 [47] 2020

365.9/1 17

70.07 68.861675.8/1 61

652.5/1 67

IHHO [48] 2020

527.2/1 11

69.41 69.15382.5/1 17

1719.4/1 61

QOCSOS [46] 2020

526.9/1 11

69.4284 69.14380.3/1 18

1719/1 61

BFOA [59] 2014

295.4/1 27

75.23 66.551345.1/1 61

447.6/1 65

LSFSA [60] 2013

420.4/1 18

77.1 65.721331.1/1 60

429.8/1 65

CABC [61] 2015

538.1/1 17

71.59 68.171200/1 61

535/1 64

ROA [42] 2021

526.9147/1 11

69.42553 69.135380.3464/1 18

1718.8/1 61
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Table 9. Cont.

DG Type Mechanism Year
DG Installation Power Loss (kW)

Size (kVA/p.f) Bus Value Percentage

PV

HHO [42] 2021

467.148/1 12

70.01 68.88346.77/1 15

1734.2/1 61

HGSO [42] 2021

598.634/1 15

72.338 67.841796.9/1 61

200/1 57

COA [43] 2021

343.9/1 19

72.5 67.7691438.8/1 61

285.5/1 64

SFO [43] 2021

358.3/1 19

72.7 67.6830/1 50

1732.3/1 61

Proposed

480/1 11

68.6857 69.465380/1 17

1740/1 61

WT

ROA [42] 2021

508.44/0.836 11

4.2 98.13370.25/0.819 18

1670.84/0.8102 61

GWO [44] 2019

523/0.8294 18

7.27 96.761000/0.8191 61

723/0.802 62

Proposed

528/0.81 11

3.98 98.23527/0.83 17

1800/0.814 61

4.3. The 85-Node Test System

Figure 7 presents a graph of the 85-bus system. The loss without compensation was
315.714 kW. The lower voltage was 0.8743 p.u. at node 54. The yearly charge was calculated
as USD 165,939.3. The optimal locations, sizing of the PVs and WTs, minimum voltage,
VSI, cost of losses, and yearly savings are presented in Table 10 for various numbers of PVs
and WTs. It was obvious that the power loss, percentage reduction, annual saving, voltage,
and VSI improved with increasing the numbers of PVs and WTs, as presented in Table 10.
Additionally, the level of enhancement was better in the case of WT penetration than the
PV due to the generation of complex power. Table 11 shows a comparison between the
developed algorithm and other recent works. It is clear that the implementation of WSO is
more distinguished in solving the studied optimization process, compared with [43,62–65].
Furthermore, the effects of DG compositions on voltage profiles are presented in Figure 8.



Energies 2023, 16, 3983 21 of 27
Energies 2023, 16, x FOR PEER REVIEW 21 of 27 
 

 

 

Figure 7. The graph of the 85-node grid. 

Table 10. Outcomes for the 85-node grid. 

Items 
Without  

DG 

With DG (kVA/p.f) 

1 PV 2 PVs 3 PVs 

Net losses (kW) 315.714 214.1204 157.4592 150.7008 

Loss reduction (%) - 32.18 50.126 52.267 

Minimum voltage/bus 0.8743/54 0.9175/76 0.9443/76 0.9543/76 

Net DG/p.f/bus - 1000/1/55 
1100/1/9  

900/1/34 

950/1/9  

730/1/33  

440/1/61 

VSI 57.7845 67.1635 72.6946 73.1184 

Cost of losses (USD) 165,939.3 112,541.168 82,760.55 79,208.3405 

Saving (USD/year) - 53,397.62 83,178.75 86,731.16 

  1 WT 3 WTs 

Net losses (kW) 315.714 141.4474 20.4612 

Loss reduction (%) - 55.197 93.52 

Minimum voltage/bus 0.8743/54 0.9255/76  0.9790/54 

Net DG/p.f/bus - 1250/0.7/55 

1200/0.7/9  

860/0.7/33  

780/0.7/61 

VSI 57.7845 69.6909 79.7560 

Cost of losses (USD) 165,939.3 74,344.7534 10,754.40 

Saving (USD/year) - 91,594.55 155,184.893 

  

Figure 7. The graph of the 85-node grid.

Table 10. Outcomes for the 85-node grid.

Items Without
DG

With DG (kVA/p.f)

1 PV 2 PVs 3 PVs

Net losses (kW) 315.714 214.1204 157.4592 150.7008

Loss reduction (%) - 32.18 50.126 52.267

Minimum voltage/bus 0.8743/54 0.9175/76 0.9443/76 0.9543/76

Net DG/p.f/bus - 1000/1/55 1100/1/9
900/1/34

950/1/9
730/1/33
440/1/61

VSI 57.7845 67.1635 72.6946 73.1184

Cost of losses (USD) 165,939.3 112,541.168 82,760.55 79,208.3405

Saving (USD/year) - 53,397.62 83,178.75 86,731.16

1 WT 3 WTs

Net losses (kW) 315.714 141.4474 20.4612

Loss reduction (%) - 55.197 93.52

Minimum voltage/bus 0.8743/54 0.9255/76 0.9790/54

Net DG/p.f/bus - 1250/0.7/55
1200/0.7/9
860/0.7/33
780/0.7/61

VSI 57.7845 69.6909 79.7560

Cost of losses (USD) 165,939.3 74,344.7534 10,754.40

Saving (USD/year) - 91,594.55 155,184.893
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Table 11. Outcomes for establishing various DGs in the 85-node grid.

DG Type Mechanism Year
DG Installation Power Loss (kW)

Size (kVA/p.f) Bus Value Percentage

- Without - - 315.714 -

One PV

WOA [62] 2018 910.075/1 54 227.105 28.06

WOA [63] 2017 946.347/1 55 224.049 29.03

Proposed 1000/1 55 214.1204 32.18

Three PVs

WCA [64] 2020

838.085/1 53

235.592 25.378837.995/1 54

837.328/1 63

WCA [64] 2020

838.093/1 12

152.583 51.67838.093/1 48

838.093/1 67

WCA [64] 2020

838.093/1 46

246.568 21.9838.093/1 47

838.093/1 69

MFF [65] 2019

1000/1 9

151.79 51.92700/1 33

500/1 61

COA [43] 2021

831.2/1 34

152.2 51.79677.9/1 67

421.9/1 80

SFO [43] 2021

354.6/1 12

153.6 51.3481059.2/1 32

568.6/1 72

Proposed

1000/1 9

149.7321 52.573800/1 33

500/1 61

3 WTs

WCA [64] 2020

957.82/0.8 10

21.056 93.331800.62/0.8 34

606.95/0.8 67

Proposed

1200/0.7 9

20.4612 93.519860/0.7 33

780/0.7 61
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5. Conclusions

In this article, the WSO was applied successfully to obtain the optimal site and capacity
of DGs in distinct RDSs. The process was designed as an optimization case concerned with
power losses, voltage profiles, and VSIs. The outcomes were compared to those found
using other approaches. The main conclusions of this paper were:

1. A multi-objective function was developed with an accurate choice of weighting factors to
reduce the net power losses and improve the voltage profiles and VSIs of various RDSs.

2. WT installation provides much better results compared with PVs.
3. As the number of penetrated DGs was increased to three units, the percentages of

power losses increased to 94.57%, 98.23%, and 93.52% for WTs, while these percentages
were 67.068%, 69.465%, and 52.267% for PVs for 33, 69, and 85, respectively.

4. With the increasing number of penetrated DGs, the rate of improvement in the percentage
of loss reductions decreased. These rates were 63.766, 4.912, and 0.787 for PV, which was
less than 89.7, 7.19, and 1.34, respectively, for WTs used for the 69-node system.

5. The notability of WSO was assured, compared to other recent studies, in terms of power
losses. The enhancement reached 27.78%, 70%, and 39.27% for the three used systems.

The implementation of the developed approach to considerable-level RDSs with other
RESs and unbalanced systems is the future concern of this study.
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writing—original draft, E.S.A. and S.M.A.E.; writing—review and editing, M.I.M. All authors have
read and agreed to the published version of the manuscript.
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Abbreviations

DG Distributed Generation
WSO White Shark Optimization
PV Photovoltaic
WT Wind Turbine
GA Genetic Approach
PSO Particle Swarm Optimization
EVPSO Escape Velocity Particle Swarm Optimization
PSOPC Particle Swarm Optimization with Passive Congregation
AEPSO Area Extension with Particle Swarm Optimization
ADPSO Adaptive Dissipative Particle Swarm Optimization
DAPSO Dynamic Adaptation of Particle Swarm Optimization
ALOA Ant Lion Optimization Algorithm
QOSIMBO_Q Quasi-Oppositional Swine Influenza Model-Based Optimization with Quarantine
QOCSOS Quasi-Oppositional Chaotic Symbiotic Organisms Search
CSCA Chaotic Sine Cosine Approach
HHO Harris Hawks Optimizer
SFSA Stochastic Fractal Search Algorithm
QOTLBO Quasi-Oppositional Teaching–Learning-Based Optimization
GWO Gray Wolf Optimization
IGWO Improved Gray Wolf Optimization
ABC Artificial Bee Colony
CSA Cuckoo Search Approach
SGA Simple Genetic Algorithm
MTLBO Modified Teaching–Learning-Based Optimization
BB-BC Big Bang–Big Crunch
SFSA Stochastic Fractal Search Algorithm
IHHO Improved Harris Hawks Optimizer
BFOA Bacterial Foraging Optimization Algorithm
LSFSA Loss Sensitivity Factor-Simulated Annealing
CABC Chaotic Artificial Bee Colony
WOA Whale Optimization Algorithm
WCA Water Cycle Algorithm
MFF Modified Firefly
ROA Rider Optimization Algorithm
HGSO Henry Gas Solubility Optimization
COA Coyote Optimization Algorithm
ECOA Enhanced Coyote Optimization Algorithm
SFO Sunflower Optimization
VSI Voltage Stability Index
NR Not Reported
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