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Abstract: With the development of microgrids (MGs), an energy management system (EMS) is re-
quired to ensure the stable and economically efficient operation of the MG system. In this paper, an
intelligent EMS is proposed by exploiting the deep reinforcement learning (DRL) technique. DRL
is employed as the effective method for handling the computation hardness of optimal scheduling
of the charge/discharge of battery energy storage in the MG EMS. Since the optimal decision for
charge/discharge of the battery depends on its state of charge given from the consecutive time steps, it
demands a full-time horizon scheduling to obtain the optimum solution. This, however, increases the
time complexity of the EMS and turns it into an NP-hard problem. By considering the energy storage
system’s charging/discharging power as the control variable, the DRL agent is trained to investigate
the best energy storage control method for both deterministic and stochastic weather scenarios. The
efficiency of the strategy suggested in this study in minimizing the cost of purchasing energy is also
shown from a quantitative perspective through programming verification and comparison with the
results of mixed integer programming and the heuristic genetic algorithm (GA).

Keywords: battery energy storage systems; deep reinforcement learning; energy management system;
microgrid; optimization; renewable energy resources

1. Introduction

A microgrid (MG) is a compact grid, including distributed energy resources (DERs)
and local loads, and gained great attention to address the issues of integrating renewable
energy resources (RESs) into the grid [1,2]. Because of this, a typical MG often consists of
a variety of renewable energy power production devices, energy storage systems (ESSs),
loads, as well as ancillary equipment, including energy converters and controllers [3].
The study on MGs covers a wide range of topics, including research on MG architecture,
power electronics control [4], investment and operating costs [5], dynamic and transient
stability [6–8], protection [9], safety, and maintenance. The ESSs control approach drew the
most attention among them as the study area for MG energy dispatching [10].

The problem with developing the optimal strategy to control the dispatchable DERs
and ESSs is significant, as the stability and efficiency of MG are suffering from the intermit-
tent and stochastic characteristics of RESs [11]. The energy management system (EMS) is
responsible for maintaining the MG operating in a low-cost and stable way. Particularly
when MG is operating in grid-connected mode, EMS also works on the management of
electricity trading between MG and the utility grid [12]. Therefore, implementing proper
optimization algorithms to organize the EMS determinants of the performance of MG
economic operation [2,5,10]. Exploiting the battery energy storage system (BESS) is essen-
tial for preserving the MG’s power balance and minimizing the effect of intermittent and
uncontrollable renewable energy.
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The requirement for a proper continuous joint economy–dynamics model of EMS
operation that appropriately incorporates accurate battery cycle age, degradation cost, and
price is stressed in [13]. It was thoroughly studied in [13] that energy management and
the BESS optimal scheduling can be challenging when the amount of data is large, and
the operational strategy is defined by nonlinear/nonconvex mathematical models. Deep
learning algorithms recently offered fresh approaches for tackling challenging MG control
and energy management issues as a result of the growth of artificial intelligence [14]. An
effective technique for the realization of artificial intelligence without historically labeled
data is DRL [15,16]. First, developments in computer power, particularly highly parallelized
graphical processing unit (GPU) technology, enabled deep neural networks to be trained
with thousands of weight parameters. Second, DRL took advantage of a sizable deep
convolutional neural network (CNN) to improve representation learning. Third, experience
replay was employed by DRL to solve the correlated control issues.

The MG energy management problem fits inside the deep reinforcement learning
solution framework as a real-time control problem, and there was some excellent research
in this area [17–19]. Reference [20] applied a novel model-free control to determine an
optimal control strategy for a multi-zone residential HVAC system to minimize the cost of
generating energy consumption while maintaining user comfort. To analyze the influence
of different scenario combination models on the MG energy storage disposition strategy,
a problem environment model of the energy storage disposition was created using the
example of the MG system for private users [21]. Reference [22] proposed an EMS for
the real-time operation of a dynamic and stochastic pilot MG on a university campus in
Malta, consisting of a diesel generator, photovoltaic modules, and batteries. Reference [23]
performed reinforcement learning training for the unpredictability of the solar output of
the MG to lower the MG’s power cost using the data anticipated by the neural network.
Reference [24] proposes a model-based approximate dynamic programming algorithm
and thoroughly considers load, photovoltaic, real-time electricity price fluctuation, and
power flow calculation. It then uses a deep recurrent neural network to approximate the
value function. From the standpoint of ensuring the security of power grid operation,
reference [25] suggested a deep reinforcement learning-based control technique for power
grid shutdown. Retail pricing strategies are provided by [26] using Monte Carlo reinforce-
ment learning algorithms from the viewpoint of distribution system operators, with the
objectives of lowering the demand-side peak ratio and safeguarding user privacy. The
advantages of applying deep reinforcement learning for online progress optimization of
building energy management systems in a smart grid setting are explored in [27], and a
sizable Pecan Street Inc. database is used to confirm the method’s efficacy. Additionally, a
model-free DRL was used to improve the reliability and resiliency of (distribution) grids
in the context of Internet of Things (IoT) [28] and by forming islanded [29] and multi-MG
systems [30].

However, a critical problem with the optimization of the BESS scheduling by the
EMS in MG is time complexity. The optimal operation (charge/discharge) of the BESS in
each time step (e.g., each hour) depends on its operation point (and consequence state of
charge (SoC)) in the previous time step and also affects the optimal point in the future
time step. To address this issue, the common method is finite horizon predictive EMS [31].
Nevertheless, a full-day (24 h) time horizon is needed to achieve the optimum solution
for designing the BESS charging profile. Notably, the time complexity of the optimization
problem of the BESS in a full-day period is N24, where N is the discretized number of
possible charge/discharge levels based on the power (current) and energy ratings of the
BESS. To handle this problem, dynamic programming, given by Bellman’s optimality
principle, was used to tackle the scalability and time complexity of the EMS optimization
problems using deep Q-learning methods [32]. Yet, the curse of dimensionality is the
problem with discrete Q-learning, which turns it into an NP-hard problem. Furthermore,
including the dispatchable DGs in the EMS as well as energy trading with the grid (or other
MGs [33]) along with the BESS, increases the dimension space for the EMS and makes the
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problem computationally intractable (particularly for real-time applications [34,35] and
market clearing).

To tackle the computational hardness of the BESS scheduling in the MG, we propose
using the model-free DRL. The DRL agent randomly selects the charge/discharge rate of the
BESS and dispatchable unit, such as the diesel generator (DG), for each timestep, based on
which the EMS schedules electricity and trading for MG and the grid. The selected values
are sent to the reward function, obtaining a reward or penalty towards the state–action
pair. DRL learns from the reward and updates the scheduling policy to avoid penalized
actions and practice highly rewarded actions. This process is repeated for a large number
of randomized episodes to guarantee the optimality of the solution. Using deep neural
networks with an appropriate training algorithm that trains the DRL to maximize future
expected rewards helps to realize the problem objectives. The trained DRL can observe the
intermittently generated power from RESs, organize the dispatchable resources and grid
power to keep the power balance of MG, sell electricity to the grid and earn some profit at
the time of high electricity prices, and purchase electricity from the grid at the time of low
electricity price.

The contributions of the paper are summarized as follows:

• In this paper, the DRL technique is utilized to handle the time complexity and large di-
mension space associated with the NP-hardness of optimal charge/discharge schedul-
ing of the BESS. For this purpose, the DRL structure and the state–action–reward
tuple are appropriately designed. The continuous deep deterministic policy gradient
(DDPG) is used as the training algorithm to avoid the curse of dimensionality issue.

• The DRL can also handle time complexity associated with the nonconvexity of opti-
mization problems for the BESS scheduling and nonlinear power flow. Complemen-
tarity constraints should be imposed to avoid simultaneous charge/discharge of the
BESS that makes the problem non-convex. Alternatively, using slack integer variables
increases the computational burden of the optimization problem.

• Therefore, the trained DRL is practicable for real-time BESS scheduling in MGs for
different applications, such as frequency (dynamics) support and ancillary services
that are needed to cover intermittent RESs.

• The searching space algorithm is proven to be environment-free and adaptable for
EMS in various MG architectures with different scales.

• In order to comprehensively reveal the advantages of this method, the optimization
results are compared with the results of the mixed integer nonlinear programming
(MINLP) and genetic algorithm (GA).

2. Microgrid Architecture and Modeling

In this paper, we consider the MG including the BESS, a DG under technical constraints,
a wind turbine (WT), and a photovoltaic generation (PV) with both deterministic and
stochastic power generation, a load with uncertain demand. In order to minimize the 24-h
accumulated electricity purchase fee, electricity purchased from the utility grid and hourly
electricity prices are also taken into account. The configuration of the MG model is shown
in Figure 1.
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Figure 1. Microgrid architecture, which consists of DERs including RESs (PV and WT), DG, and the 
battery ESS, and loads. The MG can be disconnected from the utility grid and work in autonomous 
mode, where DERs supply the local load and the BESS holds the consumption–production balance. 

2.1. PV Generation 
In community MGs, photovoltaic power generation equipment is a key renewable 

energy resource that can transform light energy directly into electrical energy using pho-
tovoltaic power production panels. It has a great deal of economic potential and is re-
nowned for its cleanliness and economy. The photovoltaic power generating system, 
which includes photovoltaic elements including solar panels, AC and DC inverters, solar 
charge and discharge controllers, and loads, is often positioned on the roof of the building. 
Grid-connected type, off-grid type, and multi-energy complementing type are the three 
categories into which solar power-generating devices fall according to the system network 
structure of the MG. Off-grid photovoltaic power generating systems are appropriate for 
isolated islands, remote mountainous areas, and other locations, since they cannot inter-
change electricity with external power networks. A grid-connected photovoltaic power 
generating system is employed to generate electricity for the community MG under study 
in this research, which may interchange electrical energy with the main grid or other mi-
crogrids. 𝑃 (𝑡) + 𝑃 (𝑡) + 𝑃 (𝑡) = 𝑃 (𝑡) (1) 

The output of the photovoltaic power generation system in the MG primarily de-
pends on its power generation, which is inextricably linked to weather factors, such as the 
highest and lowest temperatures, the average temperature, and the intensity of the day’s 
light, all of which have an impact on the solar panels’ ability to produce electricity. This 
paper makes the assumption that the sun shines from 7 am to 8 pm, that its output power 
varies nonlinearly with light intensity and ambient temperature, and that its light inten-
sity swings from weak to strong and then to weak. The probability density function and 
mathematical model of a solar power-generating panel are as follows, and the output 
power of a typical photovoltaic power generation device roughly obeys the distribution: 
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where γ is the gamma function, and α and β are the relevant parameters of the β distribu-
tion. In Formulas (2)–(4), 𝑃  is the rated output power of the photovoltaic power 

Figure 1. Microgrid architecture, which consists of DERs including RESs (PV and WT), DG, and the
battery ESS, and loads. The MG can be disconnected from the utility grid and work in autonomous
mode, where DERs supply the local load and the BESS holds the consumption–production balance.

2.1. PV Generation

In community MGs, photovoltaic power generation equipment is a key renewable
energy resource that can transform light energy directly into electrical energy using photo-
voltaic power production panels. It has a great deal of economic potential and is renowned
for its cleanliness and economy. The photovoltaic power generating system, which includes
photovoltaic elements including solar panels, AC and DC inverters, solar charge and dis-
charge controllers, and loads, is often positioned on the roof of the building. Grid-connected
type, off-grid type, and multi-energy complementing type are the three categories into
which solar power-generating devices fall according to the system network structure of the
MG. Off-grid photovoltaic power generating systems are appropriate for isolated islands,
remote mountainous areas, and other locations, since they cannot interchange electricity
with external power networks. A grid-connected photovoltaic power generating system
is employed to generate electricity for the community MG under study in this research,
which may interchange electrical energy with the main grid or other microgrids.

Pgrid(t) + Ppv(t) + Pwt(t) = Pload(t) (1)

The output of the photovoltaic power generation system in the MG primarily depends
on its power generation, which is inextricably linked to weather factors, such as the highest
and lowest temperatures, the average temperature, and the intensity of the day’s light,
all of which have an impact on the solar panels’ ability to produce electricity. This paper
makes the assumption that the sun shines from 7 am to 8 pm, that its output power varies
nonlinearly with light intensity and ambient temperature, and that its light intensity swings
from weak to strong and then to weak. The probability density function and mathematical
model of a solar power-generating panel are as follows, and the output power of a typical
photovoltaic power generation device roughly obeys the distribution:

f
(

IT
Imax

)
=

γ(α + β)

γ(α) + γ(β)

(
IT

Imax

)α−1(
1− IT

Imax

)β−1
(2)

{
α = µ( µ(1− µ)/σ ˆ2− 1)

β = (1− µ)( µ(1− µ)/σ ˆ2− 1)
(3)

PPV = ϕPVSPV
IT
IS
[1 + αPV(Tr − Ts)] (4)

where γ is the gamma function, and α and β are the relevant parameters of the β dis-
tribution. In Formulas (2)–(4), PPV is the rated output power of the photovoltaic power
generation system; ϕPV is the power frequency reduction coefficient of the photovoltaic
power generation system; Tr and Ts represent the actual temperature and standard temper-
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ature of the photovoltaic module, respectively; IT is the actual light intensity of the solar
panel at 25 ◦C ambient temperature; and αPV is the power temperature coefficient of the
PV panel. The value of αPV for different materials of the PV panel is not the same, and the
general value is αPV = −0.45.

2.2. Wind Turbine

Due to its high construction cost, wind power generation equipment, another signif-
icant renewable energy resource in MGs, is not as commonly employed as solar power
generation equipment. Additionally, as the production of wind energy is very volatile,
unpredictable, and is significantly influenced by external variables such as the weather, it
is sometimes challenging to make precise short-term projections. Currently, probability
distributions are frequently employed to suit the wind speed distribution of wind turbines,
with Weibull, Normal, Rayleigh, and other distributions among the most popular choices.
The Weibull distribution is one of them and has the following probability density function
expression:

f (v) =
k
a

(v
a

)k−1
exp

(
−vk

ak

)
(5)

{
k = σ

µ

a = µ

γ(1+ 1
k )

(6)

where the wind turbine’s wind speed ν, its mean value, and its standard deviation are
represented by the letters σ, and µ, respectively. The probability density function of the
Welsh distribution, which is currently in widespread usage, can be used to calculate the
wind speed distribution of the wind turbine. It is therefore possible to determine the wind
turbine’s output power by substituting the wind speed into the mathematical model of the
wind turbine. The specific mathematical equation is as follows:

PWT =


Pe

ve−vin
v− Pe

ve−vin
vin vin ≤ v ≤ ve

Pe ve ≤ v ≤ vout
0 other

(7)

where pwt is the output power of the wind turbine, Pe is the rated power, ν is the current
wind speed, νe, νin, and νout are the rated wind speed, cut-in wind speed, and cut-out wind
speed, respectively.

2.3. Battery Energy Storage System (BESS) Modeling

To maintain the stable operation of the MG and balance the system power, an energy
storage system must be implemented due to the intermittent and unstable properties
of distributed power generating modes, such as solar and wind power. Batteries are
frequently employed as high-efficiency energy storage devices, and their internal energy
state conforms to the following equation:

EESS(t) = EESS(t− 1) + ηchPESS,ch(t) ∗ ∆t− 1
ηdisch

PESS,disch(t) ∗ ∆t (8)

where ηch and ηdisch denote charge and discharge efficiency. The battery’s capacity to charge
and discharge at time t is represented by EESS(t), while the time t between two charging
and discharging operations is represented by ∆t. The charging and discharging of power
PESS(t) of the energy storage system in the MG system is typically employed as an essential
control variable to take part in the MG energy scheduling, which is the subject of this study.
To avoid the charge and discharge happening at the same time, while solving EMS as an
optimization problem, we define binary variables.
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2.4. Diesel Generator (DG)

The diesel generator (DG) is used to boost its flexibility and independence. When the
power production of renewable energy resources becomes stochastic and unreliable, MG
relies on electricity stored in the BESS and acquired from the main grid. If the BESS runs
out of energy and the main grid has a high electricity price, generating power from DG is
the most cost-effective solution to keep loads supplied by MG. The power output and cost
factors of DG were modelled as the function of fuel cost:

F(PDG(t)) = aP2
DG(t) + bPDG(t) + c (9)

where PDG(t) represents the power output of DG; a, b, and c represent the cost factor of DG.

2.5. Loads and Utility Grid (UG)

In a MG system, the component that uses the most electricity is referred to as the load.
The load demand for a fixed MG system is often not customizable since it depends on the
MG’s characteristics and the surrounding climate. The load curve is employed as a set
quantity of input to the MG system in this paper’s energy scheduling problem. The load is
expressed as Pload(t) for time step t.

For the modelling of the utility grid, the power purchased from the grid to MG and
the power sold from MG to the grid are mainly considered, representing as P+

grid and P−grid,
respectively. In addition, further descriptions of load and grid will be discussed with the
objective function and power balance equation in the next section.

3. DRL-Based MG Energy Management System
3.1. Objective Function

Depending on the requirements of the microgrid system, various control goals can
be established, such as minimizing pollutant emissions, cutting back on fuel costs for
power generation, reducing voltage offset, cutting back on network active power loss,
or increasing voltage stability. Typically, only one control objective or a mix of control
objectives can be chosen. This paper seeks to reduce the sum of the cost of power from the
external grid and the cost of fuel costs. The form is given in (10):

F (st, at, t ) = min [CTotal(t)]
CTotal(t) =

∫ T
t=0 CGrid(t) ∗ PGrid(t)dt +

∫ T
t=0 F(PDG (t))dt

(10)

where CGrid, PGird and F(PDG (t)) represent the real-time electricity price, the power gen-
erated by the external grid and the fuel cost of DG in time t, respectively, and Pgrid, PDG
satisfies the power balance constraint in (11). Ctotal represents the total cost of the entire
MG to obtain electrical energy from the main grid and DG.

PPV(t) + PWT(t) + Pess(t) + PDG(t) + PGrid(t) = PLoad(t) (11)

Additionally, in this paper, time t ∈ D, D = {1, 2 . . . 24} and the unit of t is one hour.

3.2. State Space

The reinforcement learning algorithm DDPG transforms the mentioned control target
into a solution form. The energy storage charging and discharging power controller is
the agent in the reinforcement learning issue, and the MG mathematical model created in
Section 2 serves as the environment. Utilizing the agent and the environment’s ongoing
interaction to get the optimal control strategy is the aim of reinforcement learning. As a
result, it is necessary to identify the unique representation of the Markov state sequence
quadruple (S, A, R, π) for this issue.
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For the MG model, the information provided by the environment to the agent is
generally renewable energy output, time-of-use electricity price, load, and state of charge
of electric energy storage. Therefore, the state space of the microgrid model is defined as:

st = [PPV(t), PWT(t), PGrid(t), PLoad(t), SOC(t), CGrid(t)] (12)

In the state space: PPV , PWT are the power output of the renewable energy in the t
period, kW; PLoad(t) is the load demand of the MG in the t period, kW; CGrid is the time-
of-use electricity price (purchased from external grid by microgrid) in the t period (time
of use price, TOU), AUD/(kWh); and SOC(t) is the state of charge of the energy storage
system in time t.

3.3. Action Space

After the agent observes the state information of the environment, it selects an action
from the action space A according to its own policy set π. Based on controllable devices in
MG, the output of DG and the charge/discharge power of the BESS were introduced to the
action space. Therefore, the action space of the MG considered in this paper is expressed
by:

at = [PESS(t), PDG(t)] (13)

3.4. System Constraints

To ensure the simulation result is realistic, the energy storage system is set to operate
under the constraints of charging and discharging power with a practicable range of the
state of charge, and its state of charge also has both limitations to ensure the BESS will not
have overheating problems caused by over-voltage or over-current issues. Considering the
size and minimum power output of DG, a power constraint is applied by (10):

Pmin
ESS ≤ PESS(t) ≤ Pmax

ESS (14)

SOCmin ≤ SOC(t) ≤ SOCmax (15)

Pmin
DG ≤ PDG(t) ≤ Pmax

DG (16)

3.5. Reward Function

The objective function and the constraints must be combined when creating the reward
function R. The following is the definition of the reward function from state t to state t + 1:

R(st, at, t) = −
[∫ t+1

t
Cgrid(t) ∗ Pgrid(t)dt + β(t)

]
(17)

The first component represents the amount of power used, during this time, β(t) = 0,
and the second component is the penalty item provided to define the limitations. When
the constraints (9)–(11) are not satisfied, β(t) is given a constant with a very big value.
When the state–action pair does not exceed the system limitations, the value of β(t) is zero,
ensuring the estimation of the agent only depends on the price and power of the utility
grid. However, if the state–action pair exceeds the limit, β(t) is assigned a large penalty
value to penalize the taken action by the agent. Reward function maximization is the goal
of reinforcement learning; hence a minus sign must be added before these two elements.

4. Deep Reinforcement Learning Algorithm
4.1. DRL Structure

Based on the Markov decision process, reinforcement learning (RL) helps intelligent
agents choose actions that will result in the greatest overall reward during their interactions
with the environment. An environment and an agent are typically present in RL models, see
Figure 2. The agent learns how to react to the environment depending on its current state,
while the environment rewards the agent in return. RLs can be categorized as either model-



Energies 2023, 16, 90 8 of 20

based or model-free, depending on whether explicit environment modeling is necessary.
Some typical RL algorithms are as follows: (1) Q-learning, which generates the action for
the following step using the quality values Q(s, a) stored in the Q-table, and updates the
quality value, where a stands for the learning rate, g for the deduction factor, R for the
reward, a and s for the action and state in the current step, and a’ and s’ for the action and
state in the following step; (2) the deep Q-network (DQN), which employs deep learning
algorithms (such as DNN, CNN, and DT) to produce a continuous Q-quality value in
order to get around Q-exponentially learning’s rising computational cost; (3) The policy
gradient algorithm, which generates the next-step action based on the policy function
(which quantifies the state and action values at the current step) rather than a quality value
such as Q; (4) The actor–critic algorithm, which uses the actor to generate the next-step
action based on the current-step state and then adjusts its policy based on the score from
the critic, whereas the critic uses the critic function to score the actor at the current step [21].

Q(s, a)← Q(s, a) + α[R + γmaxa′Q(s′, a′)−Q(s, a)]
s← s′

(18)
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Three types of algorithms may be used to solve reinforcement learning optimization
problems: value function-based algorithms, policy gradient-based algorithms, and search-
based and supervised algorithms [24]. The solution techniques based on the value function
are the main topic of this work. Examples include the dynamic programming algorithm,
the Monte Carlo algorithm, the time series difference algorithm, etc. Among these, the
dynamic programming approach is useful for addressing problems when there is a model,
and the state space has a small dimension. The downside of the Monte Carlo approach
is that it requires entire state sequence information, which is challenging to get in many
aperiodic systems. It is a straightforward algorithm that is not model-based. A complete
state sequence is not necessary for the time series difference approach to estimate the value
function. The online difference algorithm SARSA and the offline difference algorithm
Q-learning algorithm are two examples of the traditional time series difference approach.
Both approaches retain a Q-table to tackle minor issues. The problem with reinforcement
learning is when the state and action space is continuous or discrete on a very large scale, it
is necessary to keep an exceptionally big Q-table, which poses storage challenges. However,
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this issue was resolved by the advancement of deep neural networks. A deep reinforcement
learning technique that is more suited for difficult issues may be produced by using deep
neural networks rather than Q-tables. Deep Q-learning (deep Q-network, DQN) is a
common algorithm.

Q(s, a)← Q(s, a) + αδ (19)

The action value function is represented by Q(s, a), while the learning rate is repre-
sented by δ. The ideal reinforcement learning control method can be discovered when the
update formula converges. The DQN replaces the Q-function Q(s, a/Z) in Q-learning by
using a deep neural network. Following the calculation of the current target Q-value using
Formula (3), the neural network’s parameter is adjusted based on the mean square error
between the current target Q-value and the Q-value provided by the Q-network.

4.2. Deep Deterministic Policy Gradient (DDPG)

Based on the DRL algorithm that was introduced above, DDPG is adopted as the
optimization algorithm to reduce the MG’s cost. DDPG is an RL algorithm that learns the
policy and Q-function simultaneously. This approach processes off-policy data through the
Bellman equation to achieve the learning goals towards the Q-function, and DDPG then
learns the policy from the Q-function. According to the Q-function: Q∗(s, a) and current
state space, the optimized action a∗(s) can be obtained from this equation:

a∗(s) = argmax
a

Q∗(s, a) (20)

The loss function of the Q-network can be described as the learning process of the
Q-network under the guidance of the reward function. By using the temporal difference
principle, the loss function can be defined as (16):

L
(
wC

)
=
[
Q
(

s, a
∣∣∣wQ

)
−
(

r + γ
(
Q
(

s_, a_
∣∣∣wQ

)))]2
(21)

In this formula, Q
(
s, a
∣∣wQ) represents the Q-function in the current states and the

accumulated future reward of the agent when the action of this state was executed. For
the next states, s_, the Q-function is defined as the same as the last states. In Q

(
s_, a_

∣∣wQ),
s_ and a_ represent the state–action pair in the next states and wQ is the weight of the
Q-network. The actions in DDPG are determined by the policy; r represents the reward
corresponding to the excused action from the current states s to the next states s_.

The objective function for the Q-network is defined as:

F
(
wC

)
= min

[
L
(
wC

)]
(22)

By introducing the learning rate θ, the update date mode can be described as:

wC ←−wC + θ∇wCL
(
wC

)
(23)

The DDPG is presented in Algorithm 1.
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Algorithm 1 Deep deterministic policy gradient

1: Input: Initialize Q-function and policy, clean out replay buffer D;
2: Define objective parameters for Q-function and policy in θ and φ;
3: Loop;
4: Based on current observation, generate state-action pair (s, a);
5: Practice action in the environment;
6: Obtain the reward r and move to next state s′, check the ending signal e;
7: Append (s, a, r, s′, e) to relay buffer D;
8: if s′ is the last state and ending signal e is true;
9: for training episodes do;
10: Import transients T(s, a, r, s′, e) from D;
11: Solve the objectives by transients

O(r, s′, d) = r + γ(1− e)Qobj

[
s′, Pobj(s′)

]
;

12: Obtain updated Q-function
∇ 1
|T| ∑(s,a, r,s′ ,e)∈T(Q(s, a)−O(r, s′, d))2;

13: Obtain updated policy

∇ 1
|T| ∑s∈T Qobj

(
s′, Pobj(s′)

)
;

14: Update objective networks’ weight
wC ←−wC + θ∇wCL

(
wC) ;

15: end for;
16: end if;
17: until reward convergence.

5. Case Study
5.1. Simulation Settings

Table 1 demonstrates the trading price between the utility grid and MG. Table 2
and Figure 3 present system parameters, including the power generation of PV and WT,
the load demand, and the electricity price from the utility grid side. Each column has
24 rows, and each row indicates the corresponding parameter in one hour, which means
the sampling period time is one hour and the whole period of simulation is 24 h. The
parameters in Table 2 are highly determined by realistic weather and load demand. This
case study considers a deterministic scenario on a sunny day. PV output reaches a peak
in the afternoon and WT randomly generates electricity fluctuating around its average
value. Load demand has two peaks during both daytime and night. Market price increases
when load demand is high. Otherwise, electricity sells in a cheap way when a demand
valley is shown. Through this simplified MATLAB simulation model, the effectiveness
of the DDPG algorithm is demonstrated. The program of the model made use of the
Reinforcement Learning Toolbox in MATLAB to train the Q-agent and policy. In addition,
to make comparisons of simulation results, YALMIP/GUROBI, which is a commercial
optimization solver, is practiced for processing the nonlinear programming model. Here,
we further explain the profits and optimality of the proposed algorithms.

Table 1. Purchases and sell price.

Electricity Purchase (AUD/kWh) Electricity Sells (AUD/kWh)

1.1 0.85
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Table 2. Input parameters.

PV (kW) WT (kW) Load (kWh) Price (AUD/kWh)

0 50 50 0.434137
0 50 60 0.42391
0 50 60 0.42
0 50 54 0.426393
0 40 40 0.448192
10 30 40 0.503548
25 30 65 0.598517
30 40 79 0.63099
50 45 100 0.650717
60 45 120 0.654483
65 50 110 0.661257
75 45 77 0.645917
75 45 70 0.626667
70 55 68 0.633886
70 55 75 0.639901
60 60 90 0.647722
40 65 117 0.667376
27 60 125 0.683024
10 55 130 0.7
0 55 125 0.673981
0 60 130 0.623744
0 60 90 0.558902
0 55 80 0.493186
0 55 75 0.456695
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5.2. Simulation Results and Discussion

From the beginning, Figure 4 demonstrates the curve of the reward function. The
graph shows that after around 550 episodes of training, the agent’s reward infinitely
approaches zero. As a consequence, the agents are effectively trained, and the simulation
results are effective. Part of the code can be shown in Algorithm 1.
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Figure 4. Training profile.

Having illustrated the realism and validity of the simulation, Figure 5 shows the power
output profiles of ESS, DG, load, and utility grid. The load profile shows that, during the
daytime, electricity demand keeps rising from 6 to 10 am, resulting in the first peak value at
125 kW. Then, demand descends to 75 kW at 1 pm, before it quickly lifts to the second peak
value, which is 130 kW at 7 pm. The peak value remains for 2 h and demand decreases
to 70 kW at the end of the day. Regarding the power exchange between the MG and the
utility grid, most of the time, MG sells electricity to the utility grid and purchases electricity
from the utility grid when the load demand increases to the second peak value during the
evening. DG power output rises from midnight for 1 h to 40 kW and slowly drops to 30 kW
in 17 h. DG profile then directly drops to zero in one hour and returns to 30 kW at 11 pm.
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Figure 6 demonstrates the SOC profile of ESS. Considering the SOC profile with the
BESS charge and discharge profile, the state of charge starts from 40% and charges to
approximately 60% in 0–6 am. Then the BESS module turns to float charging mode, keeping
the SOC at 60% until the second load peak comes. From about 18 pm, a dramatic decreasing
trend is found. The BESS discharges and supplies the load with the utility grid and RES
from 18 pm to 23 pm. Finally, the BESS is slightly charged from RES and grid for 1 h.



Energies 2023, 16, 90 13 of 20

Energies 2023, 16, 90 13 of 20 
 

 

approximately 60% in 0–6 am. Then the BESS module turns to float charging mode, keep-
ing the SOC at 60% until the second load peak comes. From about 18 pm, a dramatic de-
creasing trend is found. The BESS discharges and supplies the load with the utility grid 
and RES from 18 pm to 23 pm. Finally, the BESS is slightly charged from RES and grid for 
1 h. 

 
Figure 6. BESS SOC state of charge. 

In order to describe the effectiveness of the DDPG algorithm, the charge/discharge 
profile of ESS, state of charge, and electricity price are plotted on one graph. As shown in 
Figure 7, the BESS charges when the electricity price is relatively low, resulting in a rise in 
SOC. On the other hand, the BESS discharges when the price is relatively high, resulting 
in a decrease in SOC. Such a kind of energy management schedule strategy produced by 
DDPG lowers the cost of power procurement while increasing the profitability of power 
sales. Figure 8 demonstrates the cost profile in MG. The system only has 5 h at a high cost. 
It remains at a low cost for 14 h and has a negative cost, i.e., profit for 5 h. Therefore, the 
MG with DDPG scheduled EMS can effectively reduce the operating cost. 

 
Figure 7. BESS power, SOC, and price profile. 

Figure 6. BESS SOC state of charge.

In order to describe the effectiveness of the DDPG algorithm, the charge/discharge
profile of ESS, state of charge, and electricity price are plotted on one graph. As shown in
Figure 7, the BESS charges when the electricity price is relatively low, resulting in a rise in
SOC. On the other hand, the BESS discharges when the price is relatively high, resulting
in a decrease in SOC. Such a kind of energy management schedule strategy produced by
DDPG lowers the cost of power procurement while increasing the profitability of power
sales. Figure 8 demonstrates the cost profile in MG. The system only has 5 h at a high cost.
It remains at a low cost for 14 h and has a negative cost, i.e., profit for 5 h. Therefore, the
MG with DDPG scheduled EMS can effectively reduce the operating cost.
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5.3. Results Comparision and Analysis

To demonstrate the efficacy of DDPG further, we compared its performance with the
GA and the MINLP method, with identical simulation data. MINLP is an adaptable model-
ing tool for EMS because it can address nonlinear problems with continuous and integer
variables. Figure 9 shows the convergence process of the genetic algorithm, illustrating its
effectiveness.
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Table 3 shows the cost parameters of DG, corresponding to Formula (9).

Table 3. DG cost parameters.

a b c

0.001 0.15 77.44

The following three figures demonstrate the difference between DDPG, MINLP, and
GA in electricity trading between MG and the utility grid. According to Figure 10a, from
0 am to 17 pm, DDPG has an outstanding performance that sells electricity from MG to the
utility grid the whole time, and for the rest of the period, DDPG purchases electricity at an
average of 40 kW per hour. Figure 10b shows that MINLP spends half of the whole time
period selling electricity from MG to the grid, and the total amount of sold electricity is
around 300 kWh, which is the half amount of DDPG. Considering the purchased electricity,
MINLP purchased almost the same amount of electricity from the grid as the amount it
sells. Figure 10c reveals that from 0 am to 17 pm, GA has two hours for purchase with a
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lower average power output value than DDPG. Hence, we can conclude that DDPG has
the extraordinary capability of selling energy from MG to the utility grid.
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In addition, focusing on the energy storage system, the following six figures demon-
strate the BESS performance including charge and discharge power and state of charge,
obtained by three introduced algorithms. Tables 2 and 4 present the system constraints,
such as the charge and discharge power constraints of the energy storage system, the power
output constraints of DG, and the constraints of ESS’s state of charge.

Table 4. System Constraints.

PESS(kW) PDG(kW) SOC

[−40, 40] [0, 60] [0.2, 0.85]

Based on Figure 11, it is obvious that DDPG stores energy in the BESS when the
utility power price is lower in a day, and DDPG discharges ESSs from 6 pm to 10 pm,
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selling electricity to the grid at the peak value of the price, earning the maximum profit for
MG during this period. It is worth noting that the cost of DG was set to 0.5 AUD/kWh,
and Figure 3 shows that the electricity price is higher than 0.5 in the period of 6 am to
23 pm. From that perspective, theoretically, DG should remain at its maximum output
when its cost is lower than the electricity price, as the results are shown in Figure 11, for
the linear programming DG output profile. On the other hand, the BESS should be charged
as fully as possible (under the system constraints), which is the most desirable energy
management schedule. However, DDPG just slightly charges the BESS for 20% and stops
the charging/discharging movement until the second price peak is reached. Additionally,
according to Figure 12, we notice that GA has a better performance on both the BESS
and DG power profiles. The curve is greatly shaking due to the prediction error, but the
charging and discharging depth of the BESS and power output of DG is greater than the
corresponding value of DDPG.
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However, with the unsatisfied profile produced by DDPG, it can be a kind of advantage
that the BESS and DG do not reach their constraints, which results in less degradation
cost for long-term operation in MG and reduces the possibility for the happening of safety
issues.

Table 5 compares the simulation results of three different techniques. In terms of
the overall cost created by EMS, MINLP has the lowest purchasing cost, with a cost of
45.772 AUD per day. GA comes in second, followed by DDPG. However, in terms of
computation time, DRL can be processed faster than GA and MINLP.

Table 5. Result comparisons.

DDPG-Based DRL MINLP GA

Purchasing Cost (AUD) 87.333 45.772 88.406
Computation Time (s) 1.202061 2.745373 23.328163

Compared with MINLP and GA, in this small scale and accurately modeled MG,
DDPG’s exploring strength is not as strong in finding a policy with high accuracy as
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MINLP, because during the space searching process, agent actions are effect by system
noise. However, if we consider the DDPG in a more realistic scenario, DDPG does have
its unique advantages. For example, MINLP can only be implemented on a small-scale
MG system, as the large-scale MG with hierarchy architecture will make the mathematical
modeling process extremely complex and computationally time-consuming, which is not
practical in the real world. In contrast, as DRL is a set of model-free algorithms, DDPG can
adapt to any unknown MG structure. Additionally, compared with the GA, DDPG can be
quickly used for a new dataset that only spends a very short time for secondary training
for its deep neural network. The other two algorithms take a long time for modeling and
convergence, respectively. Lastly, DDPG has the capability to handle the task of a high
degree of stochastic data, which is very common in RES-based MG. The other two are not
compatible due to the same reason. These three unique characteristics of DDPG determine
that it is valuable and realistic to reduce the purchasing cost of MG.

6. Conclusions

This paper developed a DRL-based MG energy management system and obtained
an energy schedule policy for one day with a sampling time of one hour. EMS policy
aimed to reduce the MG electricity cost. The structure of the DRL agent was designed
by defining appropriate functions related to the state–action–reward tuple. The DDPG
algorithm was adopted to train the DRL agent using a simulated MG. The performance of
the DRL agent was compared with the results of the MINLP and GA. This paper revealed
both the advantages and disadvantages of the DDPG-based DRL.

The DDPG-based DRL agent for EMS in MGs has the following strengths and draw-
backs:

• The DRL agent tries a large number of trial-and-error episodes during training, by
which all possible combinations of the BESS charge/discharge schedule, with various
initial SoC, are tested. The DDPG optimizes the DRL network to maximize the rewards
and thus minimizes the purchasing cost. This training process costs computational
costs.

• In an MG with a simple structure and determinant load/weather, the DRL agent
would cost more computation time for training compared with GA and MINLP.
In the simulated scenario, the DRL achieved higher purchasing costs, but smaller
computation time for real-time action.

• The training process of DRL would increase in a large-scale MG system, but after
training, the DRL agent reveals superior computation for real-time performance.

• The DRL agent is able to deal with uncertainties that happened in MG, such as
stochastic power generation produced by RESs in MG.

• When the EMS is adapted to a new location, e.g., replacing a new database with EMS,
the DRL agent can quickly be adapted by training its deep neural network.

In future development, with the aid using the transfer learning principle, GA and
MINLP can be used for training the DRL for enhancing its rewards to approach linear
programming results.
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Abbreviations

BESSs Battery energy storage system ESS Energy storage system
CNN Conventional neural networks GA Genetic algorithm
DDPG Deep deterministic policy gradient GPU Graphical process units
DER Distributed energy resources MGs Microgrids
DG Diesel generator MINLP Mixed integer nonlinear programming
DNN Deep neural network PV Photovoltaic
DRL Deep reinforcement learning RESs Renewable energy resources
DT Decision tree SoC State of charge
DQN Deep Q-network TL Transfer learning
EMS Energy management system WT Wind turbine
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