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Abstract: This paper presents a novel design approach of a Petri-net-based cyber-physical system
(CPS). The idea is oriented toward implementation in a field-programmable gate array (FPGA). The
proposed technique permits error detection in the system at the early specification stage in order to
reduce the time and prototyping cost of the CPS. Due to the state explosion problem, the traditional
verification methods have exponential computational complexity. In contrast, we show that under
certain assumptions, the proposed algorithm is able to detect possible errors in the system even
in cubic O(|T|2|P|) time. Furthermore, all the required steps of the proposed design method are
presented and discussed. The idea is illustrated by a real-life case study example of a traffic light
crossroad. The system was modelled, analysed, implemented, and finally validated within the FPGA
device (Virtex-5 family).
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1. Introduction

A Petri net is an effective modelling tool that permits the graphical specification of
control systems [1–6]. It is supported by verification, validation, and analysis methods;
thus, the designer is able to verify the robustness and reliability of the prototyped system
at the very early design stage [5,7,8]. The flexibility, usefulness, and wide possibilities of
formal verification methods related to the Petri-net-based systems have made them very
popular in specification of control systems in various fields of human life, such as manufac-
turing systems [9–12], cyber-physical systems [13], work-flow management [14], embedded
software [15], logic controllers [16], transportation and vehicular systems, military, smart
buildings and smart grids, power electronics converters, etc. [1,5,17].

A Petri-net-based approach benefits from the verification of the system at the early
specification stage, which allows a reduction in time and costs of the modelled system [18–21].
The key properties of Petri-net-based systems to be examined are boundedness [3,5,7,12,18],
safeness [12,22–25], and absence of deadlocks [24,26]. A bounded Petri net assures that the
model has a finite number of reachable states of the system [24,27]. Safeness supplies a binary
behaviour of a Petri net dedicated to the logical control of systems [22,25,28]. Furthermore,
the lack of deadlock means that the system will not get jammed in one state, and it will be
always possible to reach the desired next states [29].

Petri nets are especially useful in specification of concurrent control systems [30]. Fur-
thermore, their concurrent nature is essential at the implementation stage of the modelled
system to hardware that supports parallelism [3–5,31]. A field-programmable gate array
(FPGA) is one of the targets for the concurrent systems specified by a Petri net [5,13,32,33].
Such devices are parallel by their architecture [5,34]. Their main advantages rely on the
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matrix of programmable logic blocks, which is a part of FPGA device [35]. This benefit
results in the high performance, flexibility, and the possibility of dynamic reconfiguration
(modification of the structure during runtime of the device) [36–39].

Moving on to the analysis aspects of Petri-net-based systems, there are two immensely
popular techniques that allow examination of the system properties [7,22,27,40]. The first
one is based on the reachability tree exploration [26,40], while the other one utilizes linear
algebra methodology by computing place invariants [6,41,42]. Unfortunately, both methods
have serious limitations, related to the state explosion problem. Indeed, the number of
reachable states (invariants) can be exponential [4,5,7]. This results in the exponential
computational complexity of the algorithm, which means that the solution may not be
found within the assumed time [24].

Besides the typical design aspects, in this paper we will also focus on the boundedness
examination of the system. Let us now briefly underline the role of boundedness in the
hardware-oriented systems modelled with Petri nets. Such ideas are considered in [5,15,43].
The system is initially specified by an interpreted Petri net, an extension of the ordinary Petri
net containing additional binary inputs and outputs of the modelled controller [44]. One of
the crucial properties that is required in order to design a CPS with an interpreted Petri
net is boundedness. A bounded system guarantees the finite number of reachable states,
which is especially important in case of further implementation in the FPGA. Therefore,
the modelled system ought to be verified against the unbounded places. It should be
underlined that such an examination can be carried out at the early design stage. Once
the system is verified, it can be prototyped in the hardware description languages (Verilog,
VHDL) [30]. Finally, it is implemented with the reconfigurable devices (e.g., FPGA).

Recently, the idea of so-called dynamic partial reconfiguration of an FPGA has become
very popular [16,17]. This approach permits the replacement of a portion of the already
implemented system without stopping the already-programmed device. To perform the
dynamic partial reconfiguration, the system ought to be properly designed (for example,
decomposed into static and dynamic parts), and synchronized. Such operations can be
performed with the use of interpreted nets. Let us underline that the presented Petri-net-
based reconfigurable techniques require on their input systems that are bounded and free
from deadlocks.

In [45], a Petri-net-based approach oriented toward implementation in the FPGAs
is shown. The algorithm is supported by a case study example of direct matrix convert-
ers. However, differing from the previously described papers, the detailed design flow is
presented. The solution deals with the verification techniques of the control part of the
Petri-net-based cyber-physical system. Moreover, analysis methods, simulation and hard-
ware validation are described. Nevertheless, the presented descriptions are very general.
The authors do not include algorithms that permit boundedness analysis, nor hardware
description language templates for realization of the system within FPGA. Moreover, the
proposed technique is directly oriented towards realization of the direct matrix converters.

Finally, let us recall Petri-net-based models that are directly oriented on the specifi-
cation of the cyber-physical systems (CPS). Such a system combines computation with
physical routes. The behaviour of a CPS is generally split into two parts: cyber and phys-
ical parts. Specification of the control part of the CPS by a Petri net is shown in [13]. In
particular, the paper proposes Petri-net-based design of a CPS oriented to control direct
matrix converter with space vector modulator. The control algorithm is initially described
by a deadlock-free and 1-bounded (safe) Petri net and is oriented toward hardware im-
plementation in the FPGA device. However, the detailed verification algorithms are not
considered, nor presented in the paper.

To summarize the above discussion, it can be noticed that there are several problems
related to the designing of the Petri-net-based CPS aimed at the implementation in FPGAs.
First, there is no comprehensive framework for designing such systems, that includes
modelling, verification, and hardware implementation aspects. Another problem is related
to the analysis of the key properties of the Petri-net-based system (e.g., boundedness).



Energies 2023, 16, 67 3 of 19

The computational complexity of the existing techniques is usually exponential [3–7].
This means that the result of analysis may be not achieved within the assumed time [5].
Considering that the current design solutions require bounded (and/or safe) Petri nets, this
may cause serious problems for the designers. Finally, the existing design techniques are
rather oriented on the particular solution (e.g., direct matrix converter). Therefore, there is
a need to develop a comprehensive design framework that includes all the above aspects.

This paper proposes a novel design and analysis technique of cyber-physical systems
for implementation in the FPGA. The idea is based on the interpreted Petri nets; thus,
it is mainly oriented toward cyber-physical systems. Nevertheless, let us point out that
any concurrent system that applies the proposed rules can be designed and analysed.
Furthermore, a novel verification method of a Petri-net-based CPS is proposed. The
algorithm permits the detection of possible unbounded places in the system. Contrary to
the existing solutions, which are mainly exponential, the proposed idea permits performing
the verification process in polynomial time (note that this paper is directly focused on
the formal verification techniques and, thus, it does not deal with the security aspects of
CPS, those can be found in other works, e.g., [46–50]). Finally, the transformation of the
Petri-net-based model to the hardware is proposed and presented in detail. The main
contributions of the paper can be summarized as follows:

• The comprehensive design flow of the cyber-physical systems modelled by an in-
terpreted Petri net is proposed. The presented design flow is aimed mainly at (but
not restricted to) the implementation of the CPS in the FPGA device. The presented
methodology includes all necessary steps, including modelling of the system by an
interpreted Petri net, formal verification, transformation to the hardware description,
and final implementation in the FPGA.

• Besides the complete design flow, a novel verification algorithm is introduced. The
method allows the initial error checking in order to obtain potentially unbounded
places. The main advantage of the proposed method is its polynomial computational
complexity. It is proved that the algorithm runs in O

(
|T|2|P|

)
time.

• The presented design flow, as well as proposed verification technique are illustrated
by a real-life cyber-physical system. In particular, a traffic light controller is designed
and implemented within FPGA. The system was additionally validated in hardware
with the use of the miniaturization model of the crossroad traffic light system.

The paper is structured as follows. Section 2 presents the foundational definitions
and notations. The proposed design method with analysis algorithms is included within
Section 3. Section 4 illustrates the presented approach by a real-life case study example.
Finally, Section 5 summarizes the discussion and presents directions for future research.

2. Basic Notations and Definitions

Definition 1. A Petri net N is a four-tuple: N = (P, T, F, M0), where: P is a set of places, T is a
set of transitions, F ⊆ (P× T)

⋃
(T × P) is a set of arcs, M0 is an initial marking.

A State of a Petri net N = (P, T, F, M0) is called marking, denoted by M. Marking is a
subset of Petri net places M ⊂ P. A marked place M contains a token (or tokens).

A transition is enabled if all its input places {p ∈ P : (p, t) ∈ F} contain a token. A
transition is fired if and only if it is enabled.

Definition 2. A Petri net is bounded if the number of tokens in every place does not exceed a
finite number for any marking reachable from M0. A Petri net that is bounded for any finite initial
marking M0 is said to be structurally bounded.

Definition 3. A Petri net is safe if it is 1-bounded.
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Definition 4. A Petri net N is live if it is possible to fire any transition from any reachable marking
(by a sequence of firings of other transitions).

Definition 5. An interpreted Petri net N is a bounded and live Petri net that is defined as a
six-tuple: N = (P, T, F, M0,X ,Y). Here, X denotes the set of binary inputs, while Y denotes the
set of binary outputs of the CPS.

Note that several notations of the interpreted Petri nets can be found in the literature.
In this paper, we assume that the interpreted Petri net specifies a cyber-physical system,
and it is bounded and live.

Note that in the case of interpreted Petri nets, there is an additional condition for
transition firing. In an interpreted Petri net, a transition is fired if and only if it is enabled
and all its associated input values (from the set X ) are fulfilled.

Definition 6. An incidence matrix of an interpreted Petri netN = (P, T, F, M0,X ,Y) is a matrix
A|T|×|P| of integers, given by:

aij =


−1,

(
pj, ti

)
∈ F

1,
(
ti, pj

)
∈ F

0, otherwise

A cell aij of the matrix refers to transition ti and place pj. The columns of the matrix
correspond to places, while the rows refer to transitions of the interpreted Petri net. Matrix
A|P|×|T| (or just AT) means its transposed form.

Definition 7. A place invariant (p-invariant) of an interpreted Petri net N = (P, T, F, M0,X ,Y)
is a |P|-vector

→
y of integers such that A

→
y = 0. The set of places corresponding to nonzero entries

in a p-invariant
→
y is called support of a place invariant.

Definition 8. An interpreted Petri net is covered by p-invariants if every place p ∈ P belongs to at
least one support of a p-invariant.

Theorem 1 [51]. An interpreted Petri netN is structurally bounded if it is covered by place invariants.

Definition 9. A matrix is in the reduced row echelon form (RREF) if and only if:

(a) Any rows consisting entirely of zeros are grouped together at the bottom of the matrix;
otherwise, the first nonzero number in the row is 1 (leading one);

(b) Each column of the matrix containing a leading one has zeros everywhere else;
(c) In any two successive nonzero rows of the matrix, the leading one in the lower row occurs

farther to the right than the leading one in the higher row.

Definition 10. A single leading one aij = 1 of a matrix A in the reduced row echelon form denotes
an entry, where all the remaining entries of row i are equal to zero.

3. The Proposed Design and Verification Techniques

The proposed design technique is strictly oriented toward implementation of the
system within the FPGA. It consists of all necessary steps, starting from the modelling of
the CPS by a Petri net, its formal analysis, as well as further transformation of the model to
the hardware description languages, and final realization in the physical device. Beside
the comprehensive design flow, a novel verification idea is proposed. The method permits
detecting possible errors (unbounded places) in a polynomial time.

In general, the proposed design technique consists of four main steps:

1. Modelling of the system by an interpreted Petri net.
2. Formal verification of the system (detection of possible unbounded places).
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3. Hardware modelling of the system (transformation to HDL description).
4. Implementation and validation of the system within FPGA.

Let us now describe each of the above steps in more detail.

3.1. Modelling of the System by an Interpreted Petri Net

Initially, based on the informal description of the system (e.g., given by the customer),
the formal specification of the CPS is prepared. The cyber-physical system is modelled by
an interpreted Petri net, considering all its properties. The main advantage of Petri-net-
based design is the relatively easy description of concurrent processes that occur in the
system. Moreover, graphical representation can be very helpful during meetings between
the customer and designers in order to understand the meaning and final product to be
achieved. What is important is that interpreted nets enhance the traditional (classical)
class of Petri nets through—among others—additional input and output signals. They are,
in general, used for communication of the system with the environment but can be also
applied in modelling aspects. One of the most popular problems that may occur during
specification of the system by a Petri net is conflicts. A conflict refers to the situation, where
more than one transition is enabled (and thus can be fired) at the same time.

Consider an exemplary CPS shown in Figure 1. There are three places and four transitions
in the net, while p1 is initially marked. The model presented in the left (a) is specified by
an ordinary (pure, classical) Petri net. In such a description, the behaviour of the system is
not determined since both transitions t1 and t2 are enabled and can be fired. This situation
is called conflict. One of the possibilities for conflict resolution is modification of the Petri
net structure [52]. This obviously requires additional actions from the designers, which is
time- and cost-consuming. Another possibility for conflict resolution is the application of
interpreted Petri nets. The extension of the system is assumed from input and output signals,
as presented in Figure 1b. The additional internal signal sun resolves conflict in the system:
when it is active (binary equal to “1”), then transition t1 is enabled and can be fired. Otherwise,
in the situation where sun is not active (equal to “0”), transition t2 is enabled. Note that the
CPS shown in Figure 1b reflects the real-life situation. Depending on the daylight level, the
light (associated with the place p3) is turned on or off. The adequate decision is made based
on the sensor (represented in the system by the signal sun).
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Figure 1. A Petri-net-based system with conflict (a), and its possible resolution (b).

Moving on to the detailed modelling necessities, according to the definition of the
interpreted Petri net, the modelled system ought to be live and bounded (or even safe). In
this paper we focus on the boundedness aspects of the designed system. Such a property is
especially crucial in case of the further implementation of the system in the hardware. In
order to avoid unexpected (unwanted) states (which may result in the unstable functionality
of the system in the FPGA), the CPS ought to be bounded (or at least examined against the
possible unbounded places).
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Obviously, the designers usually try to keep in mind such requirements during mod-
elling of the system. There are several useful modelling tools that support analysis and
verification of the system at the specification stage, e.g., PIPE (Platform Independent Petri
net Editor 2) [53] or IOPT-Tools (Input-Output Place-Transition-Tools) [54]. Nevertheless,
especially in the case of complicated models, it is extremely hard to examine the system
and detect possible mistakes. Although modelling tools are supported by the verification
(and even validation) techniques, very often it is not possible to analyse the system due to
the state explosion problem [22,24,25,27,55,56]. The traditional, commonly used methods
are exponential; thus, searching for the result may take a long time, or they may not even
be found.

In this paper, a novel verification technique of the Petri-net-based CPS is proposed.
The method is aimed at the detection of possible unbounded places in the system. The main
advantage of the presented algorithm is its polynomial (cubic) computational complexity.
Contrary to the existing methods, the method is not restricted to the particular class of Petri
net [57–60]. However, there are also limitations, which we will discuss later in this paper.

3.2. Formal Verification of the System (Detection of Possible Unbounded Places)

The proposed verification idea is based on the linear algebra technique, and it takes
into account the existence of the place invariant covering in the net. According to the
Theorem 1, the Petri net is structurally bounded if it is covered by place invariants. We will
apply this important property to the examination of the system. However, in contrast to
the existing methods, we will not compute the complete (or even reduced) set of place
invariants. The concept is based on the transformation of the interpreted Petri net incidence
matrix to the reduced row echelon form, and its further analysis. The proposed verification
technique is illustrated by Algorithm 1.

The presented algorithm permits finding the possible unbounded places in the anal-
ysed CPS. It is assumed that the system is represented by an incidence matrix, directly
according to Definition 6. Therefore, columns of the matrix correspond to places of the Petri
net, while rows refer to transitions. At the subsequent step, transformations of the initial
matrix are executed. In particular, the reduced row echelon form is achieved. In particular,
the presented algorithm applies the Gauss–Jordan reduction technique [61]. The third step
is the crucial point of the proposed algorithm. The reduced matrix is examined according
to the presence of the place invariant covering. According to Theorem 1, the existence of
such a cover assures that the Petri net is structurally bounded. Therefore, if the particular
place is not included in any p-invariant, it is considered to be possibly unbounded. Finally,
the fourth step reports the results and prints possible unbounded places (if any).

The main advantage of the presented algorithm is its computational complexity, which
is polynomial. It should be noted that this refers to all classes of Petri nets. This is a huge
benefit in comparison to the existing methods, which are exponential (except particular
narrowed classes of Petri nets, as shown in [62–64]). On the other hand, there is also
an important limitation of the proposed method. The technique permits determining
whether the system is covered by place invariants and detecting particular places that are
not included in such a cover. However, we are not sure whether the particular place is
unbounded or not. Nevertheless, such an examination is relatively easy to execute, through,
for example, the simulation of the system. Once the designer has some knowledge about
potentially unbounded places, the particular areas of the system can be carefully checked
through validation of the CPS.

Let us now formulate the adequate propositions and prove them formally. Firstly,
we show that existence of the single leading one in the matrix indicates that the corre-
sponding place is not covered by any place invariant, and, hence, it might be unbounded.
Furthermore, we will prove that the proposed algorithm is bounded by a polynomial (in
the number of transitions and places of the Petri net).
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Algorithm 1: Searching for possible unbounded places in the Petri-net-based CPS

1. Read incidence matrix A|T|×|P| of interpreted Petri net N = (P, T, F, M0,X ,Y).
2. Transformation of A|T|×|P|:

for each row t ∈ T :
find row i with the leftmost nonzero entry a;
swap rows i and t;
t := divide row t by a;
for each j ∈ T − {t}:

for each p ∈ P:
i := i− j ∗ A[t][p];

end for
end for

end for
3. Examination of the transformed matrix:

set unboundedPlaces← ∅ ;
set p := 0;
for each row r ∈ T:

while (A[r][p]! = 1 and p < |P|):
++ p;

end while
if (p = |P|) break;
for (k := p; k ≤ |P|;++ k):

if (A[t][k] == 1):
unboundedPlaces:= unboundedPlaces ∪ {k};

end if
end for

end for
4. Print the possible unbounded places and return the algorithm:

if (unboundedPlaces = ∅):
print No unbounded places found!

else
print The possible unbounded places in the CPS:
for each place p ∈ unboundedPlaces :

print p;
end for

end if
return unboundedPlaces.

Proposition 1. Let A|R|×|P| be an incidence matrix in the reduced row echelon form of an inter-
preted Petri net N = (P, T, F, M0,X ,Y) that specifies the cyber-physical system. If there exists
a single leading one arp in this matrix, then the corresponding place p ∈ P is not covered by any
p-invariant, and thus it might be unbounded.

Proof. Assume that there exists a row r ∈ R of the matrix A|R|×|P| that specifies the cyber-
physical system as containing only a single leading one at entry arp. From Definition 9
(point b), we know that each column of the matrix containing a leading one has zeros
everywhere else. Moreover, from Definition 10, we also know all the remaining entries of
a row containing a single leading one are also equal to zero. Clearly, there does not exist
any place invariant

→
y that solves the linear equation A

→
y = 0 such that the support of

→
y

contains p. Hence, p is not covered by any place invariant. Furthermore, from Theorem 1
we know that the interpreted Petri net N is structurally bounded if it is covered by place
invariants. Since p is not covered by any place invariant, we do not know whether N is
bounded, and thus place p might be unbounded. �
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Proposition 2. The computational complexity of Algorithm 1 is bounded by O(|T|2|P|), where |P|
denotes the number of places, and |T| denotes the number of transitions in the interpreted Petri net.

Proof. The presented algorithm is divided into four main parts. The first and the last
(fourth) parts read input values and outputs results; thus, we will not consider them in
the complexity estimation. The second part involves three nested loops. Two of them are
executed on the set of transitions, while the third (the inner one) involves the set of places.
Thus, the computational complexity of this step is bounded by O(|T|2|P|). Furthermore,
the third step involves searching for leading ones in the matrix, which is executed at
most O(|T||P|) times (note that the number of rows |R| of the reduced matrix corresponds
to the number of transitions |T| in the initial interpreted Petri net). Therefore, the total
computational complexity of Algorithm 1 is bounded by a cubic O(|T|2|P|) with the number
|P| of places and |T| transitions. �

Once the set of possible unbounded places is obtained, the designer is able to detect
and correct errors. In general, the revision of the interpreted Petri net is strictly related to
the functionality of the modelled CPS. However, there are several known mistakes that can
be easily resolved; let us briefly present one of the most common.

Figure 2a shows an exemplary CPS where the fork–join split was used improperly.
This fault caused by the designers is related to the improper splitting and joining of
places/transitions. The initial process is split into two subprocesses by transition t1. This
means that places p2 and p3 are executed concurrently. The further firing of transitions
t2 and t3 leads to the situation where two tokens can be accumulated by place p4. Hence,
this place is unbounded. Obviously, such a mistake was caused by improper splitting (or
joining) of the processes. Note that such an error may lead to the unexpected states in the
system, where two or more places are simultaneously executed instead of one.
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Figure 2. An unbounded CPS (fork-join) (a), and its corrected: 1st version (b), and 2nd version (c).

Figure 2b presents one of the possible solutions. This one is based on the single
sequential process. An additional transition t5 was added in order to revise the modelled
CPS. Now, all places are bounded; thus, the system is correctly specified. Note that the
revised version of the system includes conflict (caused by t1 newly added transition t5);
thus, input signal x was applied to resolve it. Alternatively, the presented CPS can be
corrected as shown in Figure 2c. Although there exist two concurrent subprocesses in the
system, they are properly merged by transition t2.
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3.3. Hardware Modelling of the System (Transformation to HDL Description)

Once the CPS is modelled and verified, it can be described in the hardware description
language (HDL) toward implementation in the FPGA. This is a hardware model of the
system, and it directly refers to the Petri-net-based specification. In this paper, we will
follow the behavioural description of the CPS in the Verilog language, initially shown in [30].
The HDL model contains three main parts that reflect the behaviour of the interpreted Petri-
net-based system. They directly refer to the description of places, transitions, and output
signals. It is also assumed that the system is synchronous, that is, oscillated by the clock
signal (i.e., provided by an FPGA). Let us explain the hardware model using an example.
Recall the CPS shown in Figure 1b. The hardware model of this system is presented in
Listing 1. Initially, the general description of the Verilog module is created. It contains a
declaration of input and output signals, as specified by the Verilog standards [65].

Listing 1. The HDL description of the system shown in Figure 1b.
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1:  module System_Fig_1b (light,sun,clk,reset); 

2:   output light; 
3:   input sun; 
4:   input clk,reset; 

5:  reg [1:3] p; 
6:  wire [1:4] t; 

//First part – description of places: 

7:  always@(posedge clk or posedge reset) 
8:  begin 
9:   if (reset) p<=3′b 100; 
10:   else  
11:   begin 
12:    p[1]<=p[1]&~t[1]&~t[2]|t[3]|t[4]; 
13:    p[2]<=p[2]&~t[3]|t[1]; 
14:    p[3]<=p[3]&~t[4]|t[2]; 
15:   end 
16:  end   

//Second part – description of transitions: 

17:  assign t[1]=p[1]&sun; 
18:  assign t[2]=p[1]&~sun; 
19:  assign t[3]=p[2]; 
20:  assign t[4]=p[3]; 

//Third part – description of outputs: 

21:  assign light=p[3]; 

22: endmodule          

In the presented example, there is one output signal (denoted by light), and three input
signals: sun, clk, and reset. Note that two last signals are required due to the FPGA demands
and style of proposed implementation (synchronous system). Furthermore, there are places
and transitions declared as registers and wires, respectively. Let us discuss them.

The behaviour of the system is considered as synchronous; thus, it is described by the
procedural always block. Switching between states (markings) is activated by the rising
clock signal. Moreover, the asynchronous reset signal is provided. The presented procedural
block directly specifies the behaviour of the CPS. Note that, additionally, keeping up the
system in a particular state is also considered.

The second part describes the transitions. This block is performed with the use of
continuous assignments. Each transition is reflected by the combination of related places
and input signals. Recall the conflict described earlier (Section 3.1) in this paper. It is easily
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resolved by the external signal sun (lines 12, and 13). Two remaining transitions (t3 and t4)
are just triggered by places (p2 and p3, respectively).

Finally, the third part describes the output signals of the system. The particular outputs
are set according to the specification of the CPS by the interpreted Petri net. In the presented
example, there is only one output signal (light), which is active once the system reaches place
(p3). The association is performed by the continuous assignment, as presented in line 21.

3.4. Implementation and Validation of the System within FPGA

The next step of the proposed design flow refers to the implementation of the CPS in
the FPGA. This step can be generally divided into two substages. The first one is aimed at
the logical synthesis and logical implementation of the system, while the second is directly
related to the realization within the physical device. There are several FPGA vendors in the
market [66–69]. Therefore, although the general concept is similar, the implementation can
be slightly different. In this paper, we will follow the guidelines provided by Xilinx [70].

Moving on to the logic synthesis, this operation translates the Verilog description to
the gate-level representation. Further logic implementation adjusts and maps the system to
the particular hardware device. As the output of the above processes, the configuration
bit-stream file is created. It is used for the physical realization of the system.

The physical implementation is performed by programming of the FPGA with the
achieved bit-stream file. The data are sent via programming interfaces. This operation is
usually fully controlled by the vendors’ tools.

Finally, once the system is physically implemented within the FPGA, it can be validated
(simulated) at the hardware level. There are several ways to perform such an operation.
The basic one is based on the oscilloscope and observation of the behaviour of the system. In
particular, based on the assumed stimulus (input signals), the outputs are measured [13,45,71,72].
Obviously, such a technique may be awkward, especially in the case of more complex design.
The other possibility is validation of the system in the real environment, with the application
of the physical part of the CPS. It can be also carried out with the use of, e.g., miniaturization
models of the prototyped system. We will present such a real validation later in this paper
(cf. Section 4.4). Note that hardware validation of the system permits examination of the CPS in
the real-life environment. However, it does not guarantee the proper functionality of the CPS,
since there still can be unexpected or unreachable states in the system. Therefore, let us once
more underline the important role of the formal verification proposed in Section 3.2.

4. Case Study Example

This section illustrates the proposed design technique with an example of a Petri-net-
based CPS. Figure 3 shows a real-life crossroad traffic light system. There are four roads;
each has three independent lines for cars (left, straight, and right), and two additional ones
for pedestrians. The main benefit of the presented system is controlling the flexibility of the
lights, including various situations, e.g., traffic intensity. Depending on the needs, several
scenarios can be applied, including priority for cars (to reduce the traffic), for pedestrians
(more strict rules for cars), or to make a collision-free crossroad.

The purpose of this case study is to present the design flow step by step, together with
the application of the proposed verification techniques. Let us underline that the presented
concept comes from real life and represents a crossroad traffic light system in Zielona Góra
(Poland). Moreover, to validate the functionality of the system, the miniaturization model
of the system was prepared (c.f. Section 4.4).
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4.1. Modelling of the Crossroad Example by an Interpreted Petri Net

In the first phase of the system design, a formal specification is prepared based on the
collected assumptions (illustrated in Figure 3). It is assumed that the modelled crossroad
system is collision-free. In addition, on each road, there are dedicated pedestrian crossings
controlled by two lights (red or green).

In the presented example, the crossroad is split into two main parts: part A and part
B. The first one controls the upper-left and bottom-right corners of the crossroad. Those
corners work in the same way (therefore, they are inverted vertically and horizontally in
Figure 3). Similarly, part B controls the bottom-left and upper-right corners of the crossroad.

The traffic lights are numbered and prefixed by the part number and followed by the
first letter of a particular signal colour (R—red, Y—yellow, G—green). For example, the traffic
light signals for the cars coming from the north (up) and turning right are denoted by A1R
(red), A1Y (yellow), and A1G (green); the light signals for cars going straight are denoted by
A2R (red), A2Y (yellow), A2G (green), etc. Similarly, the traffic light signals for the pedestrians
crossing the left side of the upper road are denoted by A4R (red), A4G (green) and A5R (red),
A5G (green), etc. Each light can be controlled independently; thus, there are in total 17 traffic
light signals on each part of the crossroad, denoted by A1R to A7G and B1R to B7G. For
example, the red light of the traffic controller A1 (turning right for cars) is denoted by A1R,
the green light of this controller by A1G, and yellow by A1Y. Similarly, the red light of A4
(pedestrians) is denoted by A4R, while the green light by A4G, etc.

Figure 4 shows the interpreted Petri net that specifies the presented traffic light system.
There are thirty-two places and twelve transitions. Moreover, there are thirty-four output
signals that control the traffic lights (they are assigned to particular places). The model
of the system was prepared within the PIPE tool (v.4.3.0). For more readability, the Petri
net shown in Figure 4 was prepared with the graphics software (Visio). To underline the
meaning of particular place, the net was coloured adequately to the active output signals
(red, yellow, and green).



Energies 2023, 16, 67 12 of 19

Energies 2023, 16, x FOR PEER REVIEW 13 of 20 
 

 

the meaning of particular place, the net was coloured adequately to the active output sig-
nals (red, yellow, and green). 

 
Figure 4. The initial specification of the crossroad traffic light system. 

Table 1 shows the association between places and outputs in the system. If more than 
one output is assigned to a given place (e.g., A1YR), it means that they are active simulta-
neously (at the same time). Note that the presented Petri net does not include any input 
signals; it is assumed that switching between states (markings) is oscillated by a clock 
signal (it will be applied during the hardware-modelling stage, c.f. Section 4.3). 

Table 1. Association between places and output signals. 

Place Outputs Place Outputs Place Outputs Places Outputs 
A1G A1G A1RY A1R, A1Y B2Y B2Y A3Y A3Y 
A1Y A1Y B1RY B1R, B1Y A45R A4R, A5R A67G A6G, A7G 
B1Y B1Y A2R A2R B67R B6R, B7R B3Y B3Y 
A1R A1R B2G B2G B2R B2R A2Y A2Y 
B1R B1R B1G B1G A3RY A3Y, A3R B45R B4R, B5R 

B2RY B2Y, B2R A3R A3R B3RY B3Y, B3R A67R A6R, A7R 
A45G A4G, A5G B3R B3R A3G A3G A2G A2G 
B67G B6G, B7G A2RY A2Y, A2R B3G B3G B45G B4G, B5G 

4.2. Formal Verification of the System (Detection of Possible Unbounded Places) 
Once the system is formally specified by an interpreted Petri net, it can be formally 

verified against the possible errors and mistakes. Since the specification was prepared 
within PIPE, this tool was initially used to perform the analysis. The results of the tool 
showed that the modelled Petri net did not contain deadlocks, but it was not bounded. 
This means that advanced verification (and/or validation) was required in order to obtain 
the unbounded places. Unfortunately, the traditional verification based on the place in-
variant analysis (performed with the classical method shown in [6], as well as executed 
with the analysis tool that is available within PIPE) was completed with no success due to 
the exponential explosion of place invariants (the configuration of the applied computer: 
Intel Core i9-9900K CPU @ 3.60GHz, 128 GB RAM, the termination time was set to 300,000 
ms). 

A2
RY

A1
RY

B1
RY

B3
RY

A3
RY

B2
RY

A1Y

B2Y

B1Y

B3Y

A2YA3YA1G

A3G

A67
G

B67
G

B45
G

B3G
B2G

A2G

B1G

A45
G

t3

t5

t1 t2

t4

t7

t6

t8 t9 t10
t11

t12
A2R

A67
R

B45
R

A1R

B1R A3R

B3R

B2R

B67
R

A45
R

Figure 4. The initial specification of the crossroad traffic light system.

Table 1 shows the association between places and outputs in the system. If more
than one output is assigned to a given place (e.g., A1YR), it means that they are active
simultaneously (at the same time). Note that the presented Petri net does not include any
input signals; it is assumed that switching between states (markings) is oscillated by a clock
signal (it will be applied during the hardware-modelling stage, c.f. Section 4.3).

Table 1. Association between places and output signals.

Place Outputs Place Outputs Place Outputs Places Outputs

A1G A1G A1RY A1R, A1Y B2Y B2Y A3Y A3Y

A1Y A1Y B1RY B1R, B1Y A45R A4R, A5R A67G A6G, A7G

B1Y B1Y A2R A2R B67R B6R, B7R B3Y B3Y

A1R A1R B2G B2G B2R B2R A2Y A2Y

B1R B1R B1G B1G A3RY A3Y, A3R B45R B4R, B5R

B2RY B2Y, B2R A3R A3R B3RY B3Y, B3R A67R A6R, A7R

A45G A4G, A5G B3R B3R A3G A3G A2G A2G

B67G B6G, B7G A2RY A2Y, A2R B3G B3G B45G B4G, B5G

4.2. Formal Verification of the System (Detection of Possible Unbounded Places)

Once the system is formally specified by an interpreted Petri net, it can be formally
verified against the possible errors and mistakes. Since the specification was prepared
within PIPE, this tool was initially used to perform the analysis. The results of the tool
showed that the modelled Petri net did not contain deadlocks, but it was not bounded. This
means that advanced verification (and/or validation) was required in order to obtain the
unbounded places. Unfortunately, the traditional verification based on the place invariant
analysis (performed with the classical method shown in [6], as well as executed with the
analysis tool that is available within PIPE) was completed with no success due to the
exponential explosion of place invariants (the configuration of the applied computer: Intel
Core i9-9900K CPU @ 3.60GHz, 128 GB RAM, the termination time was set to 300,000 ms).

Since the traditional algorithm failed to verify the system, Algorithm 1 was applied to
examine the presented system. The initial incidence matrix was of size 32× 12 (thirty-two
places and twelve transitions). After the verification, the algorithm determined that there
was one possible unbounded place in the system: A1YR. Indeed, this place accumulates
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tokens infinitely, and the behaviour of the traffic light system can be unpredictable. This
may lead to dangerous situations in real life, and the system ought to be corrected. It can
be easily observed that tokens are accumulated after firing transition t3 or transition t4.
Obviously, this is a designer’s mistake since it was not intended to turn on the yellow and
red signals of the A1 signal-head, right after the red and yellow signals of the B2 become
inactive. This mistake might be solved by removing the arc leading from transition t4 to
place A1YR. Finally, let us underline that the run-time of Algorithm 1 was just only 1.17 ms,
while the traditional algorithm was not able to complete the task.

The corrected CPS is shown in Figure 5. The system was examined once more. This
time PIPE indicated that the net was bounded (and even safe). Moreover, Algorithm 1
confirmed that no possible unbounded places were found in the revised interpreted Petri
net. This means that no formal mistakes were found, and the design flow could proceed.
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Figure 5. Corrected (final) specification of the crossroad traffic light system.

4.3. Hardware Modelling of the System (Transformation to HDL Description)

After the formal verification, the interpreted Petri net model was transformed into
the HDL description. The hardware description of the crossroad traffic light system was
prepared exactly according to the rules presented in Section 3.3. Listing 2 shows the Verilog
module of the designed CPS.

The name of the module was set to Crossroad _FPGA. The list of input and output
ports include clock and reset signals, as well as all outputs of the traffic light system. Note
that the presented listing contains only parts of the code; the list of output signals is also
truncated. There are thirty-two registers declared for representation of particular places.
They are merged within the 32-bit vector p. Furthermore, twelve wire signals are used in
order to declare transitions. Those signals are combined within the 12-bit vector t.

Moving on to the description of the functionality of the system, two types of assign-
ments were used. Switching between states (markings) of the CPS are executed by the
synchronous always block. It is triggered by the positive edge of the clock signal (denoted
by clk). There is also the reset signal which is considered. In contrast to the clock signal,
reset is asynchronous; thus, the system can be zeroed any time it is needed. The transitions
are described by continuous assignments. Note that such assignments refer to the enabled
transitions, while firing is executed by the always block.

Finally, the output signals are associated with places by the continuous assignments.
Note that several output signals are associated with the same place. For example, outputs
B6R and B7R are assigned to p [32] (which refers to the place B67R denoted in Figure 4).
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Listing 2. The HDL description of the system shown in Figure 5.
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33:  ... 

36:   assign B6G=p[31]; 
28:   assign B6R=p[32]; 
36:   assign B7G=p[31]; 
27:   assign B7R=p[32]; 

28: endmodule          

4.4. Implementation and Validation of the System within FPGA

The last step of the presented design flow refers to the logical and psychical imple-
mentation of the CPS in the FPGA device. Firstly, the HDL model is synthesized in order
to obtain a gate-level representation. This is a low-level description of the traffic light
controller. Adjusting the system to the particular FPGA is executed during the logic im-
plementation. The presented case study example was physically implemented within the
Xilinx xc5vlx50-2ff676 device from the Virtex-5 family.
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Logic synthesis and implementation resulted in no errors, nor were any warnings
detected. The summary utilization of the FPGA device is shown in Figure 6. The imple-
mented crossroad traffic light system consumed 116 look-up tables (LUTs) and 59 registers
(Flip Flops). This resulted in 49 occupied Slices of the device. It should be underlined that
this is just a fraction (1%) of the available resources.

Energies 2023, 16, x FOR PEER REVIEW 16 of 20 
 

 

controller. Adjusting the system to the particular FPGA is executed during the logic im-
plementation. The presented case study example was physically implemented within the 
Xilinx xc5vlx50-2ff676 device from the Virtex-5 family. 

Logic synthesis and implementation resulted in no errors, nor were any warnings 
detected. The summary utilization of the FPGA device is shown in Figure 6. The imple-
mented crossroad traffic light system consumed 116 look-up tables (LUTs) and 59 regis-
ters (Flip Flops). This resulted in 49 occupied Slices of the device. It should be underlined 
that this is just a fraction (1%) of the available resources. 

 
Figure 6. FPGA utilization summary. 

Finally, the bit-stream was generated. This file was used during the physical imple-
mentation of the system in the FPGA device. The hardware validation of the designed 
CPS was performed with the use of the miniaturization model of the crossroad traffic light 
system. Figure 7 shows such a miniaturization model of the traffic light controller during 
the validation process. 

  
Figure 7. The miniaturization model of the traffic light controller. 

The hardware examination of the system confirmed the design assumptions. Moreo-
ver, the hardware simulation permitted validating the already-implemented traffic light 
controller in the real-life environment with the miniaturization model. Nevertheless, let 

Figure 6. FPGA utilization summary.

Finally, the bit-stream was generated. This file was used during the physical imple-
mentation of the system in the FPGA device. The hardware validation of the designed
CPS was performed with the use of the miniaturization model of the crossroad traffic light
system. Figure 7 shows such a miniaturization model of the traffic light controller during
the validation process.
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The hardware examination of the system confirmed the design assumptions. More-
over, the hardware simulation permitted validating the already-implemented traffic light
controller in the real-life environment with the miniaturization model. Nevertheless, let us
once more underline the importance of the formal verification process presented in step 4.2.
Thanks to the detection of unbounded places, the designed CPS was corrected at the early
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prototyping stage, before the transformation of the model to the HDL code, logic synthesis
and implementation, and the physical realization of the system in the FPGA device.

5. Conclusions

The complete design flow and novel verification technique of the Petri-net-based
cyber-physical systems were proposed in the paper. The methodology is oriented toward
the implementation of the CPS in the FPGA device. Besides the comprehensive prototyping
methodology, a verification algorithm of the possible unbounded places was introduced.

The main benefit of the proposed method is polynomial computational complexity.
Contrary to the popular analysis techniques, the presented approach does not require
computation of all place invariants which are bounded exponentially in general. The
idea is based on the transformation of the incidence matrix of the interpreted Petri net,
and examination of the system in terms of place invariant coverage. It is proved that the
algorithm runs in cubic O

(
|T|2|P|

)
time.

The proposed design flow was illustrated by a real-life cyber-physical system. The
exemplary traffic light controller was modelled, verified, described in hardware, and finally
implemented in the FPGA device. Moreover, a miniaturization of the crossroad traffic
lights was prepared in order to validate and visualise the functionality of the CPS.

Moving on to the limitations of the proposed techniques, one may say that the pre-
sented algorithm indicates the possible unbounded places. Indeed, the method does not
guarantee that the detected place is truly unbounded. According to the presented theorems,
there is still a possibility that although such a place is not included in the place invariant
coverage, it can be bounded. Nevertheless, let us point out that the main problem of such a
complicated CPS relies on the indication of possible errors and mistakes. Once the designer
obtains the possible doubtful area (e.g., possible unbounded places), the functionality of
the system can be relatively easily validated. Additionally, preliminary research indicates
that such a situation (where indicated places are not bounded) is rather rare. More detailed
research in this direction is planned for future works.

Finally, future works include further enhancement of the presented verification tech-
nique. The authors observed that besides the information about boundedness, the proposed
method, in certain cases, can be also used in order to examine the absence of deadlocks.
Furthermore, it is planned to perform the detailed examination of the proposed verification
algorithm. In particular, the collection of representative benchmarks (about 250) will be
applied in order to verify the efficiency and effectiveness of the method. Moreover, it is
planned to develop additional examination methods of the detected places in order to
verify their boundedness.
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