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Abstract: A P0 system is used in hybrid automobiles to improve engine economy and performance.
An essential element of the P0 system for effectively transmitting power to the drive train is the belt
drive system (BDS). The features of electric machine (EM) and internal combustion engines (ICE) are
taken into account by standard energy management systems, such as the equivalent consumption
minimization strategy (ECMS). In order to maximize the effectiveness of the P0 system, this work
provides a novel formulation of the ECMS, which considers the power loss map of the BDS in addition
to the characteristic maps of EM and ICE. A test bench is built up to characterize the BDS, and it is
verified using an open-loop Hardware in the Loop (HIL) in the WLTP driving cycle. To find the most
appropriate equivalence factors for the ECMS, which would ordinarily be tuned through trial and
error, a genetic algorithm (GA) is used. With regard to the standard ECMS, the proposed methodology
intends to reduce fuel usage and CO2 emissions. Two belts in BDS were tested in the WLTP to achieve
CO2 savings of 1.1 and 0.9 [g/km], indicating the enhancement of system performance by using the
BDS power loss maps in ECMS.

Keywords: equivalent consumption minimization strategy; belt drive system characterization;
genetic algorithm; HEV-P0

1. Introduction

The need for reducing the impact of global mobility on the environment and the
subsequent strict limits and regulations on vehicle emissions have forced a paradigm shift in
automotive technology, especially in the powertrain. Alternative architectures have gained
traction in the automotive market, with sales shifting away from pure internal combustion
engine (ICE) layouts and toward electric vehicles (EVs) and hybrid electric vehicles (HEVs).
In this context, HEVs represent an intermediate solution between conventional combustion
and electric power sources. As a matter of fact, while meeting the regulatory demands,
HEVs are efficient and well accepted by a large slice of users who are still skeptical about
the complete electric transition given the high costs, limited range, and long charging
periods [1–4]. Many types of HEVs are now present in the market. They all exploit ICE
and one or more electric machines (EMs) and can be classified into micro, mild, full, or
plug-in, based on the rated power and off-vehicle charging possibilities. The EMs provide
traction torque to the vehicle in motor mode, while they recuperate the braking energy in
generator mode. Additionally, EMs could be used as an alternator to recharge the battery
by absorbing the additional power produced by the ICE in the so-called load shifting
mode. Another classification, from P0 to P5, is based on the position of EMs along the
driveline [5–8], as illustrated in Figure 1.
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Figure 1. HEV architecture classification based on the position of the electric machine.

It is well known that a substantial part of the management of HEVs is devoted to
the supervision of energy flows. When extracting energy from the ICE rather than from
batteries, it is crucial to improve the overall vehicle efficiency. In general, the supervisory
controller manages energy based on single or multiple objectives, such as minimizing
fuel consumption, emissions, drivetrain efficiency, extending battery life by avoiding
overcharging and undercharging, and optimizing gear-shifting strategy [7]. Based on
objectives, various energy management control strategies were formulated in the past
and are broadly classified into two categories: model-based and rule-based approaches.
Model-based approaches include numerical methods, such as genetic algorithm (GA) [9,10],
improved particle swarm optimization (PSO) [11] and dynamic programming [12]. Some
analytical methods included in the model-based approach are Pontryagin’s Minimum Prin-
ciple [13], model predictive control (MPC) [14,15], nonlinear model predictive control [16],
equivalent consumption minimization strategy (ECMS) [13,17,18], and adaptive equivalent
consumption minimization strategy (AECMS) [19]. Rule-based methods, on the other hand,
make use of heuristic approaches [6], rule-based optimal control [20], and fuzzy logic con-
troller [21]. Rule-based approaches do not depend on the model but on the knowledge and
experience of the designer. Furthermore, the solutions can be calibrated to correspond to
those obtained from offline optimal solutions, such as dynamic programming. Additional
techniques exploit artificial intelligence, such as neural networks, which are typically used
to recognize the driving pattern and produce the power split command [22,23]. Further
examples of these techniques are found in [24] and for charging electric vehicles with
renewable energy sources in [25].

Few model-based techniques require prior knowledge of the whole driving cycle to
solve the optimization problem and therefore cannot be used in real-world applications.
On the other hand, rule-based methods rely on the instantaneous vehicle speed, torque
request, and battery state of charge to produce the torque splitting command. They are
inherently causal and simple to implement on hardware for real-time applications.

ECMS can be found as an intermediate solution between rule- and model-based
approaches, since it produces an instantaneous optimal local torque splitting without the
prior knowledge of a full driving cycle and is computationally inexpensive for hardware
deployment. It is based on the computation of instantaneous optimal splitting between fuel
and electrical energy. This is achieved through the minimization of an index that is given
by the sum of the real and virtual fuel consumption. Fuel/electrical energy equivalence is
obtained by means of a couple of parameters, called equivalence factors that convert the
electric consumption into equivalent fuel consumption both in the case of boosting and
generation. The typical approach to define these parameters is by trial-and-error methods.
As an alternative, a shooting method [13] exploits the bi-section procedure that iteratively
approaches the best solution starting from an arbitrary one. It is valid for the selection of
the discharging mode equivalence only and has limitations when high accessory loads
have to be considered in the optimization. To deterministically find the best-suited pair
of equivalence factors, a GA is exploited in [26]. The authors proposed the method in a
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previous paper, demonstrating that GA-ECMS always guarantees an optimal solution, even
in the case of heavy accessory load in mild hybrid architectures, when the shooting method
is no longer valid because it does not guarantee charge sustaining.The performance of
energy management system (EMS) is highly influenced by the accuracy of the reference
vehicle model. Thus, the subsystems of the vehicle, such as the power source, transmission,
wheels, coast-down factors, etc., need to be modeled in a very accurate way. In particular,
the computation of the optimal operating point in the standard ECMS formulation is strictly
dependent on knowledge of the efficiency map of the EM and the ICE’s brake specific fuel
consumption (BSFC) map. The goal of this work is to re-formulate ECMS by including the
efficiency of the belt drive system (BDS) in a parallel P0 HEV. P0 is the layout where the
alternator is replaced by EM on the front-end accessory drive and is coupled to the ICE
through a belt drive system (BDS). In this architecture, braking energy recovery is possible
but limited by ICE drag and belt losses. In this powertrain, BDS losses are significant
and depend on the drive layout, belt material, preload, and operating conditions in terms
of torque and speed request. BDS transmission losses are quite significant and are not
considered in typical ECMS. Here, the proposal is to provide this information with BDS
power loss map along the torque speed characteristics, with positive and negative values
of torque that is when the EM works as a motor or as a generator, respectively.

From the performance point of view, the overall vehicle efficiency is higher since the
BDS loss characteristic is considered by the controller as a map, which is absent in the
standard energy management system. The ECMS equivalence factors are designed through
the adoption of a genetic algorithm, both for charge and discharge modes. The method is
tested on a P0 HEV, exploiting experimental power loss maps of the BDS and using two
different belts in the BDS to evaluate the robustness of the approach. The validation is
conducted with a Hardware in the Loop (HIL) setup, where a test bench is reproducing
the BDS with reference signals extracted in simulation for the World Harmonized Light
Vehicle Test Procedure (WLTP) driving cycle. Then, the crankshaft torque measured on the
test bench is compared to the simulation results using BDS experimental efficiency maps.
The major contributions of the work are:

1. A novel formulation of ECMS takes into account the efficiency of BDS as a map. This
map is obtained experimentally with a dedicated test bench. To the best of the authors’
knowledge, this approach is not present in the literature to date. Based on the vehicle
architecture, the expected CO2 savings are around 1 g/km.

2. A GA is used as optimization method to compute in a deterministic way the equiva-
lence factors of the ECMS. This method reduces calibration time and identifies the
optimal solution, which would otherwise be determined through trial and error.

To this end, the remainder of this work is structured as follows: Section 2 describes the
vehicle modeling and formulation of the proposed control strategy. Section 2.1 presents the
vehicle model and parameters used in the Matlab/Simulink environment, belt drive system
characterization, and HIL validation. Section 2.2 describes the procedure for the design of
the energy management system considering the BDS power loss maps (ECMS-BDS) and
the setup of GA for tuning the equivalence factors. Section 3 presents the performance of
ECMS-BDS against standard ECMS. Finally, Section 4 draws conclusions and discusses
future work.

2. Method

This section describes the vehicle model and parameters used for simulations, as well
as the controller’s design.

2.1. Vehicle Model

A 2-Ton sedan passenger vehicle is studied in this research. It is equipped with a P0
mild hybrid powertrain architecture. The power of EM is 13 kW and nominal energy of the
battery is 1.2 kWh. The vehicle has a 12 speed automatic transmission. Table 1 contains
data on the vehicle’s key parameters.
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Table 1. Vehicle parameters.

Parameters Values Unit

Mass 2000 [kg]
Drag coefficient 0.25 [-]

Engine Characteristic Diesel 238 Nm [-]
Electric machine characteristics BLDC 13 kW [-]

Battery nominal voltage 48 [V]
Battery Capacity 25 [Ah]

Belt drive transmission ratio 3 [-]
Transmission 12-speed automatic [-]

Final drive ratio 3.1 [-]
Wheel radius 0.31 [m]

Rolling resistance coefficient 0.02 [-]

The vehicle is simulated using a forward model, as shown in Figure 2. At every
time step, the driver, whose behavior is reproduced by a Proportional-Integral controller,
compares the vehicle’s current speed with the reference speed imposed by the driving cycle
(i.e., WLTP) and calculates the torque demand. The EMS splits the torque demand between
the ICE, EM, and brakes according to the control strategy described in Section 2.2. Another
possible alternative to the forward model is a backward model, where the driver model is
absent and the driving cycle speed is imposed as vehicle speed. Unlike the backward model,
the forward model extensively considers vehicle dynamics. Moreover, the limitations in
actuation delay and lag of the ICE and EM are considered in the vehicle model. Thus, the
forward model has higher precision even if more computationally complex and expensive.

Figure 2. Vehicle forward model representation.

The electric machine is a brushless direct current electric motor (BLDC) with a peak
power of 13 kW in boost and recuperation and a maximum torque of 50 Nm. The EM
is modeled by the torque speed characteristic, efficiency map of the machine (Figure 3),
and its inertia. The EM can be used to recover energy from braking and, during traction,
it can assist the engine by providing a portion of the requested torque. Additionally, it
can operate in generator mode to absorb the surplus torque generated by the engine, thus
making the engine operate in the optimal region, in the so-called load shifting mode.
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Figure 3. Torque/speed characteristic of the electric machine with an efficiency map.

The electric machine is powered by a 48 V battery pack, which acts as an energy
buffer for the electrical energy recovered during recuperation and load shifting. Its state of
charge (SOC) is calculated from the current extracted from or provided to the battery. The
battery is modeled with an equivalent electric circuit composed of an ideal voltage source
in series with an internal resistor. The open circuit voltage of the source varies with the
SOC as follows:

V = V0(
SOC

1− β · (1− SOC)
) (1)

where V0 is the open circuit voltage at full battery capacity and β is a characteristic param-
eter. The battery SOC is always kept within a boundary to preserve health. The SOC is
updated as follows [27]:

˙SOC(t) = − Ibatt(t)
Qbatt,0

(2)

where Qbatt,0 is the maximum battery charge capacity, and Ibatt(t) is the current flowing to
or from the battery. For a deeper level of battery behaviour representation, a better battery
behavior model could be obtained by taking into account the health and degradation of
batteries [28–30]. The ICE block in the model consists of a BSFC map, which is used to
calculate fuel consumption based on the torque and speed of the ICE, as illustrated in
Figure 4.

The two subsystems, EM and ICE, are connected through a BDS. In this study, it
has a constant transmission ratio, and its power loss is obtained through an experimental
characterization, which is described in the following section. The characterization of a BDS
is discussed in the following subsection. Moreover, the total torque transferred through
the powertrain block takes into account the efficiency, transmission ratio, and inertia of
the gearbox, differential, and wheels. Finally, the vehicle block, which is a 3DOF model,
calculates the current vehicle speed based on the vehicle dynamics.
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Figure 4. Engine brake specific fuel consumption (BSFC) map [g/kWh].

Belt Drive System Characterization

In this research, two different belts, named Belt A and Belt B, will be used to assess
the robustness of the proposed controller. The BDS is characterized on a dedicated test
bench [31], the layout of which is shown in Figure 5. It is based on a full electric configura-
tion exploiting two EMs. These are Bosch Rexroth brushless motors from the IndraDyn-H
series and replicate the behavior of the ICE crankshaft and the BSG. Each EM is controlled
by a dedicated IndraDrive inverter. The modular power section is completed by two Bosch
Rexroth inverters (HMS01.1N-W0210 and HMS01.1N-W0070). The crankshaft behavior
is emulated with a 38 kW motor with a maximum speed of 12 krpm and a maximum
torque of 320 Nm. The test bench is equipped with sensors to measure the system vari-
ables. The position feedback of both motors is accomplished with two Heidenhain ERM
2984 magnetic encoders (192 lines of resolution, 1 Vpp sinusoidal incremental signals, a
maximum rotational speed of 47,000 rpm and a power supply of 5 Volts). The values of
torque for the two electric machines are calculated from the corresponding current feedback
values in the direct and quadrature axes. The angular positions of the tensioner arms are
measured through two Kuebler KIS incremental encoders (2500 lines of resolution). Each
encoder is hinged to its respective tensioner pulley employing a two-link kinematic ar-
rangement. This mechanism is designed to follow and reproduce the angular displacement
of the tensioner arms. The tension in both belt spans is measured on the two idler pulleys,
which are equipped with Magtrol DB radial load cells (a maximum force of 750 N). Their
output is fed through an HBM Force Measurement System amplifier. A power supply
(HMV01.1R-W0065-A-07 by Bosch Rexroth) powers both inverters which are connected
to the same DC BUS. The main feature of such a supply unit is the possibility of power
regeneration at the mains, meaning that the power produced by one of the two motors
acting as the alternator is given back to the network. A dSpace MicroLabBox Platform is
used to support a human–machine interface that commands the inverters and acquires
the signals of interest. This system communicates with a host PC via Ethernet and with
both motor inverters through CAN Open protocol. The inverters receive torque or speed
reference values from the MicroLabBox device. In turn, they yield the actual measurements
of speed and current of both motors. In the dSpace platform, the 14-bit analog channels are
used to read the load cell amplified signals, while the tensioner arm encoders are processed
by direct capture inputs.
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Figure 5. Test bench for the belt drive system characterization and key signal interfaces with the
controller platform.

The belt slip at the BSG pulley is obtained from the measurements as:

σ(t) = 1− ωBSG(t)
ωBSG(TCS = 0)

(3)

The power at crankshaft (PCS) and BSG (PCS) are obtained as:

PCS(t) = TCS(t)ωCS(t)

PBSG(t) = TBSG(t)ωBSG(t)
(4)

where TCS is the crankshaft torque, TBSG is the BSG torque, ωCS is the crankshaft speed
and ωBSG is the BSG speed. The dissipated power (Ploss) is:

Ploss(t) = PCS(t) + PBSG(t) (5)

The transmission efficiency in boosting (ηboost) and braking mode (ηbrake) is calcu-
lated as:

ηboost = −
PCS(t)

PBSG(t)

ηbrake = −
PBSG(t)
PCS(t)

(6)

The experimental tests were conducted for crankshaft speeds of 800, 2000, and
3000 rpm and BSG load ranging from −30 to +30 Nm. The results obtained from the
experimental characterization of BDS are illustrated in Figures 6 and 7, where the 3D
representations depict the slip, power loss and efficiency of the transmission in the three
rows, respectively, when varying the value of ωCS (in the columns). All the values are
obtained as functions of the belt preload and torque of the BSG. The efficiency mapping
over the crankshaft speed range is obtained by interpolating the different values of ωCS
in experiments. Figures 8 and 9 illustrate the system behavior of both belts in the case of
three different belt preloads: 180 N (green line), 350 N (blue line), and 600 N (red line) at
2000 rpm (ωCS). The two subplots report power loss and transmission efficiency. The top
subplot indicates that, as expected, the power loss is strictly dependent on the belt preload.
The increasing preload produces more power loss. Additionally, the bottom subplot gives
a quantification of the transmission efficiency’s dependence on the belt preload and the
BSG torque.



Energies 2023, 16, 487 8 of 21

Figure 6. Characteristic maps of BDS with Belt A. 1st row: Slip. 2nd row: Power loss. 3rd row:
transmission efficiency. The columns indicate three different values of the crankshaft speed (ωCS).1st
column: 800 rpm, 2nd column: 2000 rpm, 3rd column: 3000 rpm.

Figure 7. Characteristic maps of BDS with Belt B. 1st row: Slip. 2nd row: Power loss. 3rd row:
transmission efficiency. The columns indicate three different values of the crankshaft speed (ωCS). 1st
column: 800 rpm, 2nd column: 2000 rpm, 3rd column: 3000 rpm.
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Figure 8. 2D characteristic maps of BDS with Belt A at the speed (ωCS) equal to 2000 rpm and at
different belt preloads: 180 N (green line), 350 N (blue line) and 600 N (red line). 1st row: power loss.
2nd row: transmission efficiency.

Figure 9. 2D characteristic maps of BDS with Belt B at the speed (ωCS) equal to 2000 rpm and at
different belt preloads: 180 N (green line), 350 N (blue line) and 600 N (red line). 1st row: power loss.
2nd row: transmission efficiency.

In order to validate the BDS characterization with more dynamic speed and torque
profiles, a HIL simulation was setup, as shown in Figure 10. The interpolated power loss
map of the BDS from experimentation was used in simulation. An open-loop HIL was
performed using simulation-recorded reference signals, namely ωCS,re f and TBSG,re f . In
HIL testing, the MicroLabBox hardware platform was used to send reference signals to
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the EM and BDS via CAN bus. When compared to the crankshaft torque measured in HIL
testing, the actual crankshaft torque observed in simulation is quite accurate, as shown in
Figure 11.

Figure 10. Block diagram of HIL setup to validate the characterization of BDS.

Figure 11. Crankshaft torque comparison. Orange line: experimental results with HIL setup; green
line: numerical results.

The obtained experimental characterization of the BDS is included in the proposed
formulation of the ECMS to consider the BDS efficiency. This helps to improve the system
efficiency and overall vehicle performance.

2.2. Energy Management System Design

The objective of the EMS is to provide the reference signals to powertrain, guarantee
charge sustaining, and minimize fuel consumption and emissions. The baseline EMS used
in this study is the standard ECMS. Standard ECMS computes at every time step the optimal
power to be provided by ICE and the power from or to the battery.The original ECMS
formulation and equations are available in [13,27]. The ECMS provides an instantaneous
splitting torque ratio between ICE and EM by allocating a cost (equivalence factor) to
the electrical power with respect to ICE fuel consumption. These equivalence factors are
indicated as Sch(charging) and Sdischg(discharging) and typically they are calibrated with a
trial-and-error approach. Here, a GA is proposed to identify the best-suited equivalence
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factors to minimize fuel consumption and achieve a charge sustaining performance. To
this end, a novel reformulation of ECMS is proposed, where the belt power loss maps in
addition to the ICE BSFC and EM efficiency maps are used to compute the optimal torque
splitting. In the following subsections, the reformulation of the ECMS and the method for
determining equivalence factors are presented.

2.2.1. Equivalent Consumption Minimization Strategy (ECMS)

The primary goal of ECMS is to achieve optimal torque splitting between ICE and
EM while also ensuring charge sustaining behavior. To obtain the final SOC balance in the
driving cycle, all the energy must be provided by the ICE, and the battery acts as an energy
buffer. As a result, the energy extracted from the battery for traction must be replenished
through braking recuperation or ICE load shifting regeneration.

The adopted process flow for the ECMS-based EMS is shown in the flow chart illus-
trated in Figure 12. EMS provides references to ICE, EM, and brakes in traction and braking
conditions. In traction, the EMS could select one of the following modes: pure ICE mode,
pure EM mode, or ICE with EM boost assistance or regeneration.

Figure 12. ICE/EM splitting decision flow based on ECMS supervision.

Knowing system states, namely, that the torque requested by the driver (TREQ), the
angular speed of the ICE (ωCS), angular speed of the electric machine (ωBSG), and the
battery state of charge (SOC), ECMS determines an instantaneous local optimal solution,
u(t). The ratio of BSG torque to total requested torque is expressed as u(t):

u(t) =
TBSG(t)
TREQ(t)

, u(t) ∈ [
TBSG,min(ωBSG(t))

TREQ(t)
, ...,

TBSG,max(ωBSG(t))
TREQ(t)

]

TICE(t) = (1− u(t)) · TREQ(t)

TBSG(t) = u(t) · TREQ(t)

(7)
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The set of decision variables (u(t)) are obtained by satisfying the system constraints
as follows:

TREQ(t) =TICE(t) + TBSG(t)

0 ≤TICE(t) ≤ TICE,max(ωCS(t))
TBSG,min(ωBSG(t)) ≤TBSG(t) ≤ TBSG,max(ωBSG(t))

SOCmin ≤SOC(t) ≤ SOCmax

(8)

where TBSG,min and TBSG,max are the EM’s maximum torque in generator and motor modes,
respectively. The decision variable, u(t), is discretized into a finite number of candidates.
During traction, u(t) less than zero means the EM is operating in generator mode, and u(t)
greater than zero indicates that the electric machine is in motor mode. For every time step,
an equivalent fuel rate is computed for every candidate as follows:

ṁEQ(t) = ṁICE(t) + ṁBSG(t) + ṁBDS(t), for u(t) ≥ 0

ṁEQ(t) = ṁICE(t) + ṁBSG(t) + ṁBDS(t), for u(t) < 0
(9)

where ṁICE is the fuel flow rate of the ICE, ṁBSG and ṁBDS are the virtual fuel flow rate of
an BSG and BDS, respectively. The virtual fuel flow rate of the BSG and BDS is calculated
as follows:

ṁBSG(t) = Sdischg ·
Pelec,mot,BSG(t)

QLHV
, for u(t) ≥ 0

ṁBSG(t) = Schg ·
Pelec,gen,BSG(t)

QLHV
, for u(t) < 0

(10)

ṁBDS(t) = Sbp ·
Ploss,mot,BDS(t)

QLHV
, for u(t) ≥ 0

ṁBDS(t) = Sbp ·
Ploss,gen,BDS(t)

QLHV
, for u(t) < 0

(11)

where QLHV is the lower heating value of the fuel, Pelec,mot,BSG(t) and Pelec,gen,BSG(t) are the
electrical powers of the BSG in motor and generator mode, respectively. Ploss,mot,BDS(t) and
Ploss,gen,BDS(t) are the power loss of the BDS in motor and generator mode, respectively.
Sdischg and Schg are the equivalence factors in battery discharging and charging, respec-
tively. Sbp is the equivalence factor for the BDS. Sbp is set to zero in standard ECMS. The
equivalence factors in battery discharging and charging are calculated as follows:

Sdischg = SGA,dischg +
SGA,dischg

4
·
(

SOCre f − SOC(t)
)

, for u(t) ≥ 0

Schg = SGA,chg +
SGA,chg

4
·
(

SOCre f − SOC(t)
)

, for u(t) < 0
(12)

where SGA,dischg and SGA,chg is the equivalence factor, which is the outcome of genetic
algorithm optimization, and SOCre f is the reference battery SOC. In this study, the initial
SOC of the battery is used as the reference SOC for every simulation.

The equivalence factor of BDS is calculated as follows:

Sbp = Kbp ·
(

1 +
Ploss,mot,BDS(ωBSG(t))− Ploss,mot,BDS,min(ωBSG(t))

Ploss,mot,BDS,max(ωBSG(t))− Ploss,mot,BDS,min(ωBSG(t))

)
Kbp =

PBSG,mot,max(ωBSG(t))
(Ploss,mot,BDS,max(ωBSG(t)) + Ploss,mot,BDS,min(ωBSG(t))/2

(13)

where Ploss,mot,BDS,max(ωBSG(t)) and Ploss,mot,BDS,min(ωBSG(t)) is the maximum and min-
imum BDS power loss, respectively for the given ωBSG(t), PBSG,mot,max(ωBSG(t)) is the
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maximum available power in BSG, and Ploss,mot,BDS(ωBSG(t)) is the BDS power loss for all
the candidates. The u(t) corresponding to the minimum of ṁEQ(t) is selected as a solution.

In braking, the torque requested by the driver is fulfilled by the combinations of the
action: hydraulic brakes, ICE resisting torque produced during fuel cut-off causing engine
overrun, and EM in generator mode:

TICE(t) = 0

TBSG(t) = max (TREQ(t)− TRT(t), TBSG,min(ωBSG(t)))

TBRAKE(t) = min (TREQ(t)− TBSG(t), 0)

(14)

where TBSG,min(ωBSG(t)) is the maximum torque available from the EM in generator mode,
TREQ(t) is the torque requested from the driver, TBSG(t) is the BSG torque reference,
TBRAKE(t) is the torque reference to the hydraulic brakes, and TRT(t) is the ICE resist-
ing torque.

2.2.2. ECMS Equivalence Factors Selection with Genetic Algorithm

The selection of Schg and Sdischg obtained through a GA-based optimiser. GA is based
on evolutionary theory to search for a global optimal solution. An initial population
consists of a finite feasible solution known as chromosomes, which are randomly created.
A set of operators, namely crossover, mutation, and elitism, are exploited to reproduce
the population every generation. The mutation and crossover reproduce the candidates
from the previous generation either by merging or modifying the chromosomes. Elitism
saves the best chromosomes from the current generation and passes them down to the next.
Throughout the evolution, the fitness value of each candidate is calculated and ranked. The
GA flow chart is shown in Figure 13, while design procedure is as follows:

1. The initial population with size 40 is generated with bounds of [0, ..., 4].
2. Vehicle model simulation is performed for every candidate. The output of the sim-

ulation is the fuel consumption [l/100 km] and SOC. They are used to evaluate the
fitness value, Fobj as:

Fobj = fc +
(

SOCre f − SOC f inal

)
· CFa, if |∆SOC| <= ∆SOCthreshold

Fobj = fc +
(

SOCre f − SOC f inal

)
· CFp, if |∆SOC| > ∆SOCthreshold

CFp = sign(SOCre f − SOC f inal) · 0.03

(15)

where fc is the consumed fuel in l/100km, ∆SOC is the difference between initial and
final SOC, CFa = 0.014 is the correction factor obtained from the fitting shown in
Figure 14, and ∆SOCthreshold = 2% is the limit in SOC variation for GA fitness value.
The CFp is a big number to heavily penalize the fitness value for a big deviation in
(SOC).

3. The best set of chromosomes is chosen (a stochastic uniform selection procedure
is used).

4. Survivor selection is based on elitism to retain the potential best solution for the next
generation (the elite count is 2).

5. The new population is generated by a crossover procedure.
6. The mutation operation (Gaussian distribution) is performed to widen the search space.
7. The fitness value of the new population is evaluated. Steps 2–7 are recursively iterated

till the stopping criterion is met (50 generations).
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Figure 13. Method for the deterministic selection of optimal charge and discharge equivalence factors.

For any given values of Schg and Sdischg computed by the candidates of GA, the
SOC f inal and SOCinitial may not be the same. For a fair and true evaluation of fitness
value, a correction factor (CFa) is used to convert the ∆SOC to its fuel equivalent. A linear
regression approximates the correlation between the dependent variable which are the fuel
consumption and the difference between final and reference SOC, respectively. The data
set was generated through simulation using Schg and Sdischg values which are generated
randomly. The linear regression model is expressed as:

fc = fcorr + CFa · (SOC f inal − SOCre f ) (16)

where fcorr is the corrected fuel consumption that takes SOC deviation into account, and fc
is the fuel consumption at the end of a driving cycle. To determine the fitness value in GA,
the aforementioned equation is rearranged as follows:

fcorr = fc + CFa ·
(

SOCre f − SOC f inal

)
(17)

The regression model fitting is shown in Figure 14.
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Figure 14. Correction factor for compensation of possible deviations in final SOC from reference SOC.
Blue points: data recorded from simulations. Red line: interpolation function.

3. Results and Discussion

To evaluate the performance of the proposed method, the experimentally characterized
BDS maps are used to model the BDS. The characteristic map of the BDS is included in
the ECMS-BDS formulation. To tune the equivalence factors, a GA is employed. In this
study, simulations are performed with two distinct belts, namely, Belt A and Belt B. The
simulations are performed with the WLTP driving cycle. The benefits of ECMS-BDS is
compared against the standard ECMS.

3.1. Simulation Results Using Belt A

In the case of Belt A, the BDS power loss map with a preload of 350 N was used for
simulation. The equivalence factors of ECMS-BDS (SGA,dischg = 0.68 and SGA,chg = 0.61)
and standard ECMS (SGA,dischg = 0.95 and SGA,chg = 0.85) were obtained from GA opti-
mization. Figure 15 shows the time series plot of standard ECMS and ECMS-BDS, where
the first and second rows represent ICE and BSG torque, respectively. The ECMS-BDS
makes a different torque splitting decision than the standard ECMS. This is due to the fact
that the ECMS-BDS includes the BDS map. As for the SOC, the third row of Figure 15
shows that the two controllers ensure charge sustaining.

The total energy of BSG in motor and generator mode, as well as total BDS losses
over the WLTP driving cycle, are reported for the two controllers in Table 2. The energy
provided by the BSG for boosting (motor mode) is higher in ECMS-BDS vs. standard ECMS
(1372 [kJ] vs. 1245 [kJ]). In idle mode, the BDS losses are higher in standard ECMS vs.
ECMS-BDS (364 [kJ] vs. 279 [kJ]). Though ECMS-BDS has higher losses in motor mode, it
achieves an optimal splitting ratio between ICE and BSG, resulting in lower overall fuel
consumption. The CO2 emissions [g/km] for two controllers are reported in Table 3. The
ECMS-BDS has lower CO2 emissions (205.7 [g/km] vs. 204.6 [g/km] ) for Belt A. The CO2
savings of 1.1 [g/km] is achieved in Belt A layout.
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Figure 15. Simulation conducted on WLTP driving cycle with belt A. Orange line: ECMS standard.
Green line: ECMS with BDS power loss maps. Top: torque provided by the ICE. Center: torque
provided by the electric machine. Bottom: battery state of charge and vehicle speed profile (blue).

Table 2. Energy at subsystems – Belt A in WLTP driving cycle for standard ECMS and ECMS-BDS.

Subsystem Modes Energy [kJ]
(Standard ECMS)

Energy [kJ]
(ECMS-BDS)

BSG Motor 1245 1372
Generator −2176 −2176

BDS losses
Motor 120 197

Idle 364 279
Generator 147 147

Table 3. CO2 emission comparison of the considered controllers—Belt A.

Controller Type CO2 Emissions [g/km] CO2 Emission Savings [g/km]

Standard ECMS 205.7 -
ECMS-BDS 204.6 1.1

3.2. Simulation Results Using Belt B

Another simulation was performed using the Belt B power loss map with a preload
of 350 N to test the effectiveness of the ECMS-BDS. The equivalence factors of ECMS-
BDS (SGA,dischg = 0.72 and SGA,chg = 0.63) and standard ECMS (SGA,dischg = 0.92 and
SGA,chg = 0.81) are obtained from GA optimization. According to Figures 8 and 9, Belt
B is more efficient than Belt A (see the BDS losses in Table 2 and 4), resulting in lower
overall CO2 emissions in Belt B. The time series plot of standard ECMS and ECMS-BDS
is shown in Figure 16. The plots of ICE torque and BSG torque are in the first and second
rows, respectively. Because of distinguishable characteristics in both maps, torque splitting
decisions in ECMS-BDS with Belt B differ from ECMS-BDS with Belt A.



Energies 2023, 16, 487 17 of 21

Figure 16. Simulation conducted on the WLTP driving cycle with belt B. Orange line: ECMS standard.
Green line: ECMS with BDS power loss maps. Top: torque provided by the ICE. Center: torque
provided by the electric machine. Bottom: battery state of charge and vehicle speed profile (blue).

The total energy of BSG in motor and generator mode, as well as total BDS losses over
the WLTP driving cycle, are reported for the two controllers in Table 4. The energy provided
by the BSG for boosting (motor mode) is higher in ECMS-BDS vs. standard ECMS (1395
[kJ] vs. 1295 [kJ]). In idle mode, the BDS losses are higher in standard ECMS vs. ECMS-BDS
(259 [kJ] vs. 189 [kJ]). The CO2 emissions [g/km] for two controllers are reported in Table 5.
The ECMS-BDS has lower CO2 emissions (203.6 [g/km] vs. 202.7 [g/km] ) for Belt B layout.
The CO2 savings of 0.9 [g/km] is achieved in Belt B layout.

Table 4. Energy at subsystems—Belt B in WLTP driving cycle for standard ECMS and ECMS-BDS.

Subsystem Modes Energy [kJ]
(Standard ECMS)

Energy [kJ]
(ECMS-BDS)

BSG Motor 1295 1395
Generator −2203 −2203

BDS losses
Motor 94 152

Idle 259 189
Generator 114 114

Table 5. CO2 emission comparison of the considered controllers—Belt B.

Controller Type CO2 Emissions [g/km] CO2 Emission Savings [g/km]

Standard ECMS 203.6 -
ECMS-BDS 202.7 0.9

In the ECMS-BDS, the BSG provides higher energy with lower BDS losses, thus
reducing the effort on the ICE. The equivalence factors yielded by GA optimization aid in
finding the optimal torque splitting between the ICE and the BSG. The equivalence factors
yielded by GA optimization aid in finding optimal torque splitting. Thus, an improvement
of around 1 [g/km] of CO2 is observed.
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4. Conclusions

In this paper, a methodology for the performance optimization of a P0 system has been
presented. The proposed methodology is a model-based energy flow supervisor (ECMS)
that provides instantaneous optimal ICE/EM power splitting based on the power loss
map of the belt drive system in an effort to reduce fuel consumption and, consequently,
emissions. The paper discussed the experimental measurement of the BDS power loss maps
on a dedicated test bench. Furthermore, the paper detailed the design of the supervisory
controller, i.e., ECMS-BDS, and the tuning of the equivalence factors of ECMS-BDS using
a genetic algorithm method. The HIL testing was setup to validate the performance of
the experimentally characterized BDS maps. Finally, simulations using the WLTP driving
cycle were performed to determine the benefits in terms of belt drive losses and CO2
reduction. When compared to the standard ECMS approach, the proposed formulation
saves 1.1 g/km of CO2 for Belt A and 0.9 g/km for Belt B, respectively. The results
analysis demonstrates the importance of incorporating the belt drive efficiency map into
the supervisor optimal ICE/EM splitting procedure. In addition, the method provides a
systematic design approach for a real-time energy flow supervisor. The highlights of the
work are: (a) it uses belt drive power loss mapping; and (b) it is a deterministic approach
that is not based on manual calibration through trial-and-error procedures.

Future objectives of this work include analyzing and developing a control strategy to
reduce the harmonic torque and speed fluctuations, which can improve drivetrain stability
and extend their service life. In addition, the incorporation of the BSG’s temperature-based
efficiency maps in the ECMS may result in additional improvements.
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Abbreviations
The following abbreviations are used in this manuscript:

BDS Belt Drive System
ICE Internal Combustion Engine
EVs Electric Vehicles
EMS Energy management system
HEVs Hybrid Electric Vehicles
EM Electric Machine
GA Genetic Algorithm
ECMS Equivalent Consumption Minimization Strategy
BSFC Brake Specific Fuel Consumption
HIL Hardware in the Loop
WLTP World harmonized Light vehicles Test Procedure
BSG Belt Starter Generator
BLDC Brushless direct current electric motor
ECMS-BDS Equivalent Consumption Minimization Strategy with belt drive system maps
SOC State of Charge
V Open circuit voltage
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V0 Open circuit voltage when battery is at full capacity
β Battery characteristic parameter
PCS Power at ICE crankshaft
PBSG Power at BSG
TCS, TICE Torque of ICE crankshaft
TBSG Torque of BSG
ωCS Speed of ICE crankshaft
ωBSG Speed of BSG
Ploss Dissipated power in BDS
ηboost Transmission efficiency of belt drive system in boosting
ηbrake Transmission efficiency of belt drive system in recuperation
TREQ Torque requested by the driver
u Ratio of BSG torque to total requested torque
TICE,max Maximum ICE torque for a given speed
TBSG,min Minimum BSG torque for a given speed
TBSG,max Maximum BSG torque for a given speed
SOCmin Lower limit of SOC
SOCmax Upper limit of SOC
ṁICE Fuel flow rate of an engine
ṁBSG Virtual fuel flow rate of the BSG
ṁBDS Virtual fuel flow rate of the BDS
QLHV Lower heating value of the fuel
Pelec,mot,BSG Electrical power of the BSG in motor mode
Pelec,gen,BSG Electrical power of the BSG in generator mode
Ploss,mot,BDS Power loss of the BDS in motor mode
Ploss,gen,BDS Power loss of the BDS in generator mode
Sdischg Equivalence factor of ECMS in discharging of battery
Schg Equivalence factor of ECMS in charging of battery
SOCre f SOC reference
SGA,dischg Equivalence factor provided by genetic algorithm in discharging of battery
SGA,chg Equivalence factor provided by genetic algorithm in charging of battery
Sbp Equivalence factor of the BDS
Ploss,mot,BDS Power loss of the BDS in motor mode
Ploss,mot,BDS,min Minimum power loss of the BDS in motor mode
Ploss,mot,BDS,max Maximum power loss of the BDS in motor mode
PBSG,mot,max Maximum power of the BSG in motor mode
TBRAKE Torque reference to the hydraulic brakes
TRT ICE resisting torque
Fobj Fitness value in genetic algorithm
fc Fuel consumption
SOC f inal Battery SOC at the end of a driving cycle
CFa Correction factor to correlate fuel consumption and SOC deviation
CFp Correction factor for heavy penalties
∆SOCthreshold Limit in SOC variation for GA fitness value
∆SOC Deviation in battery state of charge
fcorr Corrected fuel consumption
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