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Abstract: It is critical and challenging to develop high performance transition metal phosphides
(TMPs) electrocatalysts for oxygen evolution reaction (OER) to address fossil energy shortages.
Herein, we report the synthesis of Co2P embedded in N-doped porous carbon (Co2P@N-C) via a
facile one-step strategy. The obtained catalyst exhibits a lower overpotential of 352 mV for OER
at a current density of 10 mA cm−2 and a small Tafel slope of 84.6 mV dec−1, with long-time
reliable stability. The excellent electrocatalytic performance of Co2P@N-C can be mainly owed to the
synergistic effect between the Co2P and highly conductive N-C substrate, which not only affords
rich exposed active sites but also promotes faster charge transfer, thus significantly promoting OER
process. This work presents a promising and industrially applicable synthetic strategy for the rational
design of high performance nonnoble metal electrocatalysts with enhanced OER performance.

Keywords: cobalt phosphide; N-doped porous carbon; electrocatalyst; oxygen evolution reaction

1. Introduction

As societies become further industrialized, fossil energy shortages have become a
serious problem; the energy crisis, environmental pollution and the greenhouse effect
are the main challenges facing the world in this century [1]. The high energy density,
cleanliness and sustainability of hydrogen produced by the electrolysis of water make
it one of the most promising substitutes for traditional fossil fuels [2]. In the overall
water-splitting systems, oxygen evolution reaction (OER) acts as an anodic half-reaction,
limiting the production of hydrogen in water splitting units due to its multi-step proton-
coupled transfer process, which has slower kinetics than hydrogen evolution reaction
(HER) [3,4]. To overcome this obstacle in OER, efficient catalysts are urgently required to
facilitate OER kinetics and improve energy conversion efficiency [5]. Noble metal-based
electrocatalysts such as RuO2 and IrO2 are the basic electrocatalysts used for OER, but the
low material fractionation, high cost and lack of durability of noble metal oxides greatly
limit their further industrial development [6,7]. For this reason, cheap and efficient non-
precious metal electrocatalysts have been developed for overall water splitting, mainly
transition metals and their oxides [8,9], transition metal sulfides [10,11], transition metal
phosphides (TMPs) [12,13]. Among them, transition metal phosphides have received
increasing attention due to their abundant reserves and low cost [14].

Depending on the type of phosphorus source and the reaction method, there are three
general methods for the synthesis of TMPs. The liquid-phase reaction method uses organic
phosphorus sources (TOP and TPP) as the phosphorus source [15,16]. The organic solvent
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and the reaction temperature make the entire reaction system flammable and corrosive,
and a continuous inert gas supply is required to ensure safety. The gas–solid reaction
method uses hypophosphates (NaH2PO2 and NH4H2PO2) as the phosphorus source, and
the high-temperature heating of the phosphorus source will produce PH3 highly toxic
gas, which needs to be treated for toxic exhaust gas [17,18]. Pyrolytic reduction uses
phosphates [19], polymetallic oxides [20], phytic acid [21], and other reagents with PO4
groups as phosphorus sources. The PO4 groups are easily complexed with metal ions, and
under high temperatures and a reducing atmosphere, the P-O bonds break and combine
with metal ions to form TMPs; however, the high temperature reaction makes it more
energy intensive and limits large-scale preparation [22,23]. The complexity of the process
and the high-risk factors hinder the practical production of TMPs.

Although TMPs have a good performance on OER, their inherent characteristics such
as poor electrical conductivity and easy agglomeration limit the electrochemical kinetics
and lead to reduced catalytic activity [24]. Forming a composite structure of TMPs with
heteroatom-doped porous carbon materials is a practical solution to address the aforemen-
tioned issues [25]. For example, Sun and co-workers reported a series of transition metal
phosphides encapsulated in nitrogen-phosphorus co-doped carbon, a carbon substrate that
not only effectively enhances the catalytic performance of electrocatalysts, but also limits
the growth and aggregation of nanoparticles [26]. It has been shown that porous carbon
materials as a substrate can effectively disperse the TMPs to facilitate the exposure of active
sites; in addition, the doping with heteroatoms such as nitrogen and phosphorus signifi-
cantly improves the catalyst activity due to the synergistic effect [27]. To date, designing a
low-cost, feasible and convenient method of coupling nanomaterials to carbon substrates
for electrochemical catalysts remains a daunting task.

Herein, we report on the large-scale preparation of Co2P nanoparticles encapsulated
into N-doped porous carbon (Co2P@N-C) by a facilitative one-step approach using glucose,
phosphoric acid, urea and cobalt acetate as precursors. The synergistic effect between the
cobalt phosphide nanoparticles and the N-doped carbon substrate results in remarkable
catalytic properties. Additionally, it requires a low overpotential of 352 mV for OER to
deliver a current density of 10 mA cm−2 under alkaline conditions. As well, the catalyst
shows a negligible overpotential increase after 24 h stability test. Our work presents a
promising and industrially accessible synthetic strategy for the rational design of high-
performance catalysts.

2. Materials and Methods
2.1. Materials

Cobalt(II) acetate tetrahydrate (Co(CH3COO)2·4H2O, 99.5%), D-(+)-Glucose (C6H12O6,
99.5%), Urea (CO(NH2)2, 99.5%), and phosphoric acid (H3PO4, 85 wt%) were purchased
from Aladdin Reagents Ltd., Shanghai, China. All reagents were of analytical grade
and required no further purification. All experiments used deionized water (DIW). The
commercial RuO2 (99.9%) catalyst was bought from Sigma-Aldrich, St. Louis, MI, USA.

2.2. Synthesis of Co2P@N-C

Typically, 3 g of urea, 1 g of glucose and 0.1 g of Co(CH3COO)2·4H2O were dissolved
in 35 mL of DIW at room temperature, then 10 µL of phosphoric acid was added with
continuous stirring for 30 min. Next, the precursor was heated at 85 ◦C for 4 h to remove
moisture, then placed in a quartz tube and annealed at 900 ◦C for 1 h in an NH3 atmosphere
at a heating rate of 5 ◦C min−1. After cooling down to room temperature, the obtained
black powder was Co2P@N-C-900. For comparison, Co2P@N-C-800 and Co2P@N-C-1000
were synthesized by the same procedure, except for the pyrolysis temperatures of 800 ◦C
and 1000 ◦C, respectively.
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2.3. Electrochemical Measurement

All the electrochemical measurements were performed on a CHI760E electrochemical
workstation in a standard system at room temperature. A glass carbon electrode (GCE), a
graphite electrode and a saturated calomel electrode (SCE) served as the working electrode,
counter electrode and reference electrode, respectively. Typically, 5 mg of the sample was
dispersed in a mixture of 400 µL water and 80 µL ethanol with 20 µL Nafion solution, and
then the mixture was under continuous ultrasonication for 30 min to obtain a homogenous
ink. Then, 8 µL of the catalyst ink was loaded on the glass carbon electrode, resulting
in a catalyst loading of 0.64 mg cm−2 (GCE: 4 mm in diameter). Polarization data were
obtained at a scan rate of 5 mV s−1 in 1.0 M KOH. In all electrochemical measurements,
all potentials were referenced to the reversible hydrogen electrode (RHE) by the equation
ERHE = ESCE + 0.0591 pH + 0.241. The electrochemical impedance spectroscopy (EIS) was
carried out in the range of 105 to 0.01 Hz under a current signal amplitude of 5 mV. The
stability tests were measured by cyclic voltammetry with 2000 scans (CV, sweep frequency,
200 mV s−1) and long-term chronoamperometry.

3. Results and Discussion
3.1. Design and Characterizations of Catalysts

A one-step gelation method and subsequent thermal treatment were used to prepare
Co2P nanoparticles encapsulated in N-doped carbon (Co2P@N-C) from urea and glucose
(C, N source), phosphoric acid (P source) and cobalt (Co source), respectively (Figure 1).
In brief, the light pink gel precursor was synthesized by heating and stirring glucose,
phosphoric acid, urea and cobalt acetate. Then the precursor was annealed under an NH3
atmosphere. During the annealing process, the evaporation of water molecules creates a
porous form for the carbon substrate and the ammonia produced by the decomposition
of urea causes the carbon substrate to be doped with nitrogen. In addition, the partial P
source in phosphoric acid forms cobalt phosphide particles with the Co source, resulting in
particles embedded in N-doped porous carbon due to the limitations of the carbon substrate.
To investigate the effect of different temperatures on the morphology and properties of the
catalysts, Co2P@N-C samples were obtained at 800 ◦C and 1000 ◦C, respectively.
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Figure 1. Schematic of the synthesis of Co2P@N-C.

The morphology was examined by scanning electron microscopy (SEM). Figure 2a
shows a low magnification SEM image of Co2P@N-C-900, showing a fluffy porous structure
with a large specific surface area exposing multiple active sites for OER process. More
importantly, Co2P@N-C-900 can be easily scaled up (inset of Figure 2a). Figure 2b further
shows that these nanoparticles are immobilized on porous carbon and surrounded by
pore space. To explore the effect of different temperatures on morphology, Co2P@N-C-800
and Co2P@N-C-1000 samples consist of amorphous particles with uneven distribution.
(Figure S1). The transmission electron microscopy (TEM) image shown in Figure 2c demon-
strates the Co2P nanoparticles with an average diameter of 65 nm are homogeneously
confined within the carbon layers. The detailed structural information of these particles is
demonstrated by high-resolution TEM (HRTEM) images shown in Figure 2d,e. The surface
of the Co2P nanoparticle with a crystalline surface spacing of 0.209 nm is covered with
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an amorphous carbon layer, corresponding to the (211) crystalline surface of Co2P; this
core–shell structure facilitates the acceleration of electron transfer in the catalytic process.
Due to the unique core–shell encapsulation of Co2P@N-C-900, it efficiently prevents the
agglomeration and corrosion of Co2P nanoparticles during OER and consequently endows
its excellent durability and stability. Figure 2f depicts the selected area electron diffraction
(SAED) pattern, which further confirms the successful synthesis of Co2P. In addition, ele-
ment mapping images confirm the presence of Co2P nanoparticles and the homogeneous
distribution of N elements in the porous carbon substrate (Figure 2g and Figure S2). All
these results convincingly suggest that the Co2P nanoparticles are successfully synthesized
and uniformly anchored in N-doped porous carbon.
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Figure 2. The morphology and structure of the Co2P@N-C-900. (a,b) SEM images (inset digital
photo shows the production of Co2P@N-C-900 in the gram scale), (c) TEM (inset shows particle
size distribution of Co2P@N-C-900) and (d,e) HR-TEM images, (f) SAED pattern, and (g) elemental
mapping images of Co2P@N-C-900.

To identify the structure of the materials, X-ray powder diffraction (XRD) measure-
ments were performed. XRD patterns of various Co2P@N-C obtained by synthesis at
different temperatures are presented in Figure 3a. The Co2P@N-C composite material has
four obvious diffraction peaks at 40.7◦, 40.9◦, 43.3◦ and 48.7◦ corresponding to the (121),
(201), (211) and (031) planes of the orthorhombic Co2P, respectively, while the broad peak
at 25.8◦ is attributed to the (002) graphite plane. The crystalline planes (121), (201), (211)
and (031) correspond to lattice spacings of 0.221 nm, 0.220 nm, 0.209 nm and 0.187 nm,
where the (211) plane is consistent with the HRTEM in Figure 2e. The specific surface
area and pore size distribution of Co2P@N-C were obtained by N2 adsorption–desorption
isotherm (Figure 3b). The curves clearly show a type IV hysteresis loop demonstrating
the presence of a large number of mesopores in Co2P@N-C-900. The BET surface areas of
Co2P@N-C-800, Co2P@N-C-900 and Co2P@N-C-1000 are 148, 338 and 40 m2 g−1. Moreover,
the average pore size of Co2P@N-C-900 is 4 nm (Figure S3). This mesoporous morphology
of Co2P@N-C-900 may offer an efficient diffusion pathway and more electroactive sites,
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thus facilitating the enhancement of the catalytic process. To further analyze the degree
of graphitization and the defect level for Co2P@N-C, the Raman spectrum of the samples
prepared at different heating temperatures is recorded (Figure 3c). The defect-induced (D)
band located at about 1340 cm−1 and the graphitic-induced (G) band at about 1583 cm−1

yield an ID/IG intensity ratio. The intensity ratio ID/IG of Co2P@N-C-900 is about 1.06, is
higher than Co2P@N-C-800 (1.02) and Co2P@N-C-1000 (0.97), reflecting that there are more
defects and disordered structures in Co2P@N-C-900.
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X-ray photoelectron spectroscopy (XPS) analysis was performed to examine the va-
lence states and surface chemical composition of Co2P@N-C-900. The survey XPS spectra
reveal that Co2P@NPC-900 consists of C, N, Co and P elements (Figure S4). To further
explore the bonding structure, high-resolution XPS spectra were also gained. As illustrated
in Figure 4a, the C 1s spectrum has three peaks at 284.7, 285.6 and 287.9 eV, which can
be corresponded to C-C/C=C, C-N/C-O and C=O, respectively [28]. The existence of the
N-doped carbon skeleton improves the porousness and electronegativity of the whole com-
posite. Rapid contact between the electrolyte and active sites provides a shorter pathway
for charge transfer. The high-resolution Co 2p spectrum shows four main peaks at 778.4,
781.6, 797.2 and 801.6 eV, which are characteristic of Co 2p3/2 and Co 2p1/2. Among them,
the peaks located at 778.4 and 797.2 eV correspond to metallic Co-P in Co2P. The peaks
centered at 778.4 and 797.2 eV correspond to Co 2p3/2 and Co 2p1/2 of Co3+, while the peaks
at 781.6 and 801.6 eV can be assigned to Co2+. Meanwhile, the peaks observed at 781.6 and
801.6 eV, both with obvious satellite peaks (denoted as Sat.), are assigned to oxidized Co
species (Figure 4b) [29]. The high-resolution N 1s spectrum is provided in Figure 4c. It
can be deconvoluted into four peaks at 398.0, 398.8, 400.9 and 402.3 eV, corresponding to
pyridinic N, pyrrolic N, graphitic N and oxygenated N, respectively [30]. It was previously
reported that N-doping can modulate the electronic structure of its neighboring C atoms,
improving the electrical conductivity of the carbon obtained and synergistically inducing
the creation of a large number of deficiencies in the carbon, thus further enhancing its
electrocatalytic performances [31]. The binding energies of P 2p peaks located at 129.7 and
130.5 eV correspond to P 2p3/2 and P 2p1/2 in Co2P while the broad peak at 133.4 eV be-
longs to P-O [32]. These spectroscopic analyses agree well with the aforementioned results,
further confirming the formation of Co2P nanoparticles on the porous carbon substrate.
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3.2. Electrocatalytic Performances

The electrocatalytic OER performance of Co2P@N-C and commercial RuO2 catalysts
was investigated in 1.0 M KOH solution using a typical three-electrode system. Obviously,
the linear sweep voltammetry (LSV) polarization curves in Figure 5a show that Co2P@N-
C-900 performs with a small overpotential of 353 mV for reaching a current density of
10 mV cm−2 as compared with Co2P@N-C-800 (417 mV) and Co2P@N-C-1000 (409 mV),
and is even better than commercial RuO2 (375 mV). The overpotential of Co2P@N-C-900
also outperforms many recently reported noble metal-free OER electrocatalysts (Table
S1). Figure 5b shows the Tafel plots based on LSV polarization curves. The Tafel slope of
Co2P@N-C-900 is 84.6 mV dec−1, which is close to that for RuO2 (79 mV dec−1), and lower
than those of Co2P@N-C-800 (87.3 mV dec−1), indicating the higher catalytic kinetics of
Co2P@N-C-900 for the OER process. Interestingly, Co2P@N-C-1000 has the smallest Tafel
slope (65.5 mV dec−1), which can be attributed to the increased conductivity of the carbon
substrate due to the pyrolysis temperature. In addition, electrochemical impedance spec-
troscopy (EIS) was performed to explore the reaction kinetics (Figure 5c and Table S2) [33].
From the Nyquist plots, the charge transfer resistance (Rct) of Co2P@N-C-900 is found to be
the smallest among the control samples under the same conditions, demonstrating that the
kinetics for OER is much faster. Furthermore, cyclic voltammetry (CV) measurements were
carried out to determine the electrochemically active surface area (ECSA) at different scan
rates (Figure S5). As exhibited in Figure 5d, the calculated double-layer capacitance (Cdl)
values for Co2P@N-C-900 is 16 mF cm−2, which is much larger than those of 1.9 and 2.4 mF
cm−2 for Co2P@N-C-800 and Co2P@N-C-1000, respectively. Such a high value of Cdl value
indicates that the Co2P@N-C-900 catalyst with a large ECSA favors the exposure of the
active site to the OER. Stability is another important indicator to evaluate whether catalysts
have the potential for industrial application. The polarization curves of Co2P@N-C-900
presented in Figure 5e display a negligible loss of activity after 2000 CV cycles. Furthermore,
the current–time curve further demonstrates that Co2P@N-C-900 exhibits a stable current
density of 10 mA cm−2 for 24 h, verifying good long-term stability. Based on the above
results, Co2P@N-C-900 could be used as a powerful and high-efficiency electrocatalyst for
highly active OER reactions.
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4. Conclusions

In summary, we have successfully fabricated Co2P nanoparticles embedded in N-
doped porous carbon via a one-step pyrolysis strategy. The heteroatom-doped carbon
layers provide physical and chemical protection for the Co2P nanoparticles in alkaline
electrolytes. Thanks to the large surface area and mesoporous morphology of Co2P@N-
C-900, which can facilitate the penetration of the electrolyte and reduce electron/ion
diffusion pathways and maximize the exposure of active sites, the as-prepared Co2P@N-C-
900 exhibits outstanding OER performance. It only requires an overpotential of 352 mV
to afford 10 mA cm−2, which is better than those of recently reported noble metal-free
catalysts. Meanwhile, it also shows superior long-term stability for 24 h. Furthermore,
we have demonstrated that our synthesis strategy can be easily scaled up for large-scale
industrial production. This work provides a facile, promising and cost-effective strategy to
prepare highly active catalysts for various energy storage and conversion applications.
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Figure S5: CV curves of Co2P@N-C catalysts in the non-Faradaic region (1.05–1.35 V) were obtained
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