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Abstract: With the rise of inverter-based resources (IBRs) within the power system, the control
of grid-connected converters (GCCs) has become pertinent due to the fact they interface IBRs to
the grid. The conventional method of control for a GCC such as the voltage-sourced converter
(VSC) is through a decoupled control loop in the synchronous reference frame. However, this
model-based control method is sensitive to parameter changes causing deterioration in controller
performance. Data-driven approaches such as machine learning can be utilized to design controllers
that are capable of operating GCCs in various system conditions. This work explores a deep learning-
based control method for a three-phase grid-connected VSC, specifically utilizing a long short-term
memory (LSTM) network for robust control. Simulations of a conventional controlled VSC are
conducted using Simulink to collect data for training the LSTM-based controller. The LSTM model is
built and trained using the Keras and TensorFlow libraries in Python and tested in Simulink. The
performance of the LSTM-based controller is evaluated under different case studies and compared
to the conventional method of control. Simulation results demonstrate the effectiveness of this
approach by outperforming the conventional controller and maintaining stability under different
system parameter changes.

Keywords: voltage-sourced converter (VSC); transient response; direct and quadrature current
control; long short-term memory (LSTM)

1. Introduction

Due to the increasing penetration of renewables and use of microgrids within the
power system, the importance of grid-connected converters (GCC) has grown as they serve
an integral part of interfacing the utility grid and inverter-based resources (IBRs) [1–3].
Different applications of GCCs include DC-DC-AC configuration for PVs and battery energy
storage systems (BESS), AC-DC-AC for wind turbines and high voltage direct current
(HVDC) systems, and DC-AC for flexible AC transmission system (FACTS) applications
such as STATCOM. The voltage-sourced converter (VSC) is a commonly used GCC capable
of providing bidirectional power flow, controllable power factor, and provide a constant DC
bus voltage [4,5]. The conventional method of current control of a VSC uses a decoupled
current control loop in the synchronous reference frame. This allows independent control
of the currents in the direct and quadrature axes and uses PI controllers in order to achieve
zero steady state error. However, this method of control is model-based and sensitive to
parameter changes which can affect the system’s performance and stability [6–8].

Supervised learning is a method of machine learning that can be utilized to solve
regression problems such as the control of GCCs like the VSC. However, traditional neural
networks can only be used for static mapping of inputs and outputs and are unable to
control the dynamic response of a system [6,9,10]. Recurrent neural networks (RNN)
are feedback networks that use time-delayed memory units to inform future decisions.
Therefore, the output(s) of the network not only depend on the inputs at the current time
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step but on the previous inputs as well. In [11], an RNN-based controller is proposed
for maximum power point tracking (MPPT) and grid integration of a single-phase solar
PV system. The proposed controller significantly outperformed the conventional vector
control method specially in the presence of non-ideal conditions. However, RNNs suffer
from short-term memory due to issues that occur during the training process of neural
networks. Long short-term memory (LSTM) networks is a deep learning method designed
to combat vanishing and exploding gradient problems that traditional RNNs face. This
type of network is best suited for sequential data sets, such as time series data [12–14].
LSTM does not treat each point in the sequence independently, but rather, retain useful
information about previous data in the sequence to inform with the prediction of future
data. This is done through the use of 3 gates within the LSTM cell: the forget gate, input
gate, and output gate, each determining the information passed through out the cell and
network [15,16].

Research in LSTM networks for power systems in recent years has been for stability
prediction, load forecasting, and frequency control [17–22]. In [17], a Multidirectional Long
Short-Term Memory (MLSTM) technique is proposed to better predict the stability of the
grid. The proposed method outperforms traditional machine learning methods. In [18],
a parallel LSTM-CNN (PLC) network is proposed for the purpose of short-term load
forecasting. The PLC network proves that deep learning methods are sufficient tools for
load forecasting as the network is able to predict future loads with high accuracy. In order
to accurately identify power fluctuations from frequency fluctuations, an LSTM network
is used in [19] for online identification. An LSTM function neural network (LSTM-FNN)
based on the conventional sliding mode control is proposed in [20]. In comparison with
the conventional method, the LSTM-FNN improves the control of the system as well as the
harmonic compensation.

To the best of the authors’ knowledge, the use of LSTM networks has not been used
for control of grid-connected converters. This paper proposes a data driven method control
scheme for a grid-connected VSC using LSTM to track any changes that occur in the
current references. This method uses data from properly tuned VSCs to train the LSTM-
based controller in Python using the Keras and TensorFlow libraries. The performance
of the proposed method is evaluated in Simulink via simulation of different case studies.
The specific contribution of this paper is a robust method of control using an LSTM-based
controller for a three-phase grid-connected VSC that outperforms the conventional method
of control.

The rest of this paper is structured as follows: the VSC model and the conventional
decoupled d-q vector control method is reviewed in Section 2. The architecture of the LSTM
controller and the methodology behind its design is discussed in Section 3. The simulation
performance of the LSTM controller is assessed in three different scenarios: step changes
in direct and quadrature axes reference values, different fault conditions at the PCC,
and system parameter changes in Section 4. Finally, it concludes with a summary of the
main points and future work in Section 5.

2. Conventional Control Method of VSC
2.1. State Space Model

A single line schematic of a three-phase grid connected VSC is shown in Figure 1,
in which an ideal voltage source that fixes the voltage of the DC bus is on the left, an ideal
three-phase voltage source, representing the voltage of the grid, is on the right, and a
step-up transformer and series RL filter are in the middle connecting the VSC to the point
of common coupling (PCC). The switching harmonics of the VSC are attenuated through
the use of the series filter. In the d-q frame, the state equations of the VSC are
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dit,d
dt

= −
R f

L f
it,d + ωit,q +

1
L f

(vt,d − vs,d)

dit,q
dt

= −
R f

L f
it,q −ωit,d +

1
L f

(vt,q − vs,q)

(1)

where vt,dq are the VSC output voltages, R f and L f are the resistance and inductance of the
series filter, ω is the angular frequency of the system, it,dq are the injected currents, and vs,dq
are the grid voltages. Therefore, the state space representation of the VSC system is[

did
dt
diq
dt

]
=

−R f
L f

ω

−ω
−R f
L f

[id
iq

]
+
[

1
L f

][vt,d − vs,d
vt,q − vs,q

]
(2)

vt,abc

vdc

it,abc

Rf

vs,abc

RgLf Lg

vg,abc

PCC

Figure 1. Single line representation of three-phase grid-connected VSC.

2.2. Decoupled Current Control

As shown in (1), the ω term in the dynamic model of the VSC couples the direct
and quadrature axes. The axes can be decoupled by defining auxiliary variables ud & uq,
resulting in two decoupled first-order linear equations [4]:

ud =
1

L f
(vt,d + ωL f it,q − vs,d)

uq =
1

L f
(vt,q −ωL f it,d − vs,q)

(3)

Substituting ud & uq in to (1) results in

dit,d

dt
= −

R f

L f
it,d + ud

dit,q
dt

= −
R f

L f
it,q + uq

(4)

Therefore, the state space model becomes:[
did
dt
diq
dt

]
=

[
− R

L 0
0 − R

L

][
it,d
it,q

]
+

R
L

[
ud
uq

]
(5)

Equation (6) shows the decoupled system’s transfer function, where K = 1
R f

and

T =
L f
R f

.

Gs(s) =
1

R f + sL f
=

K
1 + sT

(6)

As seen in (4), id & iq can be controlled using ud & uq. A feedforward control structure
is developed with a PI controller as the compensator in order to successfully track the
current reference signals and compensate the coupling terms. PI controllers are imple-
mented within the decoupled structure due to their ease of design and ability to quickly
eliminate steady state error when there is a change in the reference [4]. Figure 2 shows the
complete decoupled current control scheme of the VSC. Each current loop is independently
controlling its respective terminal current (it,d & it,q) in order to compute the desired ter-
minal voltages (vt,d & vt,q). The terminal voltages are transferred from the dq0-frame back
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to the abc-frame in order to generate the necessary gating signals from the pulse-width
modulation (PWM).

PI

ωL

ωL

iref,d

it,d

iref,q
it,q

dq/abc PWM

+

-

abc/dqit,abc

PI

+

-

+

-

+

+
+

+

ud

uq

vs,d

vs,q

vt,q

vt,d

vt,abc

6

Figure 2. Conventional dq current control structure.

The system experiences delays due to the PWM and computations within the control
loop; these delays are represented by the transfer function in (7) [23,24]. The total time
delay in the control loop is defined by Teq, where Teq = 1

2 fsw
.

GDelay(s) =
1

1 + sTeq
(7)

The transfer function of the PI controller is shown below

GPI(s) = kp +
ki
s
=

kp(1 + sTi)

sTi
(8)

where kp and ki represent the proportional and integral gains and Ti is the integrator time
constant. Thus, the open-loop transfer function of the decoupled current control loop is
defined as

GOL(s) = GPI(s) · GDelay(s) · Gs(s)

=

(
kp(1 + sTi)

sTi

)(
1

1 + sTeq

)(
K

1 + sT

) (9)

In order to achieve pole-zero cancellation, kp =
L f
τ and Ti = T, where τ is a design

variable ranging from 0.5 to 5 ms. This design variable determines the controller’s transient
behavior as well as its response time. In practice, it is quite difficult to achieve pole-zero
cancellation due to time delays caused by the PWM and inability to precisely measure
the values of the idq, R f , L f , etc. In real systems this results in the axes not being fully
decoupled [4,24].

3. LSTM-Based Control Technique
3.1. Motivation

References [7,25,26] show that neural network-based control, specifically RNNs can
be used as a method of control for grid-connected converters such as the VSC. However,
the training of RNNs are subject to training issues such as the vanishing gradient and
exploding gradient problems which affect the network’s ability to understand the dynamics
of the system. This paper proposes a control scheme that uses an LSTM-based controller
that eliminates the need for model-based control of the VSC and offers better robustness.
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3.2. Overview of LSTM Networks

LSTM networks are comprised of multiple LSTM cells, whose inputs are the current
time step input (xt), previous cell state (Ct−1), and the previous network output (ht−1).
The LSTM cell controls what information is stored and removed in each cell via gate units
and outputs the current cell state (Ct) and network output (ht). Figure 3 shows the diagram
of a LSTM cell and its gate units.

+×

σ tanh σ

×
×

tanh

Ct-1

ht-1

Ct

ht

xt

ht

ft it
otCt

~

Ct

σ

Figure 3. LSTM cell structure.

The LSTM network first determines what data will be disregarded from the previous
cell state through its forget gate. This gate selects the values in Ct−1 through a sigmoid
layer to evaluate xt and ht−1. The sigmoid function constrains the output between 0 and 1
and its slope is continuously differentiable. If the output of the sigmoid is 0, then the value
from the previous cell will not be passed to the current cell. If the value is 1, then the value
will be retained. The sigmoid function is defined in (10), while the forget gate is shown
in (11).

σ(x) =
1

1 + e−x (10)

ft = σ(W f · [Ct−1, ht−1, xt] + b f ) (11)

The LSTM stores new data in the cell state by determining which values will be
updated and the values they’ll be updated with. This is done by using the input gate which
uses a sigmoid layer to select the updated values as seen in (12).

it = σ(Wi · [Ct−1, ht−1, xt] + bi) (12)

A hyperbolic tangent layer is used to calculate the new values that will be used to
update the selected values. The hyperbolic tangent function is continuous and differentiable
at all points and bounds the output between −1 and 1. Equation (13) shows the new values
used to update the cell.

C̃t = tanh(WC · [ht−1, xt] + bC) (13)

The cell state is updated by multiplying the forget gate by the previous cell state and
adding it to the product of (12) and (13).

Ct = ft ∗ Ct−1 + it ∗ C̃t (14)

In order to determine the output of the cell, (15) shows the output gate using a sigmoid
layer to determine which values will be outputted. The output is then determined by taking
the product of the output gate and the hyperbolic tangent of the current cell state as seen
in (16).
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ot = σ(Wo · [Ct, ht−1, xt] + bo) (15)

ht = ot ∗ tanh(Ct) (16)

The gating units allow LSTM to capture the dynamics and correlation within both
long and short time series data sets. This improvement of RNNs cause LSTMs to be more
desirable when training on long time series datasets as they are able to resolve issues
associated with long term dependencies such as the vanishing and exploding gradients.

3.3. Problem Formulation

Even though the VSC has good dynamic response under the conventional method,
studies show that there are several limitations with this control method [6,7]. The conven-
tional method requires accurate mathematical models of the VSC, which may not always
be available [26]. Additionally mathematical models are developed using constant pa-
rameters. However, model parameters change under different environmental conditions.
The performance of the conventional method may deteriorate due to the aforementioned
issues [8,27]. Therefore, new strategies need to be proposed for a more robust performance
of a grid-connected VSC.

Robust control of a grid-connected VSC can be formulated as a regression problem
that can be solved using supervised learning. The objective of this method of learning
is to develop models that are capable of detecting the underlying relationship between
the inputs and outputs and yield accurate results on new data sets. Thus, supervised
learning-based controls are capable of fitting a function that will be agnostic to the system.
One method of solving supervised learning problems is through neural networks. Neural
networks are universal approximators that are capable of capturing a system’s responses
with very little system knowledge [28].

3.4. Proposed Method

The LSTM-based control architecture for a three-phase grid-connected VSC is shown
in Figure 4. The controller implements a fast inner current-loop by replacing the two PI
dq controllers used in the conventional control approach with an LSTM-based controller.
The proposed LSTM network for the VSC is a fully connected feed forward network with six
inputs, two hidden layers (100 LSTM units per hidden layer), two outputs, and hyperbolic
tangent activation functions at each node. The amount of hidden layers and units per
layer are found via trial and error. Figure 4 shows the network’s architecture within a
grid-connected VSC similar to the one shown in Figure 1. As shown in the figure, the input
signals of the network are the measured currents~idq(t), the error of the currents ~edq(t),
and the integral of the error signals~sdq(t). In [25], it is noted that that the inclusion of the
integral term resolves steady-state tracking error that occurs when there are parameter
changes within the system,~sdq(t) is defined in (17). The network computes the outputs
~vt,dq(t) at each time step.

~sdq(t) =
∫ Ts

0
~edq(t) dt =

∫ Ts

0

(
~idq,re f (t)−~idq(t)

)
dt (17)

The system is controlled using only a decoupled current control method for the grid-
connected VSC. In this method, the controller is designed to follow current set points and
does so under any condition as long as it is stable. For example, if a fault occurs at the
inverter terminals, the current goes through a short transient before settling back at its
set point. It should be noted that if an outer loop is used to control power, the controller
performs differently under faults. This is because the inverter cannot inject real power with
the voltage reduced. Therefore, it increases the active current until it reaches its upper limit.
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Figure 4. LSTM control structure for grid-connected VSC.

3.5. Gathering of Training Data

The training data for the LSTM-based controller is generated by performing set point
changes in both the direct and quadrature axes of well tuned conventional controlled
models of a grid-connected VSC in Simulink. The parameters of the VSC model are shown
in Table 1. The values for the set point changes were randomly selected from a range of
values that did not exceed the rated current limit or caused the voltage to reach saturation.
Thus, the training data set for the network is comprised of the good training data that will
not cause the network to be improperly trained. The use of finely tuned decoupled current
controllers to generate the training data allow the LSTM-based controller to learn how to
control each current component independently. Figure 5 shows an example of these set
point changes, where the reference values would be changed after every 0.15 s starting
at 0.3 s. The total duration of each simulation is for 1.5 s while the sampling time for the
system is chosen as Ts = 0.025 ms. In order to avoid input saturation and improve the
accuracy of the network, the inputs are feature scaled using min-max scaling (18). Feature
scaling reduces the impact of certain features and gives equal importance to each feature.

x′ =
x− xmin

xmax − xmin
(18)

0 0.5 1 1.5Time (s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8
𝑖𝑑,𝑟𝑒𝑓
𝑖𝑞,𝑟𝑒𝑓

C
u

rr
en

t 
(p

u
)

Figure 5. Example training data for LSTM network.
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Table 1. System Parameters.

Parameter Value

DC bus voltage Vdc = 750 V
Grid voltage (RMS) Vg = 420 V

Filter Resistance R f = 1 Ω
Filter inductance L f = 8 mH

Switching frequency fsw = 20 kHz
Grid Resistance Rs = 25 mΩ
Grid Inductance Ls = 45 µH

The proposed LSTM model, as shown in Figure 4, is built and trained in Python using
the Keras and TensorFlow libraries. The model is compiled using the Adam optimizer,
MSE loss function, and a learning rate of 0.01. The MSE loss function calculates the average
of the squared difference between the observed and targeted values. The MSE loss function
is shown in (18), where yi is the observed value and ỹi represents the target value.

MSE =
1
n

n

∑
i=1

(yi − ỹi)
2 (19)

The data set is split into two parts, 80% for training data and 20% for testing data. This
is done to ensure that there is enough training data to train the model. Once the data is
properly feature scaled and split, the training data is fed into the LSTM network and the
model begins training. The model is trained offline using batch training. The model is
trained for 400 epochs and its loss curve is shown in Figure 6.

0 50 100 150 200 250 300 350 400
Epoch

L
o

ss  

100100

10-110-1

101101

102102

103103

Figure 6. Loss curve for LSTM network.

4. Performance Evaluation

A simulation system of a grid-connected VSC is built in Simulink in order to evaluate
the performance of the LSTM-based controller with the conventional controller. Four case
studies for which the model is not trained for are discussed below. Figure 7 shows the
Simulink model of the grid-connected VSC.

4.1. Step Change in Direct and Quadratic Current Reference

A step change from 1.76 pu to 0.63 pu in id,re f occurs at t = 1 s. Figure 8a shows that
the LSTM-based controller successfully tracking id during a step change. The LSTM has a
settling time of 0.09 s while the conventional controller settles in 0.12 s.
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Figure 7. Simulink model of three-phase grid-connected VSC.

iq,re f changes from −1.09 pu to 0.23 pu at t = 1 s in Figure 8b. The LSTM has a settling
time of 0.06 s while the conventional controller settles in 0.11 s, demonstrating the successful
tracking of iq during a step change in iq,re f . Figure 9 shows the real and reactive power
response to the step changes shown in Figure 8.

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14
0.6

0.8

1

1.2

1.4

1.6

1.8

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

id,ref
id,PI
id,LSTM

i q
 (

p
u

)
i d

 (
p

u
)

iq,ref
iq,PI
iq,LSTM

Figure 8. Controller response to step changes in id,re f and iq,re f . (a) id,re f change; (b) iq,re f change.

4.2. Fault Analysis at PCC

Figures 10–13 show the responses for different simulated faults that occur at t = 0.4 s
and lasts for 10 cycles at the PCC. Figure 10 shows the response for a three-phase fault,
Figure 11 shows the response for a single-phase fault (A-G), Figure 12 for a phase-phase
fault (A-B), and Figure 13 shows the response for a double phase-ground fault (B-C-G).
As seen in the figures, the LSTM-based controller is able to reduce the overshoot and
undershoot that occurs during a fault as well as maintain stability once the fault is cleared;
performing significantly better than the conventional controller.
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Figure 9. Real and reactive power response to step changes in id,re f and iq,re f . (a) Real power;
(b) Reactive power.
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Figure 10. Controller response to a three-phase fault at PCC.
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Figure 11. Controller response to a single phase-ground fault at PCC.
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Figure 12. Controller response to a phase-phase fault at PCC.

4.3. Decreasing SCR

The SCR of the system is decreased causing the system to be poorly connected to the
grid. In Figure 14a, id,re f changes from −0.17 pu to −0.297 pu at t = 1.3 s. The LSTM has a
settling time of 0.02 s while the conventional controller settles in 0.07 s. In Figure 14b, iq,re f
changes from −0.02 pu to −0.17 pu at t = 0.55 s. The LSTM has a settling time of 0.02 s
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while the conventional controller settles in 0.07 s, demonstrating the effectiveness of the
controller even under weak grid connection. Figure 15 shows the real and reactive power
response to the step changes shown in Figure 14.
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Figure 13. Controller response to a double phase-ground fault at PCC.
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Figure 14. Controller response for a lower SCR. (a) id,re f change; (b) iq,re f change.

4.4. Changing the Grid Filter

The inductance of the grid filter is reduced by 20%. In Figure 16a, id,re f changes from
0.21 pu to −0.17 pu at t = 0.85 s and from −0.17 pu to −0.27 pu at t = 1 s. In Figure 16b,
iq,re f changes from −0.16 pu to −0.33 pu at t = 0.85 s and from −0.33 pu to 0.11 pu at t = 1 s.
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The LSTM-based controller settles faster than the conventional controller demonstrating
the superiorty of the proposed method under parameter changes. Figure 17 shows the real
and reactive power response to the step changes shown in Figure 16.
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Figure 15. Real and reactive power response for a lower SCR. (a) Real power; (b) Reactive power.
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Figure 16. Controller response to 20% decrease in the inductance of the grid filter. (a) id,re f change;
(b) iq,re f change.
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Figure 17. Real and reactive power response 20% decrease in the inductance of the grid filter. (a) Real
power; (b) Reactive power.

The inductance of the grid filter is increased by 50%. In Figure 18a, id,re f changes
from 0.21 pu to −0.17 pu at t = 0.85 s. The LSTM has a settling time of 0.05 s while the
conventional controller is unable to successfully track the set point change. In Figure 18b,
iq,re f changes from −0.33 pu to −0.11 pu at t = 1 s. The LSTM has a settling time of
0.04 s while the conventional controller is unable to successfully track the set point change.
The LSTM-based controller is able to operate properly when the conventional controller is
not, demonstrating the robustness of the controller to system paramter changes.
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Figure 18. Controller response to 50% increase in the inductance of the grid filter. (a) id,re f change;
(b) iq,re f change.
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5. Conclusions

This paper proposes an LSTM-based control scheme for grid-connected VSCs. The
LSTM-based controller is trained in Python using the Keras and TensorFlow libraries.
Using Simulink, a simulation system is built to test various scenarios in order to evaluate
the performance of the proposed method. The LSTM-based controller outperforms the
conventional control method under all cases, confirming the robustness and accuracy of
the proposed method.
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