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Abstract: The design of AC filters must meet the criteria of harmonic distortion mitigation and
reactive power support in various operating modes. The stringent reactive power-sharing require-
ments currently lead to sophisticated filter schemes with high component ratings. In this regard,
triple-tuned filters (TTFs) have good potential in harmonic mitigation of a broad range of harmonics.
In the literature, the TTF design has been presented using a parametric method, assuming that the
TTF is equivalent to a three-arm single-tuned filter (TASTF). However, no direct methods of designing
it or finding its optimal parameters have been provided. This paper presents novel mathematical
designs of TTFs. Three different design methods are considered—the direct triple-tuned filter (DTTF)
design method, as a TASTF, and a method based on the equivalence between the two design methods
called the equivalence hypothesis method to design the triple-tuned filter (EHF). The parameters of
the three proposed design methods are optimized based on the minimization of a proposed multi-
objective function using a recent metaheuristic algorithm called artificial rabbits optimization (ARO)
to mitigate harmonics, improve power quality, and minimize power losses in an exemplary system
presented in IEEE STD-519. Further, the system’s performance has been compared to the system
optimized by the ant lion optimizer (ALO) and whale optimization algorithm (WOA) to validate the
effectiveness of the proposed design. Simulation results emphasized harmonics mitigation in the
system, the system losses reduction, and power quality improvement with lower reactive power filter
ratings than conventional single and double-tuned filters.

Keywords: triple-tuned filter; passive filter; power quality; harmonics; optimization; artificial rabbits
optimization; ant lion optimizer; whale optimization algorithm

1. Introduction

Recently, numerous power quality problems have spread due to the extensive use of
electronic appliances, industrial applications, and renewable energy sources, as well as the
increased use of electric vehicles. In terms of power quality, harmonics are produced by
the increasing use of nonlinear loads in power systems, which adversely impacts how well
these systems will function [1]. The primary concern for the distribution systems planners
and operators is maintaining the system with high power quality levels, reducing electrical
loss, and keeping the power factor within the desired limits. However, this is threatened by
harmonics distortion because it increases system power losses and decreases transmission
efficiency, in addition to overheating and reduced loading capacity in frequency-dependent
components such as cables, transformers, and induction machines. Harmonics distortion
also causes poor power factor levels, poor efficiency, reduced hosting capacity levels
of distributed generation units in power systems, malfunction of protective relays and
electronic circuits, and resonance problems among the inductive source impedance and
shunt capacitors [2].
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Passive filters are frequently employed to reduce the impacts of the increased har-
monics due to their simple design, low price, excellent dependability, and ease of main-
tenance [3]. Also, they are commonly used in distribution systems for reactive power
compensation and voltage support [4]. On the one hand, harmonic distortion at specific
harmonic orders can be reduced using tuned filters, such as single-tuned or double-tuned
filters, as they provide better harmonic mitigation than damped filters; however, they may
suffer from parameter variations and resonance occurrence. On the other hand, compared
to tuned filters, damped filters offer good harmonic suppression and improved harmonic
resonance damping capability [5].

Many approaches have been presented in the literature to mitigate harmonics and
reduce distortions in modern power and energy systems. Single-tuned filters (STFs) are
frequently employed to mitigate an individual distortion provided by a specific harmonic
frequency, but they perform poorly in systems with high harmonic distortion [6,7]. In order
to reduce multiple harmonic frequencies, double-tuned filters (DTFs) or multi-arms single-
tuned filters (MASTFs) can be utilized [4,5]. DTFs have almost the same performance
but at a cheaper cost. It is possible to design a DTF in three ways: by using MASTF
directly, considering it as two parallel STFs, or by evaluating the characteristics of the
previous two designs with the assumption that their harmonic impedances are equal.
These techniques are presented in [8] to eliminate system harmonics and enhance the
power quality performance of the studied system.

In this regard, a triple-tuned filter (TTF) can simultaneously lessen the harmonic
distortion of three frequencies. It has been applied in some projects in China, Thailand, and
others. However, it was noted that they empirically designed it because of the mathematical
complexity of finding its parameters.

In the literature, few publications presented the design of TTF by considering its
parameters to be the same as three parallel STFs. For instance, in [9], the TTF was presented
as three STF branches in the HVDC schemes—EGAT-TNB 300 MW HVDC Interconnection
and Moyle Interconnector, in which the experience gained during the commissioning tests
and the subsequent commercial operation were reported in [9]. A three-tuned filter to
minimize harmonics in a power system was presented in [10] while presenting an analog
equivalent design to three parallel STFs. Their filter design performed better than STFs in
mitigating harmonics and reducing power loss, with low space occupation and price.

In [11], the authors suggested that the design of double and triple-tuned filters include
splitting the filter into two or three STFs to simplify the design process. Also, in [12], the
author presented a method for designing a filter group based on distributing the reactive
power among filters in the group.

The study in [13] provided a comparative assessment of five widely known passive
harmonic filters, STF, DTF, TTF, damped DTF, and C-type filters, regarding their contribu-
tion to the loading capability of the transformers under non-sinusoidal conditions. Only
the equivalent impedances of these filters were considered in the presented design, with
no mathematical design of the TTF. It was clearly observed from the results obtained for
the investigated distorted system with its nonlinear loads and background voltage distor-
tion that the TTF outperformed the other considered filters in terms of the transformer’s
loading capability improvement. In addition, an analytical optimization of the filtration
efficiency of a group of single-branch filters was presented in [14] to design filters with the
minimized sum of various harmonic reduction metrics to improve the power quality level
of the system. To sum up, due to the problematic design of the TTF, there was no way to
develop and improve the performance of this type of filter using a direct design method in
the literature.

To redress this gap, this paper presents a novel mathematical formulation of the TTF in
detail using three design models: direct design, three arms of a single-tuned filter (TASTF),
and their equivalence hypothesis. Further, the filter parameters are obtained using the
bio-inspired meta-heuristic artificial rabbits optimization (ARO) algorithm to minimize
power losses and enhance the power quality performance of the studied system. The
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results of the proposed filter schemes are obtained using ARO and compared to those
obtained using the ant-lion optimizer (ALO) and the whale optimization algorithm (WOA)
to demonstrate the effectiveness of the used algorithm.

The rest of the article is structured as follows. The design methodologies of the TTF
are presented in detail in Section 2. The system description, problem formulation, objective
function proposed, and problem constraints are addressed in Section 3. The three employed
optimization techniques—ARO, ALO, and WOA—are presented in Section 4. The obtained
results are presented and discussed in Section 5. Finally, Section 6 concludes the work and
introduces recommendations and possible future works for this study.

2. Design Methodologies of Triple-Tuned Filters

The triple-tuned filter can be mathematically designed in three ways, the direct triple-
tuned filter (DTTF) design method, as a TASTF, and a method based on the equivalence
between the two design methods called the equivalence hypothesis method to design the
triple-tuned filter (EHF). In this section, the three design techniques are discussed.

2.1. Mathematical Design for Three Arms of a Single-Tuned Filter

The three arms of a single-tuned filter (TASTF) rely on the basic structure of a single-
tuned filter, as stated in [9,11,14], which consists of a series arrangement of an inductor L,
capacitor C, and resistance R, as shown in Figure 1. For simplicity, one can consider the real
part of the filter impedance equal to zero, i.e., R = 0. That will provide much more adequate
tuned harmonic elimination characteristics and improve the system’s power quality.
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Figure 1. The three arms of a single-tuned filter.

The arms impedances Za, Zb and Zc can be calculated as follows:

Za(ω) = j
(

ωLa −
1

ωCa

)
, (1)

Zb(ω) = j
(

ωLb −
1

ωCb

)
, (2)

Zc(ω) = j
(

ωLc −
1

ωCc

)
. (3)

where Ca, La denote the capacitance and inductance of the first arm, Cb, Lb denotes the ca-
pacitance and inductance of the second arm, Cc, Lc denotes the capacitance and inductance
of the third arm and ω denotes the angular frequency.
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Each arm has its resonance frequency, so the TASTF has three resonance frequencies
ωra, ωrb, and ωrc. At each resonance frequency, the impedance of the arm is equal to zero.
Thus, the resonance frequencies can be represented as follows:

ωra =
1√

LaCa
, (4)

ωrb =
1√

LbCb
, (5)

ωrc =
1√

LcCc
. (6)

These angular resonance frequencies can be written as a function of the fundamental
frequency ωf, as follows:

ωra = haω f , (7)

ωrb = hbω f , (8)

ωrc = hcω f . (9)

where ha, hb, hc denote the harmonic tuning order.
The inductance of each filter’s branch can be obtained from (4)–(9) as follows:

La =
1

h2
aω2

f Ca
, (10)

Lb =
1

h2
bω2

f Cb
, (11)

Lc =
1

h2
c ω2

f Cc
. (12)

The total admittance of the TASTF can be obtained as follows:

1
Z f

=
1

Za
+

1
Zb

+
1

Zc
(13)

From (1)–(3) and (10)–(12), the total admittance can be rewritten as:

1
Z f

= jCa
ha

2ω f
2ω

ha
2ω f

2 −ω2
+ jCb

hb
2ω f

2ω

hb
2ω f

2 −ω2
+ jCc

hc
2ω f

2ω

hc
2ω f

2 −ω2
(14)

The TASTF impedance characteristic is illustrated in Figure 2. The impedance of the
filter will be zero at the tuning frequencies ωra, ωrb, and ωrc in order to eliminate these
harmonics. At the same moment, the impedance value at the parallel frequencies ωp1 and
ωp2 will reach a maximum value. The parallel frequencies are represented as a function of
the fundamental frequency.

ωp1 = mp1ω f (15)

ωp2 = mp2ω f , (16)

where mp1 and mp2 are the harmonic order of the parallel resonance frequency.
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Figure 2. Impedance characteristic of the TASTF.

Based on the impedance characteristics of the TASTF, the capacitance of each branch
can be calculated at the fundamental angular frequency ωf, as follows:

Z f (ω f ) = −j
V2

s
Q f

. (17)

Substituting (17) into (14), thus:

1
Z f (ω f )

= Ca
ha

2ω f
2ω f

ha
2ω f

2 −ω f
2
+ Cb

hb
2ω f

2ω f

hb
2ω f

2 −ω f
2
+ Cc

hc
2ω f

2ω f

hc
2ω f

2 −ω f
2
=

Q f

V2
s

(18)

Simplifying (18) will lead to the following equation:

Ca
ha

2

ha
2 − 1

+ Cb
hb

2

hb
2 − 1

+ Cc
hc

2

hc
2 − 1

=
Q f

ω f V2
s

(19)

At the first parallel frequency, i.e., ω = ωp1, the admittance 1
Z f (ωp1)

= 0, therefore:

Ca
ha

2ω f
2ωp1

ha
2ω f

2 −ωp1
2
+ Cb

hb
2ω f

2ωp1

hb
2ω f

2 −ωp1
2
+ Cc

hc
2ω f

2ωp1

hc
2ω f

2 −ωp1
2
= 0 (20)

Dividing (20) by ωp1ω f
2 and considering that mp1 =

ωp1
2

ω f
2 will leads to:

Ca
ha

2

ha
2 −mp1

2
+ Cb

hb
2

hb
2 −mp1

2
+ Cc

hc
2

hc
2 −mp1

2
= 0 (21)

At the second parallel frequency, ω = ωp2, the admittance 1
Z f (ωp2)

= 0, therefore:

Ca
ha

2ω f
2ωp2

ha
2ω f

2 −ωp22
+ Cb

hb
2ω f

2ωp2

hb
2ω f

2 −ωp22
+ Cc

hc
2ω f

2ωp2

hc
2ω f

2 −ωp22
= 0 (22)

Dividing (22) by ωp2ω f
2 and considering that mp2 =

ωp2
2

ω f
2 ;

Ca
ha

2

ha
2 −mp22

+ Cb
hb

2

hb
2 −mp22

+ Cc
hc

2

hc
2 −mp22

= 0 (23)
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Finally, by solving (19), (21), and (23), one can get the capacitances of the filter as
follows:

Ca =
Q f

ha
2ω f Vs

2

(
ha

2 − 1
)(

hb
2 − 1

)(
hc

2 − 1
)(

ha
2 −mp1

2
)(

ha
2 −mp2

2
)

(
ha

2 − hb
2
)(

ha
2 − hc

2
)(

mp1
2 − 1

)(
mp22 − 1

) , (24)

Cb =
Q f

hb
2ω f Vs

2

(
ha

2 − 1
)(

hb
2 − 1

)(
hc

2 − 1
)(

hb
2 −mp1

2
)(

hb
2 −mp2

2
)

(
hb

2 − ha
2
)(

hb
2 − hc

2
)(

mp1
2 − 1

)(
mp22 − 1

) , (25)

Cc =
Q f

hc
2ω f Vs

2

(
ha

2 − 1
)(

hb
2 − 1

)(
hc

2 − 1
)(

hc
2 −mp1

2
)(

hc
2 −mp2

2
)

(
hc

2 − ha
2
)(

hc
2 − hb

2
)(

mp1
2 − 1

)(
mp22 − 1

) . (26)

The filter inductances can be calculated from (10)–(12). The design of TASTF is simple
and can be easily optimized by selecting the proper harmonic orders to be eliminated,
hence getting the values of capacitances and inductances.

2.2. Mathematical Design of Direct Triple-Tuned Filter

The direct triple-tuned filter (DTTF) mathematical model has never been presented in
literature because of its complex mathematical formulations. The DTTF can be represented
by adding an additional tuning circuit to the double-tuned filter, as shown in Figure 3.
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For any angular frequency ω, the impedance of the series connection of the inductor
and capacitor (L1, C1) is expressed as given in (27) while ignoring dielectric losses of
capacitors and resistance in reactors. Its series resonance angular frequency (ωs), which
leads to a zero series impedance, i.e., ZS = 0, can be written as follows:

ωs =
1√

L1C1
, (27)

Zs(ω) = j
(

ωL1 −
1

ωC1

)
. (28)
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Also, the impedances representing the two parallel connections of the inductors and
capacitors (L2, C2) and (L3, C3) are expressed as given in (29) and (30) as Zp1 and Zp2,
respectively.

Zp1(ω) = −j
(

ωC2 −
1

ωL2

)−1
, (29)

Zp2(ω) = −j
(

ωC3 −
1

ωL3

)−1
. (30)

The parallel resonance angular frequencies (ωp1 and ωp2), which lead to infinite
parallel impedances, i.e., ZP = ∞, are given as:

ωp1 =
1√

L2C2
, (31)

ωp2 =
1√

L3C3
. (32)

The parallel resonance frequencies can be expressed in terms of the fundamental
frequency ωf as follows:

ωp1 = mp1ω f , (33)

ωp2 = mp2ω f . (34)

where mp1 and mp2 are the parallel resonance harmonic orders.
Hence, the total impedance of the filter (Zf) is expressed as:

Z f (ω) = Zs(ω) + Zp1(ω) + Zp2(ω) (35)

Substituting (28)–(30) into (35) will lead to:

Z f (ω) = j (ω
2L1C1)(ω

2L2C2−1)(ω2L3C3−1)−(ω2L2C2−1)(ω2L3C3−1)−(ω2L2C1)(ω
2L3C3−1)−(ω2L3C1)(ω

2L2C2−1)
ωC1(ω2L2C2−1)(ω2L3C3−1) (36)

The series combination characteristic of the above three circuits (series and parallel)
has three resonant frequencies (ω1, ω2, and ω3), as shown in Figure 4. At the tuned
frequencies, the total impedance of the filter is given as follows:

j (ω
2L1C1)(ω

2L2C2−1)(ω2L3C3−1)−(ω2L2C2−1)(ω2L3C3−1)−(ω2L2C1)(ω
2L3C3−1)−(ω2L3C1)(ω

2L2C2−1)
ωC1(ω2L2C2−1)(ω2L3C3−1) = 0 (37)
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The numerator of (37) is given as:

ω6L1L2L3C1C2C3 −ω4(L1C1L2C2 + L1C1L3C3 + L2C2L3C3 + L2C1L3C3 + L3C1L2C2) + ω2(L1C1 + L2C2 + L3C3 + L2C1 + L3C1)− 1 = 0 (38)

According to Vieta’s theory [15] and the theorem by A. Girard established for finding
positive roots [16], the relationship between the three positive roots ω1, ω2, and ω3 and
the coefficients of (38) are given as follows:

ω1
2ω2

2ω3
2 =

1
L1C1L2C2L3C3

(39)

From (28), (31), and (32), one can deduce that

ω1ω2ω3 = ωsωp1ωp2 (40)

The impedance resonance frequencies (ω1, ω2, and ω3) can also be expressed in terms
of the fundamental frequency as follows:

ω1 = h1ω f , (41)

ω2 = h2ω f , (42)

ω3 = h3ω f . (43)

where h1, h2, and h3 are the harmonic tuning orders.
Further, by substituting (39) and (40) into (38):

ω6

ω2
s ω2

p1ω2
p2
−ω4

(
1

ω2
s ω2

p1
+ 1

ω2
s ω2

p2
+ 1

ω2
p1ω2

p2

)
+ ω2

(
1

ω2
s
+ 1

ω2
p1
+ 1

ω2
p2

)
− 1 = C1

C2

(
ω4

ω2
p1ω2

p2
− ω2

ω2
p1

)
+ C1

C3

(
ω4

ω2
p1ω2

p2
− ω2

ω2
p2

)
(44)

Then, assuming that the left-hand side of (44) equals Aw, therefore:

C1

C2

(
ω4

ω2
p1ω2

p2
− ω2

ω2
p1

)
+

C1

C3

(
ω4

ω2
p1ω2

p2
− ω2

ω2
p2

)
= Aω (45)

ω1 is one of the solutions of (45), so at ω = ω1, one can get:

C1

C2
= Aω1

ω2
p1ω2

p2

ω4
1 −ω2

1ω2
p2
− C1

C3

(
ω4

1 −ω2
1ω2

p1

ω4
1 −ω2

1ω2
p2

)
, (46)

Also, ω2 is one of the solutions of (45), so at ω = ω2, one can get:

C1

C3
= Aω2

ω2
p1ω2

p2

ω4
2 −ω2

2ω2
p1
− C1

C2

(
ω4

2 −ω2
2ω2

p2

ω4
2 −ω2

2ω2
p1

)
. (47)

Substituting (46) into (47), thus:

C1

C3
=

[
Aω2

ω2
p1ω2

p2

ω4
2 −ω2

2ω2
p1
− Aω1

ω2
p1ω2

p2

ω4
1 −ω2

1ω2
p2

(
ω4

2 −ω2
2ω2

p2

ω4
2 −ω2

2ω2
p1

)][
1−

(
ω4

1 −ω2
1ω2

p1

ω4
1 −ω2

1ω2
p2

)(
ω4

2 −ω2
2ω2

p2

ω4
2 −ω2

2ω2
p1

)]−1

(48)

Then, assuming that the right-hand side of (48) equals B, hence:

C3 =
C1

B
(49)
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Substituting (49) into (45), thus:

C2 =
C1[

Aω1

(
ω2

p1ω2
p2

ω4
1−ω2

1ω2
p2

)
− B

(
ω4

1−ω2
1ω2

p1

ω4
1−ω2

1ω2
p2

)] (50)

At the fundamental frequency ωf, and substituting by (49) and (50), (36) can be
rewritten as follows:

Z
(

ω f

)
= j

ω6
f

ω2
s ω2

p1ω2
p2
−ω4

f

(
1

ω2
s ω2

p1
+ 1

ω2
s ω2

p2
+ 1

ω2
p1ω2

p2

)
+ω2

f

(
1

ω2
s
+ 1

ω2
p1
+ 1

ω2
p2

)
−1− C1

C2

(
ω4

f
ω2

p1−ω2
p2
−

ω2
f

ω2
p1

)
− C1

C3

(
ω4

f
ω2

p1−ω2
p2
−

ω2
f

ω2
p2

)

ω f C1

(
ω2

f
ω2

p1
−1

)(
ω2

f
ω2

p2
−1

) = −j V2
s

Q f
(51)

Substituting (44), (49), and (50) into (51), thus:

Z
(

ω f

)
=

Aω f −
(

Aω1

(
ω2

p1ω2
p2

ω4
1−ω2

1ω2
p2

)
− B

(
ω4

1−ω2
1ω2

p1

ω4
1−ω2

1ω2
p2

))(
ω4

f

ω2
p1−ω2

p2
−

ω2
f

ω2
p1

)
− B

(
ω4

f

ω2
p1−ω2

p2
−

ω2
f

ω2
p2

)
ω f C1

(
ω2

f

ω2
p1
− 1
)(

ω2
f

ω2
p2
− 1
) = −V2

s
Q f

(52)

Finally, by simplifying (52), one can get the following expression for C1:

C1 =

Aω f −
[

Aω1
ω2

p1ω2
p2

ω4
1−ω2

1ω2
p2
− B

(
ω4

1−ω2
1ω2

p1

ω4
1−ω2

1ω2
p2

)][
ω f

4

ω2
p1ω2

p2
− ω f

2

ω2
p1

]
− B

(
ω f

4

ω2
p1ω2

p2
− ω f

2

ω2
p2

)
ω f

(
ω f

2

ωp1
2 − 1

)(
ω f

2

ωp2
2 − 1

) −Q f

V2
s

(53)

where,

Aω f =
ω6

f

ω2
s ω2

p1ω2
p2
−ω4

f

(
1

ω2
s ω2

p1
+

1
ω2

s ω2
p2

+
1

ω2
p1ω2

p2

)
+ ω2

f

(
1

ω2
s
+

1
ω2

p1
+

1
ω2

p2

)
− 1 (54)

Therefore, the filter capacitances can be calculated by (53), (50), and (49), and the
inductances can be calculated as follows:

L1 =
1

ω2
s C1

, (55)

L2 =
1

ω2
P1C2

, (56)

L3 =
1

ω2
P2C3

. (57)

The design of DTTF is a complicated and complex mathematical analysis. However,
its design equations have been solved, and its parameters can be optimized by selecting
the proper harmonics orders to be eliminated, hence getting the values of capacitances
and inductances.

2.3. Mathematical Design of Triple Tuned Filter Based on the Equivalence Hypothesis with TASTF

Another design of the TTF is proposed to obtain its parameters based on the equiva-
lence hypothesis with TASTF. The equivalence hypothesis’s filter (EHF) can be found by
equalizing the total impedance of both types. The TASTF total impedance (Zf1) and the
DTTF total impedance (Zf2) can be written as:

Z f 1 = j
(

ω6(LaCa LbCb LcCc)−ω4(LaCa LbCb+LaCa LcCc+LbCb LcCc)+ω2(LaCa+LbCb+LcCc)−1
ω5(Ca LbCb LcCc+Cb LaCa LcCc+Cc LaCa LbCb)−ω3(Ca LbCb+Ca LcCc+Cb LaCa+Cb LcCc+Cc LaCa+Cc LbCb)+ω(Ca+Cb+Cc)

)
, (58)



Energies 2023, 16, 39 10 of 22

Z f 2 = j
(

ω6(L1C1L2C2L3C3)−ω4(L1C1L2C2+L1C1L3C3+L2C2L3C3+L2C1L3C3+L3C1L2C2)+ω2(L1C1+L2C2+L3C3+L2C1+L3C1)
ω5(C1L2C2L3C3)−ω3(C1L2C2+C1L3C3)+ωC1

)
. (59)

As Zf1 = Zf2, analyzing and equalizing the coefficients of ω in both the numerator and
denominator, one can get the following six equations:

C1 = Ca + Cb + Cc, (60)

C1L2C2 + C1L3C3 = CaLbCb + CaLcCc + CbLaCa + CbLcCc + CcLaCa + CcLbCb, (61)

C1L2C2L3C3 = CaLbCbLcCc + CbLaCaLcCc + CcLaCaLbCb, (62)

L1C1 + L2C2 + L3C3 + L2C1 + L3C1 = LaCa + LbCb + LcCc, (63)

ω6L1L2L3C1C2C3 −ω4(L1C1L2C2 + L1C1L3C3 + L2C2L3C3 + L2C1L3C3 + L3C1L2C2) + ω2(L1C1 + L2C2 + L3C3 + L2C1 + L3C1)− 1 = 0, (64)

L1C1L2C2L3C3 = LaCaLbCbLcCc. (65)

After complex mathematical analysis in solving these equations, the parameters of the
TTF are given as follows:

C1 = Ca + Cb + Cc, (66)

L1 =
LaLbLc

LaLb + LbLc + LaLc
, (67)

C2 =
Z1(Z3 − Z4)

Z2Z3Z4 − Z1Z4
, (68)

L2 =
Z3(Z3 − Z4)

Z1Z3 − Z2Z3Z4
, (69)

C3 =
Z3(Z3 − Z4)

Z1Z3 − Z2Z3Z4
, (70)

L3 =
Z1Z3 − Z2Z3Z4

Z3 − Z4
. (71)

where

Z1 =
CaLa

2Lb + CbLb
2Lc + CcLc

2La

(Ca + Cb + Cc)X
− LaLbLc

X
− Y

(Ca + Cb + Cc)
2 , (72)

Z2 =
CaCbLa

2Lb
2 + CaCcLa

2Lc
2 + CbCcLb

2Lc
2

(Ca + Cb + Cc)X2 − 1
Ca + Cb + Cc

, (73)

Z3 =
Y

2(Ca + Cb + Cc)
+

[
(

Y
2(Ca + Cb + Cc)

)
2
− CaCbCc

Ca + Cb + Cc
X

] 1
2

, (74)

Z4 =
Y

2(Ca + Cb + Cc)
−
[
(

Y
2(Ca + Cb + Cc)

)
2
− CaCbCc

Ca + Cb + Cc
X

] 1
2

, (75)

X = LaCa + LbCb + LcCc, (76)

Y = CaLbCb + CaLcCc + CbLaCa + CbLcCc + CcLaCa + CcLbCb. (77)

The relationship between the resonance frequency of the two filters is then represented
as follows:

ωraωrbωrc = ωsωp1ωp2 (78)

3. System Studied
3.1. System Description and Problem Formulation

The studied system comprises a utility system, mixed linear and nonlinear loads,
and filters. The single-line diagram of the system under study is shown in Figure 5a. Its
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equivalent circuit representing the utility with Thevenin’s voltage source and Thevenin
resistance is illustrated in Figure 5b, where Rs and Xs represent the fundamental resistance
and reactance of the line impedance at harmonic order h, and the linear load is modeled as
a resistance RL connected in series with inductance XL in ohms at h. The filter is modeled
as a resistance RF connected in series with inductance XF in ohms at the harmonic order h.
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In the equivalent circuit, the impedance of the linear load, supply line, and filter are
expressed as the hth harmonic impedances denoted ZSh, ZLh and ZFh, respectively, thus:

ZSh = RS + jhXS, (79)

ZLh = RL + jhXL, (80)

ZFh = RF + jhXF. (81)

Based on the circuit theorems, at the hth harmonic order, expressions of the line current
Ish and load bus voltage VLh can be expressed as follows:

Ish =
VSh

ZSh + ZFLh
+

ZFLh
ZSh + ZFLh

ILh, (82)

VLh = VSh − IShZSh (83)

where ZFLh represents the parallel equivalent impedance of the filter’s impedance ZFh and
the load impedance ZLh.; so that

ZFLh =
ZFhZLh

ZFh + ZLh
(84)

The per-phase transmission line power losses ∆PL can be expressed as follows:

∆PL = ∑
h≥1

I2
ShRS (85)

Total harmonic distortion voltage THDV is used to specify the effective voltage value
of the harmonic orders injected in the power system at the fundamental voltage and can be
calculated as follows:

THDV(%) =

√
∑h 6=1 V2

h

V1
× 100, (86)
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Total harmonic distortion current THDI and the total demand distortion TDDI are
used to specify the effective current value of the harmonic orders injected in the power
system relative to the fundamental current and can be expressed as:

THDI(%) =

√
∑h 6=1 I2

h

I1
× 100, (87)

TDDI(%) =

√
∑h 6=1 I2

h

IL
× 100 (88)

where V1 denotes the fundamental component of the load voltage, I1. denotes the funda-
mental component of the source current, and IL denotes the maximum load demand.

3.2. Objective Function Formulation

According to [17], the adaptive weighted sum technique successfully solves issues
with multiple objectives. Hence, in order to ensure enhancement of the power quality of the
system using different performance terms, a multi-objective function is used to minimize
the transmission line power losses given in (85) and the total voltage and current harmonic
distortion given in (86) and (87). The objective function can be expressed as:

F = Minimize [k1 × ∆PL + k2 × THDV + k3 × THDI ] (89)

where k1, k2 and k3 are the adaptive weights used in minimizing the power losses, THDV
and THDI respectively, where k1 ≥ 0, k2 ≥ 0, k3 ≥ 0 and k1 + k2 + k3 = 1. Hence, the
optimal filter design can be determined by choosing the optimal values for Qf, ha, hb, hc,
mp1, mp2 for the TASTF and Qf, h1, h2, h3, mp1, mp2 for the DTTF.

3.3. Constraints

As reported in IEEE Std. 519 [18] and the Egyptian practice codes, preserving the
displacement power factor (DPF) in an acceptable range higher than 90% lagging is de-
sirable (90%≤ DPF ≤ 100%). The total demand distortion current (TDDI) should be in an
acceptable range below 8%, i.e., TDDI ≤ 8%, and the individual current harmonic orders
must be below 7% for the 5th and 7th harmonic orders and 3.5% for the 11th and 13th
harmonic orders. The total harmonic distortion voltage (THDV) should be in a satisfactory
range (THDV ≤ 5%). Also, all individual voltage harmonic distortion must be limited to
less than or equal to 3%.

4. Optimization Techniques

This paper uses a novel optimization called artificial rabbits optimization to optimize
the filter parameters based on the TASTF, DTTF, and EHF design methods. In order to
get the best solutions, the ant lion algorithm and whale optimizer algorithm are used to
validate the results obtained.

4.1. Artificial Rabbits Optimization

Artificial rabbits optimization (ARO), a new bio-inspired meta-heuristic method, was
proposed and thoroughly tested by Wang et al. in 2022 for solving engineering problems.
ARO was inspired by how rabbits in the wild survive. As herbivores, rabbits mostly eat
grass, forbs, and leafy weeds. Rabbits never consume the grass close to their holes; instead,
they seek nourishment elsewhere to avoid predators discovering their nest. Random
hiding is another means of rabbit survival. Rabbits must move quickly to avoid their many
predators because they are at the bottom of the food chain, which will shrink their energy,
so rabbits need to adaptively switch between detour foraging and random hiding [19].
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Rabbits search far and disregard what is nearby when foraging. That is called the for-
aging habit “detour foraging” since they only consume grass randomly in other places. The
following expression represents the mathematical model of rabbits’ detour foraging [19]:

→
vi(t + 1) =

→
x j(t) + R(

→
x i(t)−

→
x j(t)) + round(0.5(0.05 + r1))n1,

i, j = 1, . . . . . . , nandj 6= i
(90)

R = LC (91)

where n is the size of the population,
→
vi(t + 1) is the candidate position of the ith rabbit at

the time t + 1,
→
xi(t),

→
xj(t) denotes the locations of the ith or jth rabbit at the time t, rand

returns a random permutation of integers from 1 to the dimension of the problem (d), r1 is a
random number between 0 and 1, L is the running length, which represents the movement
speed when carrying out the detour foraging, C is 0 or 1, and n1 subjects to the standard
normal distribution. Predators frequently pursue and attack rabbits. Rabbits must locate a
secure hiding spot if they are to live. In order to avoid being discovered, they are forbidden
from choosing a burrow at random for refuge. The following equations mathematically
describe this random concealment technique [19]:

→
vi(t + 1) =

→
x j(t) + R(r4.bi,r(t)−

→
x i(t)) , i = 1, . . . . . . , n (92)

where
→
bj,r (t) represents a randomly selected burrow for hiding from its d burrows, and r4

denotes a random number between 0 and 1. The energy of a rabbit, which will progressively
diminish over time, powers the search mechanism. In order to represent the transition from
exploration to exploitation, an energy component is created. The following is a definition
of the energy factor in ARO [19]:

A(t) = 4(1− t
T
) ln

1
r

(93)

where A(t) denotes the energy factor, r is the random number between 0 and 1, and T is
the maximum number of iterations.

The search mechanism is depicted in Figure 6, which illustrates that the ARO algorithm
creates a collection of random populations of artificial rabbits (possible solutions) in the
search space. A rabbit updates its location concerning either a randomly selected rabbit
from the population or a randomly chosen rabbit from one of its burrows at each iteration.
By increasing the number of iterations, the energy factor A decreases, which might drive
every member of the population to alternate between detour foraging activity and random
hiding behavior. The best-so-far answer is returned once all updating and computation
have been completed interactively and the termination requirement has been fulfilled.
Figure 7 explores the flowchart of the ARO algorithm.

4.2. Ant Lion Optimizer

Mirjalili presented a nature-inspired algorithm called ant lion optimizer (ALO) in
2015 [20]. The ALO algorithm imitates the way ant lions hunt in nature. There are five
basic processes in hunting prey: setting up traps, entrapping ants in them, capturing prey,
and setting up new traps. An insect belonging to the net-winged, or Neuroptera, order is
called an ant lion. More detail about ALO can be found in [20].
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4.3. Whale Optimization Algorithm

In 2016, Mirjalili and Lewis introduced the whale optimization algorithm (WOA) to
metaheuristic algorithms [21]. The distinctive way humpback whales hunt inspired the
authors of [21] to develop the WOA. The WOA mathematical model is described in detail
in [21].

5. Results and Discussion

This section presents the results obtained from the TASTF, DTTF, and EHF. All pro-
posed algorithms are developed using MATLAB™. The system parameters investigated in
this study are obtained from an illustrative example presented in IEEE Std. 519 [18]. These
parameters are shown in Table 1.

Table 1. System data.

Parameter Value

Line voltage of the AC network (kV) 4.16
Frequency (Hz) 50

Three-phase short circuit capacity (MVA) 150
Three-phase fundamental frequency active

power (MW) 5.1

Three phases fundamental frequency reactive
power (MVAr) 4.965

Thevenin’s resistance (Ω) 0.0115
Thevenin’s reactance (Ω) 0.1154

Resistance of the linear load impedance (Ω) 1.742
Reactance of the linear load impedance (Ω) 1.696

Transmission line power losses per phase (kW) 31.7406
VS5 (%) 5.023
VS7 (%) 3.144
VS11 (%) 0.772
VS13 (%) 1.008
IL5 (%) 9.098
IL7 (%) 4.184
IL11 (%) 2.04
IL13 (%) 0.938

The search populations for all optimization techniques were set to 50, and the max-
imum number of iterations was 100. The lower and upper bounds for Qf, h1, h2, h3, mp1,
and mp2 are given in Table 2. The adaptive weights k1, k2, and k3 were chosen after many
trials as 0.5, 0.25, and 0.25, respectively.

Table 2. The parameters’ search space.

Parameter Qf (kVAr) h1 h2 h3 mp1 mp2

Lower
bound 0 4 6 9.8 5 7

Upper
bound 2000 4.9 6.9 12.5 5.9 9.5

The ARO, ALO, and WOA techniques have shown their ability to enhance the system
power quality, and the results are almost nearby. However, the ARO shows its superiority
in finding the optimal parameters by selecting a minimum filter reactive power in a lower
execution time with a slight reduction of power losses and voltage THD than ALO and
WOA, as presented in Table 3. This is also presented in Figure 8, which shows the conver-
gence curves of the ARO, ALO, and WOA for optimizing the TASTF and DTTF parameters.
It illustrates that ARO converges to the minimum fitness value after 20 iterations. Thus, the
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optimized values obtained by ARO are used in the different investigations presented in
the paper.

Table 3. Results obtained by the optimization algorithms.

Parameter
TASTF DTTF

ARO ALO WOA ARO ALO WOA

Qf (kVAr) 1617.8230 1626.8774 1630.2466 1617.7685 1624.2584 1632.0160
Ploss (kW) 17.2833 17.2858 17.2873 17.2833 17.2844 17.2872
THDv (%) 3.1330 3.1356 3.1362 3.1341 3.1528 3.1544
TDDI (%) 5.3723 5.4532 5.4702 5.3726 5.4622 5.4683
Execution

time (s) 14.7600 17.4820 19.0370 14.8950 18.0020 19.5370
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The optimized values of the TASTF and DTTF obtained with ARO and those calcu-
lated for EHF are explored in Table 4, indicating that the three methods’ parameters are
almost close.

Table 4. Optimized values of the TASTF and DTTF obtained with ARO.

Parameter TASTF DTTF EHF

Qf (kVAr) 1617.8230 1617.7685 1617.8923
h1 4.5483 4.5180 4.5481
h2 6.0600 6.0726 6.0601
h3 10.0000 10.0001 10.0000

mp1 5.2444 5.2665 5.2443
mp2 7.8443 7.8710 7.8442

C1 (mF) 0.4100 0.8622 0.8631
L1 (mH) 1.1947 0.2683 0.2615
C2 (mF) 0.2378 7.4087 7.9553
L2 (mH) 1.1602 0.0493 0.0463
C3 (mF) 0.2153 2.0201 2.0812
L3 (mH) 0.4706 0.0810 0.0791

In order to evaluate the effectiveness of the proposed design methodologies of the
proposed filter, the results obtained using ARO are compared with the results presented in
the comparative analysis of the double-tuned harmonic passive filter design methodologies
in [8], multi-arm single-tuned (MAST), direct design method (DDM) and analogy method
(AM) between them. The comparison in Table 5 validates the presented optimal designs’
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effectiveness with ARO in minimizing the total power losses and enhancing the system
power quality indices with a much lower filter rating. The results also confirmed that
the three proposed methods have almost the same impact on the system’s performance.
The DTTF positively impacts the system power quality levels, as shown in Figure 9. It
was found that the power losses decreased by 45.55%, THDV decreased to 3.1341%, TDDI
decreased to 5.372%, and the power factor (PF) increased to 99.5209%, which significantly
enhanced the load bus voltage, which increased to 2.3918 kV, reduced the line current by
26.2%, while complying with all constraints.

Table 5. Compensated system results compared to the original system and the results in [8].

Parameter Uncompensated
Triple Tuned Double Tuned [8]

TASTF DTTF EHF MAST DDM AM

Qf (kVAr) ——— 1617.8230 1617.7685 1617.8923 1849.5500 1663.6244 1660.5176
Ploss (kW) 31.7406 17.2833 17.2833 17.2833 17.3994 17.3995 17.3993

PF 70.9728 99.5210 99.5209 99.5211 98.9021 98.2548 99.4870
DPF 71.6527 99.9761 99.9760 99.9762 99.3515 98.7322 99.9487

THDv 6.0605 3.1330 3.1341 3.1340 3.4236 3.1129 3.5758
THDI 10.2629 7.5330 7.5310 7.5313 7.1631 7.7262 7.1833
TDDI 9.8972 5.3724 5.3720 5.3700 5.1027 5.4872 5.0614

VL (kV) 2.3200 2.3917 2.3918 2.3917 2.4029 2.3805 2.3912
Is 957.6339 706.6515 706.6502 706.6510 714.1830 712.3240 706.4221
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Figure 9. Performance of the DTTF in terms of the investigated metrics.

Figures 10 and 11 show the individual harmonic distortion of load voltage (IHDV) and
source current (IHDI) and their maximum values reported in IEEE Std. 519 [18]. Figure 12
shows IHDV and IHDI after compensation when using the DTTF compared to that obtained
using the DDM [8]. It was found that using the DTTF can reduce the voltage harmonic
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distortion of the 11th and 13th orders more than the DDM without any adverse effects
on their current harmonic distortion. In addition to the benefits of the TTF shown, it can
eliminate a wide range of harmonic orders by adjusting the tuned harmonic orders as
required in highly harmonically-polluted systems.

Figure 10. The individual load voltage harmonics.

Figure 11. The individual load current harmonics.



Energies 2023, 16, 39 19 of 22

Energies 2023, 16, x FOR PEER REVIEW 19 of 23 
 

 

12 shows IHDV and IHDI after compensation when using the DTTF compared to that ob-

tained using the DDM [8]. It was found that using the DTTF can reduce the voltage har-

monic distortion of the 11th and 13th orders more than the DDM without any adverse 

effects on their current harmonic distortion. In addition to the benefits of the TTF shown, 

it can eliminate a wide range of harmonic orders by adjusting the tuned harmonic orders 

as required in highly harmonically-polluted systems. 

 

Figure 10. The individual load voltage harmonics. 

 

Figure 11. The individual load current harmonics. 

  
DDM DTTF 

Figure 12. The system’s individual load voltage and current harmonics using DTTF compared with 

DDM in [8]. 

0

1

2

3

4

5

6

5 7 11 13

IH
D

V
  (

%
)

Harmonic order

No Filter

0

5

10

5 7 11 13

IH
D

I
(%

)

Harmonic order

No Filter

TASTF

0

0.5

1

1.5

2

2.5

3

5 7 11 13

IH
D

V
  

(%
)

Harmonic order

Efectively  

eliminated

harmonics

0

2

4

6

8

5 7 11 13

IH
D

I 
  (

%
)

Harmonic order

Figure 12. The system’s individual load voltage and current harmonics using DTTF compared with
DDM in [8].

The total filter impedances for the TASTF, DTTF, and EHF are explored in Figure 13,
which shows that the three impedances are almost identical. That indicates the superiority
of the combination of mathematical and optimization formulation for the three filters to
obtain the optimal values of the parameters needed for power quality enhancement.

Energies 2023, 16, x FOR PEER REVIEW 20 of 23 
 

 

The total filter impedances for the TASTF, DTTF, and EHF are explored in Figure 13, 

which shows that the three impedances are almost identical. That indicates the superiority 

of the combination of mathematical and optimization formulation for the three filters to 

obtain the optimal values of the parameters needed for power quality enhancement. 

 

Figure 13. The filter impedance of TASTF, DTTF, and EHF. 

6. Conclusions 

A new mathematical model for the triple-tuned filter is thoroughly presented in three 

different design approaches—TASTF, DTTF, and EHF. The TASTF mathematical design 

is simple, unlike the DTTF, which was found to be complicated and provides the filter 

design in one shot. On the other side, the EHF’s mathematical analysis was complex and 

relied on designing the TASTF. The provided designs are then optimized to mitigate the 

system harmonics, minimize the power losses, and enhance power quality using a candi-

date-weighted multi-objective function for minimizing voltage THD, current THD, and 

power losses. The optimization techniques ARO, ALO, and WOA, are utilized to get the 

optimal filter parameters. 

The system presented in IEEE STD-519-1992 is investigated in this study. The results 

obtained validate the efficiency of the ARO-based design to enhance the system power 

quality (it converged to the minimum fitness value after 20 iterations while utilizing lower 

filter reactive power). The power losses were reduced by 45.55%, THDv was reduced to 

3.134 % instead of 6.061 %, TDDI was decreased to 5.37 % instead of 9.897%, and the power 

factor was enhanced to reach 99.5209 %. There was also a significant impact on reducing 

the line current by 26.2 % and improving the load bus voltage, which increased to 2.392 

kV. The in-depth comparative analysis of the simulation results highlights how well the 

three proposed designs enhance the system using less reactive power, making them much 

more economical in industrial and commercial applications. 

Finally, the design strategy confirmed the ability to provide and optimize the triple-

tuned filter that will enable researchers to design quad-tuned filters and others. Future 

works will investigate the damped filter design and its practical implementation and eco-

nomic benefits. 

Author Contributions: Conceptualization M.M., and S.H.E.A.A.; methodology, M.M.; software, 

M.M., S.H.E.A.A., A.M.I.; validation, A.E.-S., S.H.E.A.A., and A.M.I.; formal analysis S.H.E.A.A., 

A.M.I. and A.E.-S.; investigation, M.M.; resources M.M.; writing—original draft preparation, M.M.; 

writing—review and editing, S.H.E.A.A., and M.M.; visualization, M.M., S.H.E.A.A., A.M.I., and A. 

El-S. All authors have read and agreed to the published version of the manuscript. 

Figure 13. The filter impedance of TASTF, DTTF, and EHF.

6. Conclusions

A new mathematical model for the triple-tuned filter is thoroughly presented in three
different design approaches—TASTF, DTTF, and EHF. The TASTF mathematical design
is simple, unlike the DTTF, which was found to be complicated and provides the filter
design in one shot. On the other side, the EHF’s mathematical analysis was complex
and relied on designing the TASTF. The provided designs are then optimized to mitigate
the system harmonics, minimize the power losses, and enhance power quality using a
candidate-weighted multi-objective function for minimizing voltage THD, current THD,
and power losses. The optimization techniques ARO, ALO, and WOA, are utilized to get
the optimal filter parameters.

The system presented in IEEE STD-519-1992 is investigated in this study. The results
obtained validate the efficiency of the ARO-based design to enhance the system power
quality (it converged to the minimum fitness value after 20 iterations while utilizing lower
filter reactive power). The power losses were reduced by 45.55%, THDv was reduced to
3.134% instead of 6.061%, TDDI was decreased to 5.37% instead of 9.897%, and the power
factor was enhanced to reach 99.5209%. There was also a significant impact on reducing
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the line current by 26.2% and improving the load bus voltage, which increased to 2.392 kV.
The in-depth comparative analysis of the simulation results highlights how well the three
proposed designs enhance the system using less reactive power, making them much more
economical in industrial and commercial applications.

Finally, the design strategy confirmed the ability to provide and optimize the triple-
tuned filter that will enable researchers to design quad-tuned filters and others. Future
works will investigate the damped filter design and its practical implementation and
economic benefits.

Author Contributions: Conceptualization M.M. and S.H.E.A.A.; methodology, M.M.; software, M.M.,
S.H.E.A.A., A.M.I.; validation, A.E.-S., S.H.E.A.A. and A.M.I.; formal analysis S.H.E.A.A., A.M.I. and
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review and editing, S.H.E.A.A. and M.M.; visualization, M.M., S.H.E.A.A., A.M.I. and A. El-S. All
authors have read and agreed to the published version of the manuscript.
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Abbreviations

ALO Ant lion optimizer
AM Analogy method
ARO Artificial rabbits optimization
DDM Direct design method
DPF Displacement power factor
DTF Double-tuned filter
DTTF Direct triple-tuned filter
EHF Equivalence hypothesis filter
MASTF Multi-arm single-tuned filters
PF True power factor
STF Single-tuned filters
TASTF Three arms of a single-tuned filter
TDDI Total current demand distortion
THDI Total harmonic current distortion
THDV Total harmonic voltage distortion
TTF Triple-tuned filter
WOA Whale optimization algorithm

Nomenclature

A(t) Rabbit energy factor
→
bj,r (t) Randomly selected burrow for hiding
C Number 0 or 1
C1 Capacitance of DTTF’ series connection
C2 Capacitance of DTTF’ first parallel connection
C3 Capacitance of DTTF’ second parallel connection
Ca, Cb and Cc Capacitances of TASTF arms
h1, h2 and h3 DTTF’ harmonic tuning orders
ha, hb and hc The TASTF’ resonance frequencies order
I1 Fundamental component of the source current
IL Maximum load demand current
Ish Line current at harmonic order h
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k1, k2 and k3 Objective function’ adaptive weights
L Running length
L1 Inductance of DTTF’ series connection
L2 Inductance of DTTF’ first parallel connection
L3 Inductance of DTTF’ second parallel connection
La, Lb and Lc Inductances of TASTF arms
mp1 and mp2 Orders of parallel resonance angular frequencies
n Size of a rabbit population
n1 Random number subject to the standard normal distribution
∆PL Per-phase transmission line power losses
Qf Filter’ reactive power
r Random numbers between (0,1)
RF Filter resistance
RL Linear load resistance
Rs Fundamental resistance of supply line
Rsh Supply resistance at harmonic order h
T Maximum number of iterations
V1 Fundamental component of the load voltage
→
vi(t + 1) Candidate rabbit’ position
VLh Load bus voltage at harmonic order h
Vs System voltage
Vsh Supply voltage at harmonic order h
ω Angular frequency
ω1, ω2, and ω3 DTTF’ resonance angular frequencies
ωf Fundamental angular frequency
ωra, ωrb and ωrc TASTF’ resonance angular frequencies
ωs DTTF’ series resonance angular frequency
ωp1 and ωp2 Parallel resonance angular frequencies
XF Filter reactance
→
xi(t) Location of the ith rabbit at time t
→
xj(t) Location of the jth rabbit at time t
Xs Fundamental reactance of supply line
Xsh Supply line reactance at harmonic order h
Za, Zb and Zc TASTF’ arms impedances
ZF Filter impedance
ZFh Filter impedance at harmonic order h
ZFLh Parallel equivalent impedance
ZLh Impedance of the linear loads at harmonic order h
Zp1 and Zp2 DTTF’ parallel impedances
ZS DTTF’ series impedance
Zsh Impedance of supply line at harmonic order h
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