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Abstract: The biofabrication of three-dimensional scaffolds using 3D printers and cell-containing
bioinks is very promising. A wide range of materials and bioink compositions are being created
and tested for cell viability and printability in order to satisfy the requirements of a bioink. This
methodology has not still achieved technological maturity, and the actual costs mean that they
are often inaccessible for researchers, consequently lowering the development and extending the
required times. This research aims to apply this methodology on a laboratory scale by re-adapting a
commercial 3D printer, consequently lowering the costs and energy impacts, and, at the same time,
ensuring a level of accuracy extremely close to the currently adopted devices and, more in general,
suitable for the scopes of the research. To accomplish this, we assembled a biomimetic scaffold
made of human Umbilical Cord Matrix Stem Cells (hUCMS), cellulose, and alginate. Various molds
were used to produce 3D scaffolds of different sizes. After bioprinting, cell viability was analyzed
using ethidium bromide and fluorescein diacetate, and a histological stain was used to evaluate cell
and bioink morphology. All of the examined bioinks had a uniform final 3D structure and were
stable, easily printable, and procedure-adapted. Up until 21 days of culture, the bioinks remained
unaltered and were simple to manipulate. After 7 and 21 days of cell culture, the hUCMS in the
cellulose/alginate-based bioinks exhibited cell viabilities of 95% and 85%, respectively. The cells
did not present with a fibroblast-like shape but appeared to be round-shaped and homogeneously
distributed in the 3D structure. Biomimetic bioink, which is based on cellulose and alginate, is an
appropriate hydrogel for 3D bioprinting. This preliminary work illustrated the potential use of these
two biomaterials for the 3D bioprinting of mesenchymal stem cells.

Keywords: 3D printer; cost and energy savings; printing setup; human mesenchymal stem cells;
biomaterials; cellulose; alginate

1. Introduction

The term 3D printing commonly refers to a group of different technologies, among
them: additive manufacturing (AM), rapid prototyping (RP), layered manufacturing (LM),
and solid free-form fabrication (SFF) [1]. It consists of automated and highly flexible
technology, which is capable of producing complex 3D objects quickly and accurately based
on a computer model [2]. These advantageous properties allow for reduced energy demand
for the production of an object and also reduce the associated consumption of raw materials.
For that reason, the usage of 3D printing techniques is assuming a key role in numerous
sectors, such as transport, the medical sector, and the production of energy [3,4].

Depending on the typology of the working mechanism and the raw materials, different
typologies of 3D bioprinting can be distinguished: inkjet-based, laser-based, and extrusion-
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based [5]. Inkjet printing was the first technology implemented; it was carried out for the
first time in the 1970s by the Hewlett-Packard company [6]. It consists of a non-contact
image resolution technique. The presence of piezoelectric and thermal conductive nozzles
allows for the generation of the pressure needed for the extrusion of bioink as droplets from
the nozzle [7]. To apply such a technique, the raw materials should be liquid and should
have a low viscosity [8]. Among the main advantages of it are the velocity of printing,
the relatively low cost, and the maturity of the technology, which are probably the most
meaningful [9].

Laser-based 3D printing is based on the pulsed energy of a laser, which allows for the
control of the local pressure and causes the deposition of bioink [10]. The raw material
consists of a cell-laden hydrogel within a polymer solution placed immediately below
the laser-absorbing layer. The pulsed laser generates a vapour bubble on the receiving
substrate and, due to this, applies the required pressure to deposit the bioink [11]. The
main advantages of such a technique are the high precision and the absence of mechanical
stresses [12].

Finally, extrusion-based printing dispenses bioink due to the action of mechanical
and pneumatic systems [13]. The continuous application of air pressure produces an
uninterrupted cylindrical filament [14,15]. Extrusion-based printing is probably the most
applied technique because it ensures high versatility [16] and can work with several
different typologies of bioink [17]. However, the accuracy of such a technique is the lowest
when compared to the two previous solutions [18].

An important element of 3D printing is bioink, which must be suitable for in situ
gelation, printability, shear thinning, and so on [19,20]. This material should ensure the
production of a stable and high-resolution structure, and, at the same time, it should not
affect cell viability during the printing process [21].

Bioprinting is a potential strategy to engineer 3D constructs with precisely defined
structures and geometries by using living cells and biomaterials. Bioinks are a mixture of
different biomaterials (such as hydrogels) and desired cell types to create functional tissue
constructs, which are useful for replacing damaged or unhealthy tissues.

Bioinks can be cross-linked or stabilized during or right after printing to generate
the final shape, structure, and architecture of the designed construct [22]. For printed
tissues and organs to work properly, an ideal bioink must have the adequate mechanical,
rheological, and biological properties of the target tissues [23].

Probably the most limiting factor to the extension of the experimental research in
this field is the fact that, in recent years, extrusion-based bioprinting systems have been
characterized by high development costs. Reducing these costs would extend the group
of researchers involved in this field and, consequently, accelerate the achievement of the
key targets fixed for the forthcoming years. In addition, the technological development of
3D bioprinters will also lead to reducing the energy required for the production of these
devices and the emissions associated with the whole production chain. To circumvent
the high-price barrier to the entry of conventional bioprinters, in the present work, the
engineering of a low-cost and commercially available 3D printer has been carried out.

We wanted to use this type of printer to produce a new regenerative biomimetic
hUCMS/cellulose-based scaffold. This scaffold should be comprised of human Umbilical
Cord Matrix Stem Cells (hUCMS), cellulose, and alginate. Stem cells are a special type of
cell population distinguished by their capacity for self-renewal and cellular differentiation.
They are a desirable candidate for tissue regeneration due to these qualities. Specifically,
adult stem cells, known as hUCMS (human umbilical cord Wharton jelly-derived mes-
enchymal stem cells), are deemed to be capable of differentiating, both in vitro and in vivo,
into a variety of cell phenotypes [24–26]. The expression of chemokine and adhesion
molecule receptors is probably connected to hUCMS homing tendencies [27]. The finding
that hUCMS are immunoprivileged because they lack HLA-DR class II while also being
linked to immunomodulatory features has stoked additional therapeutic interest [28–30].
These characteristics appear to be related to the humoral factors (IDO, iNOS, IL-6, PGE2,
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TGF-1, HGF, VEGF) released from hUCMS, as well as their interactions with the target
cells [31–34]. Additionally, the HLA-E, HLA-F, and HLA-G families are all expressed
by hUCMS. These molecules are important in the fetal–maternal interface’s tolerogenic
process [35]. In particular, it has been noted that the expansion of Treg cells is facilitated by
the release of HLA-G from human mesenchymal stem cells [36]. Type 1 diabetic mellitus
(T1D) and Sjogren syndrome (SSJ) are two autoimmune diseases where we have recently
demonstrated the immuno-regulatory capabilities of hUCMS [30,37].

Although a biomimetic scaffold consisting of hUCMS and cellulose is simple to create,
various problems of a technical nature have emerged during the manual preparation of
the construct. In fact, the manual constitution results are operator-dependent and do not
allow optimal standardization. In our opinion, all of these problems can be solved through
3D printing.

In this study, we focused on the implementation of a commercial 3D printer for the
deposition of a biomimetic scaffold containing two biomaterials (cellulose and alginate)
in combination with adult human mesenchymal stem cells (hUCMS). The printed bioink
should allow for the uniform distribution of cells and interconnectivity with the exter-
nal environment; it must also be stable and easily manipulated for use in regenerative
medicine procedures.

2. Materials and Methods
2.1. Experimental Apparatus
2.1.1. 3D Printer

The chosen printer is a Cartesian 3D printer named 3DRAG, made by the Italian
company Futura Elettronica, built of extruded aluminium profiles designed for interlocking
or bolted fastening. The print bed can move along the X/Y axes, while the movement
along the Z axis is exclusive to the extruder support bar. 3DRAG is also based on software
compatible with the RepRap project; it can, therefore, benefit from a vast array of software
and hardware that are natively compatible or easily adaptable. The limited dimensions
of the machine (L: 50 cm, D: 42 cm, H: 62 cm, weight: 9 kg) easily allowed us to start and
develop the printing process under sterile conditions within a controlled aspiration system
(laminar flow hood) (Figure 1).
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Figure 1. The 3DRAG 3D printer in the safety hood. Figure 1. The 3DRAG 3D printer in the safety hood.

Repetier software was used to manage the printer, which is produced by Hot-World
GmbH & Co. KG. Repetier is one of the most used software for 3D printing using common
RepRap printers. Moreover, its practical graphic interface allows for the easy management
of both the print bed by positioning and scaling objects before giving the Slicing command
to generate the G-code; the printer allows for the performance of manual movements and
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actions (for example, activating the heating of the extruders or varying the fan speed for
cooling down). Another interesting function is “printing without extrusion” or “debug”,
which are useful for checking if the printer is able to perform the desired movements.

2.1.2. Supplementary Devices

The experimental setup was completed with the following supplementary devices:

- A safety hood for biological hazards, with a working area protected by vertical laminar
flow classified class II-Type A/B3, HEPA filter (model 120 standard, Bio Activa,
AQUARIA). This device was purchased from GENELAB SRL, Perugia (Italy).

- Biological laboratory refrigerator KW class KLAB HTS MEDICAL PROJECT series
(model KLAB-R1500V-HTS). Equipped with tropicalised refrigeration system, capable
of working in critical environmental conditions and GMP-compliant internal ven-
tilated refrigeration. Working temperature from 0 ◦C to +15 ◦C. This device was
purchased from GENELAB SRL, Perugia (Italy).

- Incubator (Thermo Electron Model 371 Steri Cycle CO2 Incubator) maintains the
desired conditions, including temperature (37 ◦C), humidified air (95%), and CO2
concentration (5%). This direct-heat incubator features an in-chamber HEPA air
filtration system. This device was purchased from GENELAB SRL, Perugia (Italy).

2.2. Materials
2.2.1. Inks Preparation

The composition of the bioink is based on the protocol proposed by Markstedt et al.
with some modifications [38].

The printing trials involved the use of bioink1, consisting of alginate, mannitol, and
microfibrillar cellulose (MFC) in different concentrations, and bioink2, consisting of alginate,
mannitol, and nanocrystalline cellulose (CNC).

Alginic acid is a polysaccharide extracted from the cell walls of brown seaweeds
(Phaeophyceae). Alginates are linear copolymers made of two building components, β-D-
mannuronic (M) and α-L-guluronic (G) acids, which are primarily arranged in the form
of MM or GG or MG dimeric blocks across the entire molecule. Alginates are used as
thickeners and stabilizers in the food, pharmaceutical, and cosmetics industries. The
powdered alginate (AG) was purchased from Monsanto-Kelco (San Diego, CA, USA) and
was characterized by the following properties: molecular weight = 120,000–190,000 kDa;
main AG polymers: mannuronic acid (M) and guluronic acid (G) patterned as following;
M fraction (FM) 61%; G fraction (FG) 39%. It is a “high-M” alginate. It was dissolved
in 4.6% (v/v) D-mannitol saline solution (Fresenius Kabi, Bad Homburg, Germany) at a
concentration of 2.5% (w/v). D-mannitol was used to retain the osmolarity (Published
online 13 March 2014. https://doi.org/10.1371/journal.pone.0091662).

For our studies, we used two types of cellulose: microfibrillar F cellulose (MFC)
(EXILVA F 01-V, Borregaard, Sarpsborg, Norway) and Cellulose NanoCrystalline (CNC)
(CelluForce NCC® NCV-100) (Figure 2).

Exilva F 01-V is a microfibrillated cellulose that is entirely natural, biodegradable, and
multifunctional. The typical areas of use for the Exilva F series are mainly the manufacture
of personal care products, home care, agricultural chemicals, paints, and adhesives. It
is non-toxic, anti-blocking, and odorless. It is available as a 2% suspension or a 10%
paste. It enhances the rheology and stability of water-based paints as well as premium
industrial and architectural paints and coatings. It demonstrates strong compatibility
with salts, surfactants, and polar solvents. It creates a network of non-soluble fibers that
resembles a polymer. It increases film strength and has good water resistance, adhesion,
and reinforcement. It also offers greater durability.

https://doi.org/10.1371/journal.pone.0091662
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Figure 2. Cellulose used for this study: microfibrillar F cellulose (MFC) EXILVA and CelluForce®

nanocrystalline cellulose (CNC).

CelluForce NCC® is a natural product that is safe, biodegradable, and multifunctional.
It can be economically extracted from wood fibers and is an abundant and renewable
resource. CNC is prepared as a spray-dried powder or as a liquid suspension and can be
utilized to enhance product performance in a variety of industrial sectors. CNC is made of
infinitely tiny cellulose crystals generated from trees.

Nanocrystalline cellulose consists of crystals that can interact with each other based
on their size, charge, and shape. The crystals have high stiffness and tensile strength,
comparable to hard metals and their alloys. However, they are nano-sized and are not
strongly interconnected except in the structures established by nature from which they are
isolated or when aggregated or incorporated into matrices and films.

The ink was prepared by dissolving alginate in a saline solution of mannitol; then,
the cellulose was incorporated and mixed using a homogenizer (Omni GLH850 General
Laboratory Homogenizer, PerkinElmer, Inc., Waltham, MA, USA). The preparation was
steam sterilized in an autoclave (121 ◦C for 10′) and cooled to room temperature. Four
formulations of bioinks were prepared with different concentrations of cellulose, as seen in
Table 1. All of the bioink formulations were stored at 4 ◦C under sterile conditions.

Table 1. Ink formulations using various cellulose concentration.

Alginate (w/v) Mannitol Saline
Solution (v/v)

NanoCrystalline Cellulose
(CNC) (CelluForce NCC®)

Microfibrillar Cellulose
F (MFC) EXILVA Viscosity [mPa s]

Bioink1 2.5% 4.6% 2.5% 806,936 ± 12,404
2.5% 4.6% 1.5% 319,124 ± 4149
2.5% 4.6% 0.5% 55,072 ± 881

Bioink2 2.5% 4.6% 2.5% 16,344 ± 327

2.2.2. hUCMS Isolation and Cell Culture Maintenance

hUCMS were isolated from postpartum human umbilical cords, as described by
Montanucci et al. [24]. The recovered cells were seeded at a concentration of 6000–8000/cm2

per treated flask in a CMRL Medium 1066 1X (Gibco, Invitrogen, Waltham, MA, USA)
supplemented with 10% Fetal Bovine Serum (FBS, Euroclone, Pero, Italy), 1X L-glutamine
(Gibco), 1X penicillin/streptomycin (Gibco) (normal medium, NM). The hUCMS were
maintained at 37 ◦C under 5% CO2 in humidified 95% air. Then, 80% of the confluent cells
were treated with 0.05% trypsin/EDTA (Gibco) for 3 min at 37 ◦C, and, subsequently, the
serum was added to stop the trypsin activity. The bioinks were created using cells at III-IV
culture passage.
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2.3. Experimental Procedure
2.3.1. Modifications Applied to the 3D-Printer for the Scope

The original printer mainboard was replaced with a Megatronics v3.3 (datasheet
megatronicsv33.pdf (reprapworld.it)) because of the upgraded computing power and the
capability to manage improved stepper motors drivers. The drivers were replaced, going
from the original model (Pololu A4988) to an improved model named DRV8825 to take
advantage of the improved heat dissipation and the greater microstepping allowed by the
later model.

Additionally, to reduce the manipulations of the bioink, scaffold, and supports, and to
avoid external contaminations and speed up the printing process, the sequential printing
protocol was implemented in the firmware, allowing us to easily print up to 9 copies of the
same device in a single row.

To proceed with the deposition of the bioink, the system used in the course of this work
is based on the one that already equipped the 3DRAG printer, resulting in the modification
of a rather peculiar accessory of the 3DRAG, which is suitable for the deposition of melted
chocolate through the process of 3D printing. This accessory consists of a syringe holder
and a piston moved by a threaded rod, a nut, and a cogwheel to couple the system with
another NEMA 17 stepper motor. The extruder was modified in the end part; we decided
to use common syringes with a capacity of 3 mL, Luer-lock, with 22G 0.625′′ tip needles, as
they are easy to find, cheap, and easily adaptable for this purpose. To hold the syringe in
place, a syringe holder made of two main parts to allow for easy adjustments, was built
(with PLA) with another 3D printer (Figure 3).
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2.3.2. Printer Tuning and Printing Method

Before being able to proceed with the extrusion of the bioink, it was necessary to
analyze how it can interact with the extrusion system itself. In particular, it is fundamental
to understand the behavior of the bioink once subjected to the pressure of the piston; in
fact, the viscosity and the shear-thinning behavior influenced the choice of the extrusion
speed, the printing movement speed, and the pressure that the syringe piston must exert
on the ink. The rate of descent of the piston is not a parameter that can be modified directly
from the interface of the printer management program, as it is linked to the number of
revolutions (step/mm) of the extruder electric motor.

The first calibration of the printer was carried out to adapt it to the new configuration
of the extruder: the lower limit switch of the Z axis was repositioned and then adjusted
in order to have the nozzle of the syringe at the correct height with respect to the printing
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surface. After verifying the correct movements of the printer on all the axes, the first
deposition test of the bioink was carried out. For the first series of prints, bioink1 was
used, which is made up of alginate and microfibrillar cellulose, 2.5% and 1.5%, without
cell components because the prints would not have been made in an aseptic environment
(Figure 4).
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a Petri plate, 20 mm side.

From the first rounds of depositions, it quickly emerged that the 3DRAG, excluding
some small and necessary refinements, enjoys good control over the amount of bioink
extruded and on the geometry of the figures; in fact, it is possible to print the desired
geometries with good reliability and repeatability.

2.3.3. Definition of the Shapes Selected for Printing

The shapes to be printed were selected both on the basis of the printability criteria
using the available equipment and the functional criteria. In the beginning, mostly to
calibrate the printer movements, simple shapes such as circumferences, circles, and squares
made of only one or two layers were printed.

After ensuring the printability and repeatability of the shapes (Table 2), we decided
to print a semi-spherical shape with a 9 mm diameter, which was printed dome-like on
a support made with PLA; this choice was taken to have a shape that could be relatable
to other shapes used in microbiology, the shape was reminiscent of the microcapsules
commonly used to enclose solids, liquids, or gases inside a micrometric wall made of hard
or soft soluble films, in order to reduce dosing frequency and prevent the degradation
of pharmaceuticals [39]. Additionally, the hollow semi-sphere, made with a tougher
bioink (bioink1), can be overturned and filled with the less viscous (and softer) bioink,
bioink2. To ascertain this, the viscosity of both bioinks was measured with a viscosimeter,
model ViscoStar Plus R. The viscosity was measured in “mPa s” and is shown in Table 1
(Section 2.2.1).

Table 2. Shapes selected and related sizes.

Shape Nominal Size Real Size
SQUARE Side:10 mm Side: 10.36 mm ± 0.05 mm
SQUARE Side: 20 mm Side: 20.72 mm ± 0.05 mm

CIRCUMFERENCE Diameter: 10 mm Diameter: 10.22 mm ± 0.05 mm
CIRCUMFERENCE Diameter: 20 mm Diameter: 20 mm

Subsequently, a second and third series of prints were carried out in the laboratory
for Endocrine Cell Transplantation and Biohybrid Organs of the department of Medicine
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and Surgery of the University of Perugia. The 3DRAG was placed into the vertical flow
hood in order to guarantee the sterility of the deposition process. To ensure the uniformity
of the printing process, repeatability, the absence of contact with foreign bodies during
the printing, and support for the bioink, some PLA-made printing bases were realized
(Figure 5), the placement of the supports in a common multiwell capable of housing up to
6 supports (and consequently 6 hemispheres in bioink) allowed us to take advantage of the
sequential printing protocol.
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Figure 5. The deposition of the bioink in the biosafety cabinet. (A) on the left, the print of the hollow
hemispheres (bioink1 2.5% or 1.5%) on white PLA molds with 9 mm diameter, (A) on the right, the
print of bioink2 2.5% or bioink1 0.5% inside the crosslinked hollow hemisphere on grey PLA molds.
(B) Grey PLA molds with 7 mm diameter. (C) Printed bioinks before and after crosslinking with
CaCl2 and final 3D structure (hemisphere).

Serial printing was used to speed up the printing and shorten the time that the cells
were left at room temperature. Additionally, different-sized molds (9 and 7 mm in diameter)
were used to reduce the amount of print material needed (see Figure 5).

The chosen procedure involved the making of six hollow hemispheres on the (A) base,
then, after a manual overturning, the printing of another hemisphere, flat side up, was
used to fill the empty part of the bioink1-made sphere with bioink2.

A commercial 3D printing device was used for the deposition of the bioink and 9- and
7-mm-diameter molds that were used for serial printing.

2.3.4. Procedure Used for the Insertion of Cells-Bioprinting with hUCMS

hUCMS were mixed into the bioink at a final concentration of 10 × 106 cells/mL. The
bioink was transferred into the Luer-Lock syringe using a sterile spatula or a micropipette,
and then the syringe was placed in the syringe holder.

After printing, the constructs were cross-linked in 90 mM CaCl2 solution for 10 min and
rinsed twice in saline solution. The 3D culture was maintained under standard conditions
(37 ◦C, 5% CO2 and humidified 95% air). Then, a normal medium was added to the bioink
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and was changed every three days. The cell-filled 3D bioprinted constructs were evaluated
after being maintained overnight (O/N) on the 7th, 14th, and 21st days of culture.

2.3.5. Evaluation of the Printed Shapes

Structurally, the bioink remains intact and can be easily manipulated for the entire
duration of the culture phase; the viscous consistency of the bioink1 allowed us to print
shapes with up to a 9 mm diameter without observing major sagging or deviations from
the nominal shape or size of the bioink-made device.

2.3.6. Evaluation of Cells’ Vitality—Viability Assay

During the phase culture, the cell viability assay was performed at different time points
to verify the survival of the cells across several culture days. The samples were washed
in a saline solution and then incubated in the staining solution. A mixture containing
Ethidium Bromide 1× (0.2 mg/mL) in PBS 1× was prepared to highlight the dead cells
in red, and Fluorescein Diacetate in acetone (5 mg/mL) to verify the presence of live cells
(that appeared in green).

2.3.7. Morphological Evaluation

The printed bioinks were evaluated morphologically using phase contrast microscopy
using a Nikon TS100 microscope.

2.3.8. Histological Analyses: Sample Preparation and Specific Staining

The bioinks made by the 3D printer were evaluated morphologically by histological
staining with hematoxylin/eosin. At different time points, the bioinks were fixed in 10%
neutral buffered formalin for 30 min at room temperature and subsequently dehydrated
and paraffin-embedded. Using a rotary microtome, the paraffin-embedded specimens
were cut into 4-µm-thick slices and stained in accordance with standard histological proto-
cols. The bioinks were observed with phase-contrast microscopy using a Nikon Eclipse
Ci microscope.

3. Results
3.1. Deposition Procedure and Valutations over the Shapes

The first series of prints consisted of the printing of simple figures, such as squares
and circumferences, using bioink1 2.5% MFC due to its higher viscosity and resistance
to handling, which makes it more printable than the compounds with a lower cellulose
content. Furthermore, the loading of the syringe (3 mL) with bioink1 was found to be very
simple, using a small spatula and making sure not to leave any air bubbles.

Having ensured the good quality and repeatability of the prints, printing squares,
circumferences, and domes with both bioink1 2.5% and 1.5% MFC, without the cell fraction,
we performed a second series of prints; in the second series, the main objective was to print
with the cell fraction, domes with bioink1 2.5% and 1.5% MFC and the semi-spheres with
bioink2 2.5% CFC and bioink1 0.5% MFC.

To print the domes, it was necessary to create a smaller (10-mm diameter or less) dome-
shaped PLA support; this was performed in order to provide support for the bioink before
the polymerization, avoiding the collapse of the structure. Additionally, to avoid excessive
manipulations and contamination, having enabled the sequential printing protocol, a
second support capable of holding a maximum number of 9 domes was used.

The encouraging results from a qualitative and quantitative point of view led to the
third series of prints in which, in an attempt to reduce the amount of bioink used while
keeping the quality of what was printed high, we went to work on the STL file by reducing
the thickness of the dome wall from 1 mm to 0.7 mm. This operation was also carried out
with the aim of improving the transport of nutrients during the cultivation phase.

In Table 3, a brief recap of the shapes printed and their sizes can be seen (side for
squares, diameter for circumferences, semi-spheres, and domes).
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Table 3. Shapes printed, sizes and number of prints.

Bioink Shape Size Number of Prints
bioink1 2.5% MFC Square 10 mm 8
bioink1 2.5% MFC Square 20 mm 10
bioink1 2.5% MFC Circumference 10 mm 10
bioink1 1.5% MFC Circumference 20 mm 8
bioink1 2.5% MFC Dome 9 mm 20
bioink1 1.5% MFC Dome 8 mm 15
bioink2 2.5% CFC Semi-sphere 7 mm 8

3.2. Analysis on Biological Material
Characteristics of Bioinks

Before cross-linking, the bioinks showed a different consistency due to the inherent
properties of the two different celluloses. MFC cellulose is a homogenous paste, and bioink1
appeared denser and fuller-bodied, whereas bioink2 was a semi-dense mixture that tended
to be more liquid (CNC is a freeze-dried powder).

Therefore, bioink1 2.5% and 1.5%, which showed a fair consistency and could be
loaded into the Luer-Lock syringe using a sterile spatula. In contrast, bioink2 was a
semi-dense mixture and could be inserted into the syringe using the P1000 micropipette.
Bioink1 0.5% had a consistency suitable for loading similar to that of bioink2 (using the
micropipette P1000).

During printing, bioink1 2.5% and 1.5% did not show any noticeable sagging and
deformation when printed, so these bioinks could be used to build the outer structure of
the hemisphere. Bioink1 0.5% showed limited consistency similar to bioink2 2.5% and
could be used to print the inner portion of the hemisphere.

After the printing process, a 90 mM CaCl2 solution was sprayed with a nebulizer
directly onto the bioinks without removing them from the mold in order to ensure the
stability of the 3D structure during the cross-linking process.

All of the bioinks were stable, readily printed, procedure-adapted, and demonstrated
a uniform 3D final structure after the cross-linking process.

Structurally, bioinks were remained intact and easily manipulated throughout the
duration of the culture (21 days). The cells showed optimal viability (95%) up to about one
week of culture, in the following weeks the viability decreases to 85% up to day 21 of culture
(Figure 6). This is likely caused by the prolongated culture period, the bioinks’ compact
nature and the size of the 3D structure (hemispheres with a diameter of 9 and 7 mm). This
last condition could influence the adequate transport of nutrients (and waste substances).
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Figure 6. Evaluation of viability with fluorescein diacetate and ethidium bromide of bioink1
2.5%/bioink2 2.5% (A) and bioink1 1.5%/bioink1 0.5% (B) samples after O/N, 7, 14 and 21 days of
culture (4×magnification).
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During the culture period, the cells in the different bioink1 (2.5%, 1.5%, and 0.5%) and
bioink2 2.5% did not show an elongated and fibroblast-like shape but appeared round-
shaped, having no signs of distress and appearing to be homogeneously distributed.

Histological staining (haematoxylin/eosin) (H&E) on the printed bioinks was used to
assess the cell morphology and structural differences between the bioinks (Figure 7). In
contrast to bioink1, which appears homogeneous, compact, and devoid of “structures,”
bioink2 seemed inhomogeneous and had “oval structures”.
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Figure 7. Representative histological staining (H&E) of the bioink1 2.5%/bioink2 2.5% (A) and
bioink1 1.5%/bioink1 0.5% (B) samples. Black arrow indicates hUCMS. Red arrow indicates bioink2’s
“oval structures” (20× and 40×magnifications).

4. Discussion

The objective of the work presented was to use a common commercial 3D printing
device for bioprinting, adapting it with some limited hardware and software modifications,
also testing the possibility of creating a bioink consisting of cellulose, alginate, and stem
cells adult mesenchymal of the Wharton gel matrix (hUCMS), with the end last to use it to
allow for the reparation and regeneration of damaged human tissues.

Essentially, the adaptation of the printer to the deposition of biological material
required the modification of the extrusion system, so a holder able to house common
medical injection syringes was designed and equipped with a direct current motor, which
through a system gear and screw is capable of applying controlled pressure to the piston
above the syringe, allowing the extrusion of the bioink.

The design and consequent implementation of the necessary hardware and software
changes have therefore made it possible to print biological material through a common
extrusion-based 3D printer.

The cost of the printer, including modifications made with common hardware-store
components and mechanical tools, is at least twenty times lower when compared to com-
mercial bioprinters with comparable techniques and mechanics. The results obtained,
therefore, encourage the development of bioprinters with appreciable properties and print
quality but with a relatively low spending target, when the focus is to allow for greater
and more rapid diffusion of bioprinting in universities, medical schools and laboratories,
allowing for the expansion of the research in the field.
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The chosen cell model has recently attracted increasing interest due to the many
advantages associated with its use. hUCMS are umbilical cord cells, which are disposed of
after birth as medical waste and do not create ethical problems. An effective and repeatable
enzymatic digestion procedure is used to separate these cells from the human umbilical
cord, ensuring homogeneity in the cell phenotype [24].

The ability of hUCMS to differentiate in vitro and in vivo in tissues of mesodermal
(cartilage, tendons, bones, ligaments, adipose tissue, connective tissue), ectodermal (neural
cells), and endodermal (pancreatic progenitors) tissues is supported by the expression of
both genetic and surface markers typical of mesenchymal cells (CD10, CD29, CD44, CD90,
CD105), as well as markers typical of stemness (OCT4, SOX2, Nanog) [24,40,41].

Three-dimensional bioprinting has generated some interest due to the usage of natural
resources from plants, algae, and microorganisms, such as cellulose, lignin, alginate, and
chitosan. Alginate and cellulose were selected as the biomaterials in our study to create the
scaffold (bioink).

Alginic acid is one of the main constituents of the cell wall of marine macroalgae
(brown algae), is considered an FDA (Food and Drug Administration, Silver Spring, MD,
USA) approved compound, and is used in numerous pharmaceutical preparations, e.g., for
the treatment of symptoms related to gastro-oesophageal reflux and digestive difficulties.
The most prevalent biopolymer found in plant cell walls is cellulose, which is very simple
to combine with other substances. These polymers are preferable to synthetic materials
due to their biocompatibility, biodegradability, and lower immunogenicity.

In our investigation, two different types of 3D scaffolds were realized by utilizing the
ductility and properties of the above-mentioned biomaterials. In the first instance, a 3D
scaffold made of hUCMS known as bioink1 2.5%/bioink2 2.5% was realized, the scaffold’s
outside (more compact) component was built of 2.5% MFC microfibrillar cellulose, and the
interior of the 3D structure was made of 2.5% CNC nanocrystalline cellulose.

In the second instance, a 3D scaffold containing hUCMS was created and given the
name bioink1 1.5%/bioink1 0.5%. It was made of 1.5% MFC microfibrillar cellulose for the
scaffold’s outside (more compact) component and 0.5% MFC microfibrillar cellulose for the
interior of the 3D structure.

The scaffolds made with these bioinks delivered the best and most unchanged results
in the cell viability testing (up to 21 days of culture). The cells showed no signs of distress,
were viable and well distributed throughout the bioink. This is most likely caused by the
ink’s disorganized structure and the manner the cellulose crystals are arranged. Therefore,
it can be claimed that this method of bioprinting is suitable for using hUCMS, cellulose,
and alginate. Over the examined culture period of 21 days, bioink was stable and durable,
suitable for printing, and moldable. The usefulness of nebulization, the simplicity of
printing and handling, and the economic advantage are additionally acknowledged.

It can therefore be said that the developed extrusion technique is adequate for the type
of bioink used, especially considering the ease of the modifications required for the printer,
the simple manipulation of bioink and the equipment, as well as the cost-effectiveness of the
solution created. The results obtained, based on the evaluation of the bioink-based scaffolds,
encourage future studies that will include further in vitro and in vivo experiments.

The in vitro studies will be aimed at the characterization of hUCMS in the bioink
and at the standardization of the scaffold realization methods through the deposition
technology with a modified commercial 3D printer. The goal is to guarantee a better yield
of the product, minimizing the numerous operator-related variables.

Instead, from a hardware point of view, future studies and further development will
include the possibility of implementing a double extrusion system since the mainboard of
the printer allows the control of up to six stepper motors; this means that with an additional
extruder, it would be possible to dispense simultaneously or in sequence two different
bioink solutions or even two different materials, such as for example PCL (polycaprolactone)
which could be used to realize biocompatible supports for the bioink scaffolds.
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5. Conclusions

The present research deals with the design and implementation of a commercial
3D printer for the deposition of biomimetic scaffolds containing two different types of
biomaterials, respectively, alginate and cellulose, and in combination with adult human
mesenchymal stem cells (hUCMS). Because this research and medical sector have not still
reached technological maturity, the currently adopted devices are extremely expensive and
do not take into account the energy costs and environmental impact of their utilization
together with the whole supply chain. These criticisms (especially costs) make this technol-
ogy unavailable for most researchers and, consequently, would lead to a significant delay
in reaching technological maturity in the field.

If a commercial 3D printer can be adapted for the same scopes and its accuracy and
overall performances are proved to be close to those of the previously cited devices, the
research into the deposition of biomimetic scaffolds containing biomaterials and hUCMS
could be widely extended and improved. This article aimed to provide the experimental
validation of this latter thesis.

Biomaterial technology combined with human stem cells opens new possibilities for
regenerative medicine. Therefore, the basis for regenerative medicine will be set by future
research that can consider both stem cell biology and the chemical and mechanical proper-
ties of biomaterials. These studies will concentrate on the development of new microscale
devices as well as the spatial distribution of molecules that define physicochemical stimula-
tion and direct stem cells toward specific differentiation and tissue/organ reconstitution.
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