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Abstract: Lignin depolymerization has been studied for decades to produce carbon-neutral chemi-
cals/biofuels and biopolymers. Among different chemical reaction pathways, catalytic hydrogenoly-
sis favors reactions under relatively mild conditions, while its yield of bio-oil and high-value aromatic
products is relatively high. In this study, the influence of reaction parameters on lignin hydrogenolysis
are discussed by chemical process parameter mapping and modeled using three different machine
learning algorithms based upon literature experimental data. The best R2 scores for solid residue and
aromatic yield were 0.92 and 0.88 for xgboost, respectively. The parameter importance was examined,
and it was observed that lignin-to-solvent ratio and average pore size have a larger impact on lignin
hydrogenolysis results. Finally, the optimal conditions of lignin hydrogenolysis were predicted by
chemical process parameter mapping using the best-fit machine learning model, which indicates that
further process improvements can potentially generate higher yields in industrial applications.

Keywords: lignin hydrogenolysis; machine learning; LightGBM; XGBoost; CatBoost; chemical
process parameter mapping

1. Introduction

According to the Organization for Economic Co-operation and Development (OECD)
energy data, fossil fuels made up 77.8% of the global energy supply in 2020 [1] and also
produce a large majority of global greenhouse gas emissions (GHG). Biomass is a source
of carbon-neutral feedstocks and can potentially become a direct alternative substitute for
fossil fuels if cost-effective processes can be developed. By replacing fossil fuels with bio-oil
produced from biomass, the global reliance on the burning of fossil fuels can gradually
be reduced.

Lignocellulose is the most promising type of biomass due to its low costs, abundance,
and it also being non-edible, for example, agricultural residues [2], terrestrial plants, and
recycled paper residues [3]. Lignocellulose consists of carbohydrate polymers (cellulose,
hemicellulose) and an aromatic polymer, lignin, the second most abundant yet most
underused component of lignocellulose [4]. Cellulose and hemicellulose depolymerization
over heterogeneous catalysts has been well developed, and further efforts in this field
should be directed towards its commercialization [5]. However, the depolymerization of
lignin still needs further research and optimization due to the diverse chemical components
and complicated structure of lignin.

Lignin has been defined as a macromolecular polymer, composed of three main
building blocks: p-coumaryl alcohol (p-hydroxyphenyl, H), coniferyl alcohol (guaiacyl,
G), and sinapyl alcohol (syringyl, S). All these monolignols include the phenyl group, and
therefore their conjugated π-system causes the formation of various inter-unit linkages [6].
Among them, the most abundant linkage types are β-O-4 linkage (around 45–48%) and α-O-
4 linkage. These ether bonds are the easiest to cleave and where various depolymerization
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methods are aimed. Other than regular carbohydrate polymers, there exists a bountiful
number of C-C bonds, for example, β-β, 5-5, and β-5 (Figure 1).
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Compared to other lignin depolymerization methods, lignin hydrogenolysis uses mild
conditions, including lower temperature, less time, neutral solution, and results in better
yields of bio-oil and small aromatic products. While mild conditions are more economic to
operate and allow hydrogenolysis to have a higher potential for industrial application [7].

Based upon a literature review of lignin hydrogenolysis [7], the reaction environment
plays a huge role in the outcome of the reaction, while the optimization of catalyst is cur-
rently a topic of heated discussion. Homogeneous catalyst may allow for greater potential
for catalysts to reach the lignin or degraded lignin fragments; the difficulty of obtaining the
various products that are separate from the catalyst in the reaction mixture hampered their
development [8]. On the other hand, there are many characteristics to consider in heteroge-
neous catalysts; among them, catalyst acidity and choice of active phase are known to be
especially important, as both of them positively impact the reaction [9]. Accordingly, either
metal directly impregnated on an acidic catalyst support [10] or combined metal-supported
neutral catalyst and acidic catalyst in a one-pot reaction [11] has been studied and proved
to be effective.

Currently, what is lacking in the literature is a study that investigates the effect of
multiple catalyst features on lignin hydrogenolysis. One possible pathway is to study the
performance of multi-functional catalysts via model reactions, which can be further directly
applied to lignin hydrogenolysis. Studies regarding the upgrading of lignin-derived
products have been well developed recently, but there is still a lack of studies regarding
the conversion of lignin to aromatics under mild conditions. In fact, in order to achieve
a more efficient lignin hydrogenolysis, the selection of reaction conditions is somewhat
arbitrary depending upon the desired products. A new approach to locate the optimized
process parameters and conditions is to consider the use of chemical process parameter
mapping by modeling already published data using machine learning algorithms. This
method has the potential to grant greater insight into which process parameter or feature
has the largest impact on target yields.

Chemical space mapping is a designed optimization procedure of generative topo-
graphic maps for the purpose of the simultaneous selection and dimensionality reduction
of a possible descriptor, which has been widely used to predict the reaction products in
recent studies. Kyrylo et al. successfully predicted the antiviral activities of a specific
chemical compound based on generative topographic mapping [12]. Furkan et al. reported
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successful machine learning modeling and prediction from the component of biomass to
products with an artificial neural network (ANN) with 178 data points [13]. In this study,
the reaction parameters instead of products of lignin hydrogenolysis were examined and
modeled through the so-called chemical process parameter mapping to analyze how they
impact the yield of char and aromatics. Notably, metal content along with catalyst acidity,
measured by ammonium temperature programmed desorption, which were two important
active sites in lignin hydrogenolysis, were also examined.

Machine learning for efficient parameter modeling is an effective tool. A particular
type of machine learning model, which would be better applied to lignin hydrogenolysis
results prediction, is Gradient Boosting Tree models, such as LightGBM [14], XgBoost [15],
and CatBoost [16] models. In this study, lignin hydrogenolysis reaction conditions were
examined first by considering the process parameter mapping of the reaction environment
and then modeled using machine learning (LGBM, XgBoost, CatBoost) models to examine
the catalyst utility in relationship to the product yields. Castro et al. reported a successful
prediction of lignin depolymerization with random forest (RF) modeling [17]. It is found
that the lignin depolymerization results are more dependent on features associated with
solvolysis than with the catalysts. However, in this study, we will focus on analysis of
a particular type of lignin depolymerization, which would allow the lignin to depolymer-
ize at a relatively milder condition. The impact of each feature will be re-examined in
this range.

2. Materials and Methods
2.1. Data Collection and Pre-Processing

Data from recently published papers and conferences articles, from 2017 to 2022,
which reported lignin hydrogenolysis, were collected using the Google Scholar search
engine. Keywords such as “lignin” and “hydrogenolysis” were used. To refine the papers
that report the desiring data, “TPD”, “BET”, and “GC-MS” were added into the keywords
searching bar, where “TPD” stands for ammonia Temperature Programmed Desorption, usually
used for characterization of catalyst acidity, and “BET” stands for Brunauer–Emmett–Teller,
a theory applied in N2 adsorption-desorption, which is a characterization method for
testing catalyst physical properties. GC-MS stands for Gas Chromatography-Mass Spectrum,
an often-used characterization method for analyzing lignin reaction products. After refining,
731 results remain, most of which are about pyrolysis or reactions on a furfural-derived
macromolecular polymer. As a result, a manual filtration was applied, and papers with
ambiguous statements of measurements’ results and papers working on model compound
reactions were also separated. In total, from 2021 July to 2022 July, the online research was
done on google scholar, 25 papers were selected, and 263 data sets were analyzed in this
study as shown in Table 1.

Table 1. Selected lignin hydrogenolysis papers comparison of catalyst and yields analyzed by ML.

Catalyst Support Metal Solid Yield Aromatics Yield Published Year Ref.

CSA (carbonaceous solid acids) none 0~12.40 9.11~32.83 2019 [18]
HZSM-5 (zeolite) none 15.36~19.80 10.50~12.29 2018 [19]
H-beta (zeolite) Ni 9.52~54.68 3.43~11.79 2018 [20]

PTA (Terephthalic acid) Ni, Cs 0~21.61 12.10~20.28 2017 [21]
TiO2, ZrO2 Ni, Co 7.25~54.13 3.4~18.18 2019 [22]

Nb2O5 Ni, Re 2.38~27.01 9.93~30.4 2020 [23]
Zeolites (H-Beta, HZSM-5,

MAS-7, MCM-41 SAPO-11) Ni, Cu 0.04~27.01 0~20.10 2019 [24]

Active carbon, MgO,
ZrO2, Al2O3

Ru 1.75~6.1 8.8~47.3 2018 [25]

MgO, AC Pd ~4.32 ~24.49 2019 [26]
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Table 1. Cont.

Catalyst Support Metal Solid Yield Aromatics Yield Published Year Ref.

de-aluminum H-beta (zeolite) Co, Zn 8.60~51.63 2.39~12.21 2020 [27]
MCM-41, PTA none 3.33~44.46 0.27~8.79 2020 [28]

Zeolites (H-FER, H-MOR,
H-Beta) none 29.0~41.0 1~3.4 2017 [29]

SBA-15 (mesoporous silica) Ni, Ru 3.37~30.52 5.8~12.7 2018 [30]
Active carbon, MgO, ZrO2, Al2O3 Ni, Ru, Pd 4.2~42.8 7.44~35.49 2020 [31]

Cr2O3 Cu, Pd 25.31~56.16 2.37~11.24 2021 [32]
Nitrogen doped biochar Ru 19.3~26.5 16.9~29.4 2022 [33]

Activate carbon Ru ~56.1 ~13.24 2022 [34]
Carbon nanotube Ru 4.7~32.6 1.2~42.7 2022 [35]

Nitrogen-iron doped carbon
nanotube Ni ~60.5 ~20.2 2022 [36]

Ga-doped ZSM-5 (zeolite) Ru ~40.5 ~26.76 2022 [37]
HY (zeolite) Ni, Ru 5.23~18.3 5.5~20.2 2022 [38]

Iron dispersed HZSM-5 (zeolite) Pd 1~39.06 8.37~27.93 2021 [39]
Al-SBA-15 Ni 15.25~20.17 17.87~21.56 2021 [40]

Activate carbon none 6.61~56.68 18.76~40.4 2021 [41]
HZSM-5 (zeolite) Ru ~48.7 ~19.95 2021 [42]

Data related to reaction conditions, catalyst properties, and reaction results are tab-
ulated. In total, 17 variables are converted into standardized units, as listed in Table 2,
including reaction environments, for example, time and temperature, as well as catalyst
properties, such as pore attributes and metal contents. Regarding the model outputs, we
selected a range of aromatics (Supplementary Material S1) to evaluate the performance of
each reaction system. Raw data table is provided as Supplementary Material S2.

Table 2. Variables and their abbreviations that applied in this research.

Variable Name Abbreviation Range Unit

Reaction temperature TEMP 160–400 ◦C
Reaction time TIME 0.5–36 h

Hydrogen pressure HPRE 0–4 MPa
Solvent-to-Reactor Ratio SRR 0.16–0.6 -
Lignin-to-Solvent Ratio LSR 1.75–50 -
Solvent of Water Ratio SOWR 0.1667–1 -

Solvent of Alcohol Ratio SOAR 0–1 -
Solvent of Organic Ratio SOOR 0–1 -
Catalyst-to-Lignin Ratio TCR 0.01–2 -

Average pore size POSZ 0.43–20.4 nm
Average pore volume PRVL 0.005–1.95 cm3/g

BET surface area BETS 4.2–3349 m2/g
Total acidity ACID 0–49 mmol NH3/g

Cobalt ratio in catalyst MCOR 0–4.59 -
Nickel ratio in catalyst MNIR 0–0.5 -

Ruthenium ratio in catalyst MRUR 0–0.2 -
Palladium ratio in catalyst MPDR 0–0.05 -

2.2. Machine Learning Algorithm and Evaluation Indicators
2.2.1. Algorithms

According to the previous work reported by Castro et al., the RF regression method
predicts lignin depolymerization yields well [17]. Gradient boosting decision trees (GBDT)
can provide a high degree of transparency and intelligibility. Here, three different algo-
rithms are addressed and discussed: LightGBM, XgBoost and CatBoost, which are provided
by Ke et al. (2017), Chen and Guestrin (2015), and Prokhorenkova et al. (2019). All codes
were written in Python and the raw code is provided as Supplementary Material S4.
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LightGBM provides one-side sampling, which can avoid going down branches that
are of less importance. It also uses Exclusive Feature Bundling method to reduce feature
sparsity, making it possible to decrease the model’s training duration. The drawback of
LightGBM is that it can overfit when applied to smaller datasets. On the other hand,
XgBoost provides full-side parallel tree expansion. XGBoost can quickly consume the
available memory and potentially crash a computer when dealing with more massive
and complex datasets. The CatBoost puts greater emphasis on categorical features, which
combats the issue of exponential feature combination growth by using an efficient method
at every new split of the current tree.

The datasets were randomly separated into train sets and test sets for model training
(ratio of 7:3 (train to test)). Hyperparameters of all three models are tuned separately
through Randomized Search Cross Validation (RandomizedSearchCV) among the selected
range as shown in Table S3-1 in Supplementary information S3 using 5-fold cross validation,
applying mean absolute error for evaluation during the tuning.

2.2.2. Evaluation Indicators

Several functions from the library, such as R-squared (R2), mean-squared-error (MSE),
and Pearson correlation coefficient (PCC), are applied to evaluate and modify the machine
learning model, whose equations are shown below, (1), (2) and (3).

R2 = 1 − ∑i
(
yp − yi

)2

∑i
(
yp − yi

)2 (1)

MSE =
1
n

n

∑
i=1

(
yp − yi

)2 (2)

PCC =
∑(yi − yi)

(
yp − yp

)
√

∑(yi − yi)
2 ∑
(

yp − yp

)2
(3)

where yp denotes the predicted value, yi represents the experiment value, and n represents
the number of test samples.

R2 score and prediction curve is obtained for comparison. The importance of the
features was examined via an open access method named SHAP (SHapley Additive ex-
Planations) using the TreeSHAP [43] method. It defines the value function using the
conditional expectation to estimate effects on the model output value. Both linear fitting
and polynomial (5th) fitting were performed via OriginLab program.

2.2.3. Chemical Parameter Mapping

The mapping was performed separately with the best fit trained model via machine
learning. For each parameter, a total of 200 datapoints were simulated for investigating the
exact numerical influence on the solid yields results. A reference data point was selected
from the training data sets. The simulating datapoints were then created based on the
selected datapoint. The value of the selected feature was varied in the range of Table 2,
while all other features’ values remain same as the reference datapoint

3. Results and Discussion
3.1. Prediction Curve and Analysis of Solid Residue

In terms of reliability of solid yield data, some papers report a range of results from
repeated experiments, and the average of the results under the same conditions was selected.
The lignin hydrogenolysis also depends on several other features that were ignored in this
study, for example, the lignin source (chemical composition or molecular weight). All lignin
literature used in this study mainly used alkaline lignin or kraft lignin. Alkaline lignin is
reported to have a slightly higher molecular weight and more glycerol end-groups [44].
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After tuning, all three models showed high R-square value against training sets: 0.97
for LightGBM; 0.99 for XgBoost; 0.98 for CatBoost. However, when applied to the test
sets, all the evaluation scores decreased to some degree. This is mainly caused by the data
variation in the published journals. After all, the XGB model achieved an R-square score
of 0.92 and a PCC score of 0.96, showing its excellent performance of prediction against a
solid yield of lignin hydrogenolysis (Figure 2).
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Figure 2. Solid yield prediction curve and prediction score of (a) LightGBM, (b) XgBoost, (c) CatBoost
and table of machine learning evaluation results.

The feature importance was then examined via the SHAP method (Figure 3). Lignin-
to-solvent ratio has the highest impact among all the features, while the size of the catalyst
pore showed a higher impact than other pore attributes. The solubility of lignin in most
solvents is mostly limited; thus, the reaction would remain a heterogeneous state and
lignin can continuously dissolve during the reaction. In the meantime, the solvent amount
can affect the amount of achievable hydrogen. However, the type of solvent is, relatively
speaking, of less value. To our knowledge, the solubility of lignin is better in alcohols
than in water and most organic solvents, which collapse with the result that solvent of
alcohol ratio has a higher impact than the other two types of solvents. Notably, from all
models’ prediction results, nickel and ruthenium showed higher effects on the models’
output than other metals (SHAP value and feature importance figures of LightGBM model
and CatBoost model predictions on solid yield are shown in Figures S3-1 and S3-3 in
Supplementary Material S3).
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The pore size has a higher importance than other pore attributes. The termination of
activating free radicals in the middle of a reaction is essential for preventing the formation
of a stable carbon–carbon bond, which further causes the production of highly stabilized
char. A catalyst with suitable pore size ranges is desirable in order to terminate and
stabilize bio-mediated reactions more easily, while, in the meantime, it allows lignin to
reach the active sites in the catalysts. As a result, the catalyst pore size can greatly affect the
solid yield.

3.2. Prediction Curve and Analysis of Aromatic Products

Although the yield of solid residue and aromatics have a considerable relationship,
the decrease in solid residue does not exactly represent the increase in aromatics, as the
residue could also transform into complex oligomers.

In general, the prediction of aromatic products is worse than the prediction of solid
residue, which is mainly due to the variation in the reported values in the data. Differ-
ences between GC-MS analysis results and the manual selection of GC peaks can lead
to differences in the yield of the aromatic products varying slightly. When the degree of
error exceeds the machine learning processing capacity, the model’s accuracy decreases
correspondingly.

The R-square score of all three models during training were over 0.95: 0.97 for Light-
GBM; 0.95 for Xgboost; 0.97 for CatBoost. As we can observe from (Figure 4), the R-square
score of LightGBM was the lowest at 0.72. When dealing with smaller datasets containing
plenty noises, the accuracy of LightGBM is insufficient. R-square of XgBoost and CatBoost
remains around 0.88. The slope of the best fit prediction curve also reached 0.9, indicating
their good performance in aromatic prediction. Combining PCC score and the predic-
tion curve, the performance of XgBoost is slightly better than CatBoost against aromatic
yield prediction.
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The feature importance was also examined via the SHAP method (Figure 5,
Figures S3-2 and S3-4). The result of aromatic prediction was similar to the solid yield
prediction results, where lignin-to-solvent ratio and pore size have higher impacts on
results. However, compared with the solid yield prediction, the importance of hydrogen
pressure is higher. The lignin hydrogenolysis can be generally divided into two steps, from
lignin to intermediated products and from intermediated products to benzene derivatives
or further alkanes. The second step requires a higher consumption of hydrogen, which
explains the larger importance in aromatic prediction than in solid yield prediction.
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3.3. Contributions of Feature to the Machine Learning Performances

The contributions of each feature to the machine learning performance are not only
examined via SHAP value function, but also studied via direct measurements of MSE
change before and after excluding the selected feature. As observed in Figure 6, the mean
square error of the prediction results and actual results all increased except for SOWR to
solid yield and MPDR to aromatics yield. Overall, these features contribute positively to
the performance of machine learning models.
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Subsequently, for a better understanding of the reaction results under mild conditions,
a Pearson correlation coefficient matrix of these parameters was developed and is shown in
Figure 7. It can be observed that, besides the correlation between pore volume and BET
surface area, most of these parameters are poorly correlated to each other. In other words,
the parameters of reaction conditions are independent of each other.
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3.4. Reaction Parameter Mapping

The chemical process mapping of the reaction parameter is simplified by a step-by-
step mapping strategy in this study. In this study, a data point near the mean average of
the output value and close to the prediction curve is selected as the reference data point.
Afterwards, a range of designed conditions were set up within the range of the training
datasets based on the selected reference data point, and the predictions of the designed
conditions were tested via the previous trained XgBoost model.

The hydrothermal treatment of lignin-derived intermediated products has been well
developed. One of the main targets of this research is to propose a suitable range of reaction
conditions of direct lignin hydrogenolysis. In the previous section, we observed that LSR
(lignin-to-solvent ratio) and POSZ (average pore size) had the largest impact on lignin
hydrogenolysis. For the catalyst, the catalyst active sites are important, such as the metal
type and its acidity, e.g., MNIR (nickel ratio in catalyst) and MRUR (ruthenium ratio in
catalyst) showed the highest relevance when modeling using machine learning.

Consequently, the actual numerical effect of LSR, POSZ, MNIR and MRUR to solid
yield of lignin hydrogenolysis are discussed via chemical parameter mapping. The pre-
dicted results are fitted using a third-degree polynomial for investigation.

As is shown in Figures 8 and 9, in order to achieve a lower yield of solid residue in
lignin hydrogenolysis, a lignin-to-solvent ratio around 6 is optimal. A higher lignin-to-
solvent ratio would lead to the insufficient reaction of lignin, and a lower lignin-to-solvent
ratio would cause a lower diffusion of lignin in the catalyst system. The predicted curve of
solid yield with respect to pore size showed three referable ranges, which are less than 2 nm,
around 7 and 16 nm, which corresponds to the pore size of microporous, mesoporous and
microporous materials. The optimum metal content in lignin hydrogenolysis is predicted
to be less than 5% nickel and around 4% ruthenium.

Combining all the prediction results, it is proposed that, based on the data referred
to in this study, a bimetallic catalyst with the ratio of less than 5% nickel, around 4%
ruthenium and a lignin-to-solvent ratio of around 6 could perform the best result under a
mild condition, which remarkably matches Feng, L’s recent experimental work [45].
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4. Conclusions

In this study, three different ML models were tested on catalyzed lignin hydrogenol-
ysis reaction conditions to predict product yields. XGBoost shows the best prediction
abilities, resulting as R2 scores of 0.92 and 0.88 against solid residue and aromatics yields,
respectively. Lignin-to-solvent ratio and average catalyst pore size are predicted to be the
two most influential features to machine learning modeling. Among all active sites, includ-
ing catalyst acidity and different kinds of metal, nickel and ruthenium play a significant
role. With the assistance of a newly proposed chemical process parameter mapping scheme,
near optimal conditions are proposed. By using machine learning and chemical process
parameter mapping, further catalytic process optimization on lignin/bio-polymer reactions
resulting in increased product yields and economic process are expected.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/en16010256/s1. Supplementary material S1. List of aromatics in this
study. Supplementary material S2. Table of datasets applied in this study. Supplementary material S3.
Extra Tables and Figures, including Table S3-1: Machine learning models’ hyperparameter tuning
range; Figure S3-1: SHAP value (left) and feature importance (right) of LightGBM prediction on
solid; Figure S3-2: SHAP value (a) and feature importance (b) of LightGBM prediction on aro-
matics; Figure S3-3: SHAP value (a) and feature importance (b) of CatBoost prediction on solid
yield; Figure S3-4: SHAP value (a) and feature importance (b) of CatBoost prediction on aromatics.
Supplementary material S4. Raw code of this study in the form of python file.
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