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Abstract: The main aim of this work is to propose a new algorithm of reliability assessment for steel
civil engineering structures subjected to fire temperatures. This new algorithm is based upon the
relative probabilistic entropy concept elaborated by Bhattacharyya, and this probabilistic distance
is sought in-between extreme and admissible deformations of some structural beam subjected to
higher temperatures. Similar to the First Order Reliability Method, this approach uses the first two
probabilistic characteristics of the structural response, when structural output may be modelled with
the use of Gaussian distribution. The probabilistic structural response is found here using hybrid
computational technique–the Finite Element Method system ABAQUS with its fully coupled thermo-
elastic analysis with 3D solid elements and probabilistic modules implemented in the computer
algebra system MAPLE. The probabilistic response is determined via a triple stochastic analysis,
which is based on the classical Monte-Carlo simulation, iterative generalized stochastic perturbation
technique, and also using semi-analytical probabilistic calculus. Final determination of the relative
entropy in the Serviceability Limit State of the given structure and its comparison with the results
obtained using the FORM analysis enables to calibrate this new technique to numerical values
proposed in the engineering designing codes. Hence, a more accurate probabilistic method may use
some experimental-based admissible values included in the existing design of legal provisions.

Keywords: stochastic perturbation technique; stochastic finite element method; fire simulation;
coupled thermal-stress analysis; relative entropy; reliability analysis

1. Introduction

Structural safety of civil engineering structures [1] concerning possible fire accidents
is a very important practical problem, especially in the area of steel structures, where the
demands and expectations are unusually high [2]. Hence, the reliability of engineering
structures under fire conditions [3,4] remains always a very challenging and practically
important area of knowledge [5,6]. This is due to a partial lack of experimental data, the
complexity of the numerical simulation, even while using the Finite Element Method (FEM)
or the Finite Volume Method (FVM) as well as the difficulty in stochastic simulations. The
full-scale experiments necessary to build and calibrate efficient numerical models [7,8] need
to include both realistic fire scenarios, temperature-dependent paths of deformations, and
stresses as well as detailed information concerning mechanical and physical characteristics
of the structural materials. A fundamental minority in the experimental methods is that
individual large-scale structures may be subjected to the fire only once; some structural
elements (such as the cold-formed, for instance [9]) or their connections (cf. [10]) may
be tested with a few times, but their qualitative and quantitative results have limited
application for the framed-structures [11,12], buildings, bridges [13], or steel large-surface
halls [14]. It has been widely documented that Computational Fluid Dynamics (CFD) is
one of the most powerful numerical simulation tools in fire propagation prediction [15],
which is commonly used with some FEM systems to predict the failure [16], and where
fire–thermomechanical interface may play a very important role [17].
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There is no doubt that deterministic numerical simulations of fire accidents may be
very useful in engineering practice, taking into account the dramatic cost of such full-
scale experiments, and may have repeatable character; nevertheless, these models are
very sensitive to mechanical and thermal boundary conditions, temperature-dependent
material parameters, and also the details in their algorithms [18,19]. It can be realized
by some hybrid computer systems with an option of the gas–solid interaction or just by
the coupled solid mechanics numerical analyses (e.g., thermo-mechanical) available in
many well-known FEM commercial systems such as ABAQUS [3,14,19] or ANSYS. Such a
simulation could serve as an efficient prediction of the structural failure time to obtain more
specific information concerning fire resistance and evacuation time (decisive especially for
high-rise buildings safety or large bridges). Let us underline that all these methods and
case studies have purely traditional deterministic character and do not allow directly for
any structural reliability assessment.

Stochastic models in fire safety analyses are traditionally related to the models of fire
spread in woodlands [20], numerical simulation related to this issue [21], as well as to
fire outbreaks following earthquake disasters [22]. The Monte-Carlo simulation approach
was traditionally the first numerical technique to analyze structural response under a
fire [23], and to deliver risk analysis for steel beams [24]. It is well-known that the widely
accessible and relatively easily programmable Monte-Carlo simulation needs enormously
huge computer time and power consumption [25]; a semi-analytical technique availability
depends upon the initial choice of the input uncertainty type [3,26,27], whereas various
expansion techniques (Karhunen-Loeve and polynomial chaos [28] or Taylor [26]) may
exhibit limited applicability in terms of the larger initial uncertainty level or multivariable
(and state-dependent) character of the material and physical characteristics. Some Stochas-
tic Finite Element Method (SFEM) studies are available in the literature [29–31], but their
connection with fire simulation is rather scarce [3], so no well-documented experiments
and related conclusions can be found. The most popular engineering tool in this area was
the Second Order Second Moment (SOSM) [32,33], which has been further generalized
to the higher order approach engaging the Least Squares Method (LSM) [34,35] recovery
of polynomial bases [36] relating the desired structural response with a given input of
random parameter(s); it is in fact similar to the response surface methodology [37,38].
The main goal of such an approach would be a final calculation of the reliability index,
which in civil engineering designing codes is still based upon the First Order Reliability
Method (FORM) [1,39]. Despite the stochastic computer method chosen, the main diffi-
culty would be the collection of basic statistical parameters and corresponding probability
distributions for material/physical characteristics of structural materials subjected to high
temperatures. It is known that some alternative stochastic approach could be based on
a probabilistic distance or probabilistic divergence, but their application is still not quite
straightforward in reliability assessment. One of the alternatives in this area could be
the so-called Bhattacharyya divergence [14,27,40], but many other models can be useful
including Shannon, Renyi, or Tsallis entropies [41,42] and probabilistic distances [43] in-
cluding Hellinger theory [44], Jeffreys model [45], Kullback–Leibler theory [46], and also
Jensen–Shannon entropy [47]. Let us note that certain engineering uncertainty analyses
have been delivered in the context of various entropies in the literature [48–51], but they
are a little bit distant from engineering reliability index determination.

The main aim of this paper is to present some stochastic numerical analysis schemes of
the fire scenario and to apply them to analyze the reliability of some popular steel structures
of the hot-rolled I beam being a part of the structural roof. A very important aspect of this
model is its fully coupled character, capturing of temperature variations of all material
parameters, and also the usage of 3D finite elements, which enables decisively higher
numerical accuracy than the Euler–Bernoulli, Timoshenko, or shell elements applicable
in engineering practice; some sequential coupling with ABAQUS has been demonstrated
by the authors in [3] before. The stochastic scheme is based upon a triple stochastic
methodology–with (i) Monte-Carlo simulation, (ii) semi-analytical approach as well as



Energies 2023, 16, 207 3 of 21

(iii) iterative generalized higher (the 10th) order stochastic perturbation technique. The
entire computational implementation has been carried out with the use of the FEM system
ABAQUS® as well as the computer algebra system MAPLE 2019.2® and has a general
character, independent of the engineering structure type. Determination of the first four
probabilistic moments and coefficients available in this algorithm allows for a calculation of
the reliability index based on the First Order Reliability Method (FORM), and this index is
presented as a function of the fire duration time (and its mean temperature). Additionally,
a concept of the probabilistic divergence (relative entropy) usage to approximate structural
reliability has been presented and discussed here by a contrast of this entropy to the FORM
index [3]. This concept has been successfully employed before to study the reliability of
statically uploaded linear elastic steel truss [27], and also in the stochastic dynamic response
of some steel halls [14]. The most creative work is an extension of the entropy-based
approach from elastic problems towards fully coupled thermo-elasticity Stochastic Finite
Element Method structural analysis. Contrary to the previous studies, input uncertainty
in fire gas temperatures induces multiple random variability in mechanical and thermal
characteristics of the given structure. A methodology proposed here may serve for further
fire (and not only) structural safety analysis of the steel structures and the very important
aspect of this study is application of the 3D finite elements for detection of structural
behavior of steel thin-walled elements. The authors have invented the new reliability index,
which reflects probabilistic divergence in-between admissible and extreme deformations
depending both on higher temperatures. It has been shown that probabilistic entropy
may be efficiently used in engineering analyses not only in the context of the maximum
entropy principle but also as a direct function of the input uncertainty and may contain key
information concerning structural reliability. The essential innovative aspect of this work is
to apply the relative entropy-based reliability index in fully coupled thermo-elastic FEM
analysis for simulation of fire accidents in some popular civil engineering structures.

2. Physical Model and Its Implementation

Let us consider a transient thermo-mechanical boundary initial value problem defined
on isotropic and homogeneous domain Ω shown schematically below in Figure 1.
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Figure 1. Boundary-initial thermo-mechanical problem of the homogeneous domain Ω.

Its mechanical part is driven by the following incremental static equilibrium equations [52]:

∆σkl,l + ρ∆ fk = 0; x ∈ Ω (1)

∆σkl = Cklmn(T)∆εmn + δkl α(T)∆T E(T); x ∈ Ω (2)
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∆εmn =
1
2
[∆uk,l + ∆ul,k + ui,k∆ui,l + ∆ui,kui,l + ∆ui,k∆ui,l ]; x ∈ Ω (3)

with the following essential and natural boundary conditions:

∆σklnl = ∆t̂k; x ∈ ∂ Ωσ, k = 1, 2, 3 (4)

∆uk = ∆ûk; x ∈ ∂ Ωu, k = 1, 2, 3 (5)

This problem is solved for the displacement vector uk(x), the strain tensor εkl(x) and
the stress tensor σkl(x), where the stress tensor increments ∆σkl(x), ∆σ̃kl(x) and denote the
first and the second Piola–Kirchhoff tensors

∆σkl = ∆Fkm∆σ̃ml + Fkm∆σ̃ml + ∆Fkmσ̃ml ; x ∈ Ω (6)

with
∆Fkm = ∆uk,m; x ∈ Ω. (7)

All static state variables, i.e., displacements, strains and stresses are temperature-
dependent, but this dependence is omitted for a brevity of presentation in all equilibrium
equations. Simultaneously, a transient heat flow problem for the temperature field T = T(x,τ)
is solved from the following differential equation [53]:

ρ(T) c(T)
.
T −

(
λij(T)T,j

)
,i − g = 0; xi ∈ Ω; τ ∈ [0, ∞), (8)

where c(T) is the temperature-dependent heat capacity of the region Ω, ρ(T) is the temperature-
dependent material density of Ω, λij(T) is temperature-dependent second-order tensor thermal
conductivity, and g is the rate of heat generated per unit volume. Traditionally, T and τ denote
temperature field values and time, respectively.

This equation should fulfil the boundary conditions of the ∂Ω, which are given
as follows:

(1) temperature (essential) boundary conditions

T = T̂; x ∈ ∂ΩT , (9)

and for ∂Ωq part of the total ∂Ω:

(2) heat flux (natural) boundary conditions

∂T
∂n

= q̂; x ∈ ∂Ωq, (10)

where ∂ΩT ∪ ∂Ωq = ∂Ω and ∂ΩT ∩ ∂Ωq = {∅}. The initial conditions have been intro-
duced as

T0 = T(xi; 0); xi ∈ Ω, τ = 0. (11)

The following functional defined on ∆uk is introduced to obtain a numerical solution
to the deformation problem:

J(∆uk) =
∫
Ω

(
1
2

Cklmn(T)∆εkl∆εmn +
1
2

σ̃kl∆ui,k∆ui,l − ρ∆ fk∆uk

)
dΩ−

∫
∂Ω

∆t̂k∆ukd(∂ Ω) (12)

whose solution is determined from the minimization of the incremental version of the
potential energy stationarity principle

δJ(∆uk) =
∂J

∂∆uk
δ(∆uk) (13)

Analogously, one considers some continuous temperature variations δT(xi) defined
in the interior of the region Ω and vanishing on ∂ΩT . A variational formulation may be
proposed here as
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∫
Ω

(
ρ(T)c(T)

.
TδT + λij(T)T,jδT,i − gδT

)
dΩ −

∫
∂Ωq

q̂ δT d(∂Ω) = 0;

xi ∈ Ω; τ ∈ [0, ∞).
(14)

Let us recall the classical Finite Element Method formulation, where the displacements
increments ∆uk(x) being a continuous and differentiable function over the region Ω con-
sisting of the geometrically continuous subsets (finite elements) Ωe, where e = 1, . . . ,E gives
a complete representation of the set Ω. Let us consider the following approximation of the
displacement increments [52,54]:

∆uk(x) =
Ne

∑
ζ=1

φζk(x) ∆q(N)
ζ , (15)

where φζk(x) are the shape functions in the node k, ∆q(N)
ζ represent the nodal degrees of

freedom vector, while Ne is the total number of those degrees of freedom in the considered
node. Starting from the proposed approximation it is possible to express the gradients of
the displacement vector as well as the strain tensor components as

∆uk,l(x) = φ
ζ
k,l(x) ∆q(N)

ζ , (16)

∆εkl(x) = [B(1)ζ
kl + B(2)ζ

kl ] ∆q(N)
ζ = Bζ

kl∆q(N)
ζ , (17)

∆εkl(x) = B
ζξ

kl ∆q(N)
ζ ∆q(N)

ξ (18)

and finally
∆εkl(x) = ∆εkl(x) + ∆εkl(x). (19)

The following notation has been applied in the above equations:

B(1)ζ
kl (x) = φ

ζ
k,l(x), B(2)ζ

kl (x) = φ
ζ
i,k(x)φ

ξ
i,l(x)q

(N)
ξ , B

ζξ

kl (x) =
1
2

φ
ζ
i,k(x)φ

ξ
i,l(x). (20)

Now, the following elemental stiffness matrices are introduced

k(σ)eζξ =
∫

Ωe

σ̃klφ
ζ
i,k(x) φ

ξ
i,l(x) dΩ, (21)

k(con)e
ζξ =

∫
Ωe

1
2

Cklmn(T)B(1)ζ
kl B(1)ξ

mn dΩ, (22)

k(u)eζξ =
∫

Ωe

1
2

Cklmn(T)
(

B(1)ζ
kl B(2)ξ

mn + B(2)ζ
kl B(1)ξ

mn + B(2)ζ
kl B(2)ξ

mn

)
dΩ, (23)

while the second and the third order stiffnesses are equal, respectively

k(2)eζξ =
∫

Ωe

3
2

Cklmn(T)
(

Bζ
kl∆u(N)

ζ B
µν

mn∆q(N)
µ ∆q(N)

ν + B
ζξ

kl ∆q(N)
ζ ∆q(N)

ξ Bµ
mn∆q(N)

µ

)
dΩ, (24)

k(3)eζξ =
∫

Ωe

2Cklmn(T)
(

B
ζξ

kl ∆q(N)
ζ ∆q(N)

ξ B
µν

mn∆q(N)
µ ∆q(N)

ν

)
dΩ. (25)
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Introducing k(i)ζξ for i = 1,2,3 into the functional J(∆uk) in Equation (8), applying a
transformation from the local to global coordinates system, one may obtain from the
stationarity condition that

K(1)
αβ (T)∆qβ + K(2)

αβγ(T)∆qβ∆qγ + K(3)
αβγδ(T)∆qβ∆qγ∆qδ = ∆Qα (26)

Fulfilled for any configuration of the region Ω, where K̂αβ, qβ, and Qα are stiffness
matrix, displacement vector, and nodal loads vector, respectively. The same discretiza-
tion serves for the discretization of the temperature field by the nodal temperatures
vector θα as [52,54]

T(xi) = Hα(xi) θα; i = 1, 2; α = 1, 2, . . . , N, (27)

The temperature gradients can be rewritten in the form

T,i = Hα,i θα, i = 1, 2. (28)

We introduce the capacity matrix Cαβ(T), the heat conductivity matrix K̂αβ(T) and the
vector Pα as

Cαβ(T) =
∫
Ω

ρ(T)c(T) Hα Hβ dΩ, K̂αβ(T) =
∫
Ω

λij(T) Hα,i Hβ,j dΩ (29)

and also the R.H.S. vector in the following way:

Pα =
∫
Ω

g HαdΩ +
∫

∂Ω

q̂ HαdΩ. (30)

Next, let us introduce these matrixes into the variational formulation (14) to obtain the
following algebraic equations system:

Cαβ(T)
.
θβ + K̂αβ(T)θβ = Pα (31)

Equations (26) and (31) are finally solved simultaneously by the system ABAQUS
to obtain time fluctuations of the deformations and stresses into the given boundary
thermo-elasticity problem. This coupled problem is solved in a homogeneous continuous
domain with no initial stresses and strains. A steel material occupying this domain shows
temperature-dependent material and physical characteristics presented in Figures 2 and 3
below. It is reported here, after experimental works included in Eurocode 3 [2], that Young
modulus as well as heat conductivity decrease while increasing temperature induced into
the steel volume, quite opposite to thermal elongation, which increases. Heat capacity
shows very complex behavior in this situation, especially in terms of the singularity reached
close to 700 ◦C. This singularity results in remarkable difficulty during a solution of
Equation (31), which is practically omitted by listing heat capacity at each 50 ◦C and
numerical interpolation in-between these discrete data.
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3. Probabilistic Aspects and Relative Entropy

Let us introduce the random variable b and its probability density function as pb(x).
Then, the first two probabilistic moments of this variable are defined as [55]

E[b] ≡ b0 =

+∞∫
−∞

bpb(x)dx (32)

where b0 means the average value of b itself and

Var[b] =
+∞∫
−∞

[b− E(b)]2 pb(x)dx (33)

Higher probabilistic moments and related coefficients may be defined according to the
classical definitions from the probability theory. The basic idea of the stochastic perturbation
approach employed here is to expand all input random variables and all the resulting state
functions of the given boundary initial problem via the Taylor series about their spatial
expectations using the perturbation parameter ε. The random function f (b) with respect to
its parameter b about its mean value is given as follows

f = f 0 +
1

∑
n=10

εn

n!
∂n f
∂bn ∆bn, where ε∆b = ε

(
b− b0

)
(34)

is the first variation of a variable b about its expected value and the symbol (.)0 represents
the value of a function calculated for its mean. Let us analyze further the expected values
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of displacement state function u(b) defined by its expansion via the Taylor series as follows

E[u(b)] =
+∞∫
−∞

u(b)pb(x)dx =

+∞∫
−∞

u0
(

b0
)
+

1

∑
n=10

εn

n!
∂nu(b)

∂bn ∆bn

pb(x)dx (35)

This expansion is valid only if the state function is analytic in ε and the series converges
and, therefore, any criteria of convergence should include the magnitude of the perturbation
parameter. A perturbation parameter here as usually in practical engineering computations
is equal 1. It yields for the input random variable with symmetric probability density
function in the tenth order approach

E[u(b)] = u0
(

b0
)
+

1
2!

∂2u(b)
∂b2 µ2(b) + · · ·+

1
10!

∂10u(b)
∂b10 µ10(b) (36)

µn(b) denotes the nth order central probabilistic moment of variable b. All the terms with
odd orders are equal to 0 for the symmetric random variable and the orders higher than
the 10th have been simply neglected. Similar considerations lead to the expressions, such
as the variance, for instance

Var[u(b)] = µ2(u(b)) =
+∞∫
−∞

(u(b)− E[u(b)])2 p(b)db (37)

Quite similarly, it is possible to derive higher-order central probabilistic moments from
their definitions

µ3(u(b)) =
+∞∫
−∞

(u(b)− E[u(b)])3 p(b)db, µ4(u(b)) =
+∞∫
−∞

(u(b)− E[u(b)])4 p(b)db (38)

Let us mention that it is necessary to multiply each of these equations by the relevant
order probabilistic moments of the input random variable to obtain the algebraic form
convenient for any symbolic computations. Based on the classical definition of the variance
we can calculate the coefficient of variation, skewness, and kurtosis as follows

α(u(b)) =
√

µ2(u(b))
E[u(b)]

, S(u(b)) =
µ3(u(b))[√
µ2(u(b))

]3 , κ(u(b)) =
µ4(u(b))[√
µ2(u(b))

]4 − 3 (39)

It should be mentioned that at this stage the proposed procedure is still independent of
a choice of the initial probability distribution function, however, a satisfactory probabilistic
convergence of the final results may demand various lengths of the expansions for random
variables with different distributions. A common implementation of the Monte-Carlo
simulation, semi-analytical approach, as well as higher order stochastic perturbation tech-
nique in the system MAPLE was possible thanks to the Least Squares Method polynomial
recovery of the structural displacements with respect to the input uncertain parameter b.

Finally, the reliability index is to be determined to measure the structural safety of
the given case study of the beam under fire conditions. The engineering codes (such as
Eurocode 0) advise applying the FORM theory, where one calculates

βFORM =
E[R]− E[E]√

Var(R) + Var(E)
; (40)

E[R] denotes here the maximum acceptable displacement of a beam according to
Eurocode 3, and E[E] is the expected value of extreme displacement calculated based upon
the iterative generalized stochastic perturbation technique. It is well known that the FORM
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approach has some limitations, so that higher order theories have been developed such
as the Second and even Third Order Reliability Methods (SORM and TORM), especially
because of the linear character of the limit function in the FORM technique. This seems to be
unjustified in many practical applications and undoubtedly fire simulation is one of them.
Further, the main mathematical methodological difficulty is that both distributions, of R
and of E, are assumed as Gaussian here, which may be far from the experimental evidence
and even misleading in the view of many theoretical studies and computer simulations.

This was a reason to seek for another concept to assess structural reliability in the
presence of fire and to define the reliability index using probabilistic distance in-between
two distributions of structural resistance and of structural extreme effort. One of the
available mathematical models is the Bhattacharyya theory [40], which proposes for two
different PDFs, namely pR(x) and pE(x), the following probabilistic distance measure:

β′ =

+∞∫
−∞

√
pR(x) pE(x) dx, (41)

where associated with structural resistance and probability function related to structural
effort, respectively. Such formula enables the application of two different probability distri-
butions of practically any nature and the given set of their parameters; further application
of the analytical integration using some computer algebra system may lead to the desired
numerical value. However, this formula can be simplified in the case of two Gaussian
distributions with the given expectations and standard deviations (µ(R), µ(E), and also
σ(R), σ(E), correspondingly). There holds

β′ =
1
4
(E[R]− E[E])
σ2(R) + σ2(E)

+
1
2

ln
(

σ2(R) + σ2(E)
2σ(R)σ(E)

)
(42)

Another problem is the upscaling of the variability interval of reliability indices
obtained as the result of Equation (41) (or (42)) to contrast them with the values resulting
from the FORM approach. The main idea would be to apply this mathematical apparatus
with its theoretical importance, but to retain the existing engineering codes recommended
minimum values of the reliability indices. Without such an upscaling direct determination
of the reliability index, it would never show any extremes separating safe and unsafe design
and/or exploitation of the given structure. Some preliminary computational experiments
enable to propose the following rescaling of such a reliability index to numerical values
comparable with the existing codes:

β =
1
2

√
1
4
(E[R]− E[E])
σ2(R) + σ2(E)

+
1
2

ln
(

σ2(R) + σ2(E)
2σ(R)σ(E)

)
(43)

Both square root function as well as the multiplier preceding this function has been
taken to make the first component, free from logarithmic function as close as possible to
Equation (40); further numerical analysis would check an efficiency of such a modified
reliability index. Computational implementation of the aforementioned approach has
hybrid character and uses both the FEM system ABAQUS Standard, and also computer
algebra package MAPLE. ABAQUS Standard fully coupled thermoelastic analysis is run
multiple times to have the series of temperatures, stresses, and displacements obtained
for the few different input fire temperatures. Then, these discrete results are in vector
formats transferred to the MAPLE system, where the Least Squares Method procedures
enable to recover polynomial approximations of these state functions with respect to
fire temperature. Finally, this fire temperature is randomized according to the Gaussian
distribution with the given mean value and given variability interval of the coefficient
of variation. Polynomial approximations of temperatures, stresses, and displacements
together with a triple implementation of probabilistic analysis return the basis probabilistic
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characteristics (i.e., expectations and standard deviations) of the state functions. Finally,
two different reliability indices presented in Equations (40) and (43) are determined as the
functions of fire exposure time.

4. Computational Illustration

The numerical example consists of the 6m both ends fixed steel I-profile beam with
linear load applied to top flange equal 2.0 kN/m (Figure 4), whereas its cross section and
the FEM discretization have been shown in Figure 5. The mesh consisting of 34,800 brick
finite elements has been used; they are denoted in the system ABAQUS as C3D8T: the
8-node thermally coupled brick, tri-linear displacement, and temperature. The edge length
of each brick element is less than 10 mm and it guarantees quite smooth approximation
of stress distribution throughout the web. The thermal load has been adopted from the
Standard ISO fire curve (Figure 6). According to Eurocode fire fumes after time tf = 15 min
are about 740 ºC. This thermal load has been applied to each side of the cross-section except
the top flange where the concrete slab lays according to the given fire scenario (Figure 6).
Surface radiation and surface film conditions as thermal loads have been applied in this
model (Figure 7). All material parameters are fully temperature-dependent and the fully
coupled transient temperature-displacement incremental analysis has been used with the
full Newton solution technique. The total time period of numerical simulation has been set
as 900 s. The initial increment size is 0.01 step time, in this case, the minimum increment size
is 0.0001 of the step time, and the maximum increment has been fixed as a single second.
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Figure 8 shows a comparison of this beam deflection under the given fire conditions
(left diagram) and without a fire (right diagram). It is noticeable that fire heating increases
the extreme deflection at half of the beam span more than four times (13.0 cm) than its
admissible value (3.0 cm); maximum deflection in this case of no fire is less than 2.0 mm.
One concludes that extreme deformation in the beam under fire is two orders larger
than for the beam with no temperature attached (analytical approximation following
basic equations of strength of materials appears to be quite efficient). The second major
difference in-between these two models is that a beam subjected to fire shows remarkable
deformations close to the supported area, whereas the beam without fire loadings has
these deformations negligibly small. Next, Figure 9 reports normal stress marked as S33
(left diagram) and the reduced von Mises stress (right diagram). Von Mises stresses are
almost 4 times larger than the longitudinal stresses in this specific case and both stress
fields exhibit quite different distributions along the beam and throughout its cross-section.
Figure 10 shows for a completeness temperature distribution at the steady-state (at the end
of the beam heating by a fire) and one compares with an engineering intuition that the
thinner web accumulates definitely more heat than the relatively thicker rest of the beam.
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Further results concern probabilistic characteristics of the structural response, which
include expectations, coefficients of variation, skewness, and kurtosis of displacements
shown in Figures 11–14, correspondingly. They have been computed using three differ-
ent probabilistic methods, namely the perturbation method (abbreviated as a PM here),
the semi-analytical method (SAM), and also using the Monte-Carlo simulation (MCS);
they have been shown all as the functions of the input coefficient of variation ranging
from 0.0 until 0.25. They concern extreme vertical displacements obtained at the half of the
beam structure for the needs of further reliability assessment according to the Serviceability
Limit State (SLS). First of all, it is seen that the first two moments are stable until t = 500 s,
and then they start to diverge; initially, both moments equal almost 0. Generally, three
different probabilistic numerical methods coincide in the case of the first two probabilistic
characteristics with each other until α = 0.20. Higher order statistical characteristics are
more dispersed—they exhibit both numerical values very close to 0, which start to diverge
at about t = 500 s. This can be interpreted that until this time moment of the fire exposure,
the resulting displacements can be approximated as Gaussian, which means that both
the FORM expression for the reliability index as well as its relative entropy counterpart
proposed by Equation (43) are justified very well. Finally, one can notice that all three
probabilistic methods coincide very well until α(tf) = 0.10.
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The next set of probabilistic characteristics computed for the reduced von Mises
stresses is given similarly in Figures 15–18. They have been collected here as decisive
in the calculation of the reliability index in the Ultimate Limit State (ULS). The expected
values increase monotonously from 0 until the same moment t = 500 s; then, they exhibit
large fluctuations, although all three probabilistic methods return the same numerical
values. The reduced von Mises stresses start to highly depend upon the input coefficient
of variation for the fire exposure time t > 500 s, which is an observation quite unusual for
elastic problems with any uncertainty. A little bit different conclusions can be drawn from
the results contained in Figure 16—the output CoVs keeps very close to 0 during the entire
fire heating process showing some numerical discrepancies almost at the beginning of this
process (t = 50 s) as well as its end (t = 800 s). Higher order statistics are rather distant from
0 (see Figures 17 and 18), so they cannot be efficiently modeled as Gaussian and need larger
numerical effort. A coincidence of Monte-Carlo simulation, the semi-analytical method as
well as the stochastic perturbation technique is worse and can be assumed α(tf) = 0.05. This
is a quite expected result because probabilistic characteristics of the stresses are calculated
based on probabilistic moments of displacements (since displacement-version of the FEM is
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used) and of probabilistic characteristics of the constitutive tensor (additionally depending
on the nodal temperatures).

Energies 2023, 16, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 12. Coefficient of the variation of the vertical deflections. 

 
Figure 13. The skewness of the vertical deflections. 

 
Figure 14. Kurtosis of the vertical deflections.

Energies 2023, 16, x FOR PEER REVIEW 15 of 21 
 

 

Figure 14. Kurtosis of the vertical deflections. 

The next set of probabilistic characteristics computed for the reduced von Mises 
stresses is given similarly in Figures 15–18. They have been collected here as decisive in 
the calculation of the reliability index in the Ultimate Limit State (ULS). The expected val-
ues increase monotonously from 0 until the same moment t = 500 secs; then, they exhibit 
large fluctuations, although all three probabilistic methods return the same numerical val-
ues. The reduced von Mises stresses start to highly depend upon the input coefficient of 
variation for the fire exposure time t > 500 secs, which is an observation quite unusual for 
elastic problems with any uncertainty. A little bit different conclusions can be drawn from 
the results contained in Figure 16—the output CoVs keeps very close to 0 during the entire 
fire heating process showing some numerical discrepancies almost at the beginning of this 
process (t = 50 secs) as well as its end (t = 800 secs). Higher order statistics are rather distant 
from 0 (see Figures 17 and 18), so they cannot be efficiently modeled as Gaussian and need 
larger numerical effort. A coincidence of Monte-Carlo simulation, the semi-analytical 
method as well as the stochastic perturbation technique is worse and can be assumed α(tf) 
= 0.05. This is a quite expected result because probabilistic characteristics of the stresses 
are calculated based on probabilistic moments of displacements (since displacement-ver-
sion of the FEM is used) and of probabilistic characteristics of the constitutive tensor (ad-
ditionally depending on the nodal temperatures).  

 
Figure 15. Expectations of reduced stress. Figure 15. Expectations of reduced stress.

Higher order statistics of the reduced stresses are definitely distant from 0 during fire
exposure time, so that these stresses cannot be approximated with the Gaussian distribution.
Therefore, the FORM index given in Equation (40) includes a remarkable modelling error,
whereas relative entropy should be calculated here using the general analytical formula (42).
Further numerical results concern reliability analysis of the given structure, so that Figure 19
contains the key results in this study and presents a comparison of the reliability indices
determined using the FORM approach (left graph) with these calculated thanks to the
Bhattacharyya relative entropy. They are both plotted as the functions of the fire exposure
time and are related to the Serviceability Limit State. This is because previous results
document well approximation of the distribution of the displacement by the Gaussian
PDF; this is not the case with the reduced stresses, so their reliability has been discussed
in Figure 20 using the FORM index only. As one could expect, these time fluctuations
of reliability indices have typical exponential decay in the first stage of fire heating, but
then, after reaching critical and 0 values, exhibit further oscillatory character. This part
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is interesting from the numerical point of view and has no practical importance and the
structure lost its reliability. Such a wavy character is totally absent for civil engineering
structures subjected to, i.e., static loads and some stochastic ageing process, when reliability
decreases monotonously.
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The very important conclusion following the comparison of the two graphs in Figure 19
is that the FORM index and relative entropy variations show the same character and extreme
values location. The most important conclusion is that they cross the admissible value at
almost the same time as a fire accident, which means that structural safety analysis results
in both cases in the same evacuation time. Further, it is seen that the FORM analysis results
in a few times higher reliability index at the very beginning of the fire accident. This can be
meant as some overestimation of the realistic reliability, but this difference is meaningless
for structural design. A very interesting result is that the FORM index is more sensitive to
the input uncertainty level, whereas the relative entropy shows almost no such sensitivity.
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The reliability index in the ULS analysis shows less waviness above the reliability limit.
It does not affect the conclusion and structural safety—it concerns computational aspects
rather. A contrast of Figures 19 and 20 results in a conclusion that the ULS is decisive for
the overall safety of this element—it seems that the given beam faster falls into the plastic
regime than approaches the admissible deformations at half of its span. This conclusion
is a little bit out of the probabilistic analysis, nevertheless, the stochastic reliability study
confirms an engineering observation. This notice is supported mainly by the reduced von
Mises stress time fluctuations. Evaluation of the beam safety from the normal longitudinal
stresses may lead to an improper conclusion that the ULS and the SLS exhibit almost the
same failure time.

A more detailed comparison of the classical FORM approach with the proposed new
one based upon the relative entropy has been provided in Table 1 below (βFORM(uz(tf)))
and relative entropy approach (β(uz(tf))). Both reliability indices have been compared with
each other throughout the entire fire accident simulation time for the few different values
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of input coefficient of variation. There is no doubt that both methods return almost the
same values (positive and negative also) for any input statistical scattering. Furthermore, a
failure time defined as the moment of fire duration when the reliability index falls down
below the admissible values suggested in the designing codes (t = 80 s) in both methods is
also almost the same. It seems that the rescaled relative entropy calculated from Equation
(43) enables to predict fire safety with the use of the existing engineering codes.

Table 1. Reliability index for the vertical displacements as a function of fire duration values compari-
son for the FORM theory and the relative entropy approach.

βFORM(uz(tf)) β(uz(tf))

tf [sec.] α(tf) α(tf)

0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25

0 1378.65 1379.21 1367.60 1369.04 1371.28 1378.93 1378.87 1378.81 1378.75 1378.65

60 312.18 508.92 397.98 359.21 340.79 312.26 312.29 312.34 312.32 312.18

120 −97.00 130.42 10.54 −34.75 −57.39 −96.87 −96.84 −96.81 −96.85 −97.00

180 −153.26 23.50 −63.06 −98.32 −116.80 −152.95 −152.98 −153.04 −153.12 −153.26

240 −65.15 36.38 −6.63 −26.80 −38.25 −64.67 −64.79 −64.91 −65.03 −65.15

300 38.66 74.53 66.69 59.70 54.77 39.26 39.07 38.90 38.76 38.66

360 93.80 89.41 100.40 101.46 100.87 94.41 94.19 94.00 93.87 93.80

420 84.44 67.40 80.84 84.37 85.56 84.97 84.74 84.58 84.48 84.44

480 27.98 18.82 23.52 25.38 26.31 28.35 28.16 28.05 28.00 27.98

540 −40.04 −32.90 −40.25 −41.77 −42.08 −39.87 −40.00 −40.05 −40.04 −40.04

600 −80.72 −61.70 −76.53 −80.50 −81.90 −80.75 −80.81 −80.80 −80.75 −80.72

660 −66.04 −49.14 −61.33 −64.89 −66.32 −66.24 −66.24 −66.19 −66.10 −66.04

720 7.35 5.74 7.06 7.25 7.16 7.06 7.09 7.15 7.26 7.35

780 104.99 77.01 96.39 101.92 103.94 104.74 104.71 104.78 104.88 104.99

840 142.07 102.81 129.23 137.05 140.10 142.02 141.82 141.89 141.98 142.07

900 −28.24 −23.07 −27.43 −28.62 −29.03 −27.94 −28.46 −28.37 −28.29 −28.24

The data presented in both Table 1, and also in Figures 19 and 20 demonstrate that steel
beams without any fire protection are extremely sensitive to fire temperatures. A sensitivity
of its deformation is of course a few times higher than of the ULS limit function, which is
confirmed by the negative reliability indices detected in case of the SLS. It is important that
both reliability approaches return the same qualitative results.

Finally, it should be noticed that quite a satisfactory accuracy of both probabilistic
simulations and reliability analysis shows that the methodology presented could be applied
to other types of steel structures and further applications towards aluminum alloys may be
taken into account. Undoubtedly, this approach would be closer to industrial applications
when the phase change (from solid to liquid) could be accounted for; this needs brand new
implementations in the system ABAQUS. It should be mentioned that the civil engineering
designing codes still do not include any statements enabling efficient engineering reliability
concerning fire safety (neither for steel nor for concrete or traditional structures). On the
other hand, closer interoperability of the FEM system ABAQUS, with the computer algebra
packages such as MAPLE should be also achieved.
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5. Conclusions

(1) The major original contribution of this study is a development of new reliability
assessment procedure for steel structures subjected to fire conditions. It has been
completed with the use of the relative probabilistic entropy model developed by
Bhattacharyya and contrasted after some numerical rescaling with the FORM index
inherent in the current designing civil engineering codes. The key research finding
in this work is that the Bhattacharyya relative entropy sensitivity with respect to the
given fire temperature curve (and the additional duration time) is the same as in the
case of the FORM reliability index. The innovative scaling procedure enables to use
the new mathematical theory to verify the structural safety according to the existing
procedures and recommended values of the reliability indices. This is exactly the same
scaling as in the case of linear elastic models of steel trusses and spatial structures
of the halls [14,20], which means that this procedure may have general character.
It should be mentioned that such a new verification procedure may be relatively
easily implemented in any hybrid computational FEM and computer algebra system
numerical environment.

(2) A triple probabilistic approach based on the Monte-Carlo simulation, generalized
iterative stochastic perturbation technique, and also the semi-analytical approach
programmed in conjunction with the polynomial bases of the fire temperature returns
very consistent and stable numerical results of expected values, coefficients of varia-
tions, as well as skewness and kurtosis—all as the functions of the fire exposure time.
Application of such a technique enabled to discover that extreme deformations of the
given system have a probability distribution very similar to the Gaussian one, and
hence, determination of their probabilistic divergence could proceed with the use of
the analytical formula. Probabilistic divergence of the admissible and extreme stresses
needs to be proceeded by semi-analytical integration of the general formula. Despite
the rather simple character of the structural beam investigated in this work, such a
coincidence of three different probabilistic techniques is expected for other structures
and their fire scenarios, which deserves further numerical simulations.
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