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Abstract: Driven by the excessive consumption of fossil resources and environmental pollution
concerns, a large amount of biorefinery research efforts have been made for converting lignocellulosic
biomass into fuels and chemicals. Recently, a strategy termed “lignin-first,” which allows for realizing
high-yield and high-selectivity aromatic monomers, is regarded as one of the best prospective strate-
gies. This review summarizes recent research advances in lignin-first biorefinery, starting from the
raw lignocellulose through lignin-first processing and moving to downstream processing pathways
for intermediate compounds. In particular, for the core purpose of producing liquid fuels, the corre-
sponding downstream processing strategies are discussed in detail. These are based on the structural
properties of the intermediates derived from lignin-first biorefinery, including the catalytic conversion
of lignin and its derivatives (aqueous phase system and pyrolysis system) and the cascade utilization
of carbohydrate residues (fermentation, pyrolysis, and hydrothermal liquefaction). We conclude with
current problems and potential solutions, as well as future perspectives on lignin-first biorefinery,
which may provide the basis and reference for the efficient utilization of lignocellulosic biomass.

Keywords: lignocellulosic biomass; lignin-first biorefinery; lignin and its derivatives; carbohydrate;
fuels and chemicals

1. Introduction

Given the limited fossil-energy reserve on the planet and concerns over anthropogenic
climate change, seeking alternative renewable resources has become widely recognized [1].
Lignocellulosic biomass is a renewable and non-food organic material that is considered
to be a good alternative carbon source [2]. Lignocellulosic biomass is composed of three
constitutive components: cellulose, hemicellulose, and lignin [3,4], which harbors great
potential for the sustainable production of fuels and chemicals [5]. However, unlocking
this potential requires innovative biorefining methods that can overcome the complexity of
the wood fiber structure and allow the three main components to take full advantage of
their value [6].

Conventional biorefineries have been geared towards optimal carbohydrate valoriza-
tion. Due to the harsh reaction conditions, native lignin is prone to undergoing condensa-
tion reactions to form the industry lignin that is chemically stubborn and inappropriate for
further conversion in downstream processes [7,8]. This lignin is always treated as waste
and then just burned for heat [9]. As lignin has a natural aromatic ring structure, it is
increasingly being recognized that it is foolish to ignore its potential value [10,11]. With
the worldwide emphasis on sustainable development and the rise of the biomass chemical
industry, making full use of lignocellulose—especially the efficient catalytic conversion of
lignin—has attracted the extensive attention of scientists [12]. Researchers are pursuing
more comprehensive strategies for biomass utilization, and much of the motivation is
driven by techno-economic analyses and life cycle assessments, which indicate that lignin
valorization is able to improve the economic benefits and environmental benefits of overall
biorefinery [13,14].
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A new strategy has emerged in recent decades named “lignin-first,” in which the
subsequent availability of the lignin fraction, together with the carbohydrate preservation,
is considered upfront when dealing with biomass raw materials [15]. Abu-Omar and
colleagues define “lignin-first” as an active stabilization approach that liberates lignin from
the natural lignocellulose biomass and prevents condensation reactions through either
catalysis or protection-group chemistry [16]. The lignin-first strategy is considered to be
one of the most well-studied prospective strategies, which allows for the realization of a
high selectivity and high yield of phenolic monomers [17].

So far, several methods have been reported. The corresponding chemical-reactions
mechanism is illustrated in Figure 1. The most common method comprises solvent-based
lignin extraction from lignocellulosic biomass feedstock in the presence of a metal catalyst
under a reductive atmosphere. The most typical metal catalysts contain Pt, Pd, Rh, Ru, and
Ni on activated C or Al2O3 supports [18,19]. This method is termed “reductive catalytic
fractionation,” and is less time-consuming and has a high lignin conversion rate. Lignin
derivatives obtained through catalytic depolymerization are present in the liquid phase,
thus facilitating direct hydrodeoxygenation for the production of value-added hydrocarbon
fuels and chemicals [20]. This approach mitigates the issue of lignin degradation, which is
frequently encountered during traditional lignin-isolation techniques [21]. Moreover, the
other active stabilization methods during biomass fractionation comprise the appropriate
use of protection-group chemistry. Alcohols have been used in lignocellulosic biomass
fractionation for nearly a century. However, it is only in recent years that certain advantages
of their use in the lignin extraction process have become clear. During lignin extraction,
benzylic carbocation ion intermediates can be intercepted by an alcohol that acts as an
external nucleophilic reagent to produce ethers [22]. Additionally, reactive intermediates
may be protected as acetals by using small molecules such as aldehydes and ethylene
glycol. Thus, chemically stabilized lignin is extracted and enables further depolymerization
and transformation [23,24]. This method physically separates the biomass-fractionation
and lignin-depolymerization operations and is therefore more flexible and has better
controllability. Nevertheless, the addition of small-molecule protection reagents may
lead to adverse environmental impacts, which consequently need to be considered in a
comprehensive manner.

In recent years, with the establishment and improvement of lignin-first biorefinery,
the research hotspots in this direction will gradually shift towards downstream processing
strategies which efficiently integrate the utilization of lignin-degradation products and
carbohydrate residues. Novel catalytic methodologies have been pursed for a long time to
achieve better valorization of lignin and its derivatives for the production of hydrocarbon
fuels and chemicals [25–27]. In addition, cascade processes have been carried out for the
valorization of carbohydrate residues. Notable examples include the direct conversion
of carbohydrates to mixed alcohols, followed by upgrading to fuel-range alkanes [28];
treatment with FeCl3 to obtain furfural, 5-hydroxymethylfurfural, and levulinic acid si-
multaneously [29]; and saccharification and fermentation to produce bio-ethanol [30]. The
efficient separation of the delignified pulp and the solid catalyst mixture has been consid-
ered to be a critical challenge. Therefore, a rational design of multifunctional catalysts for
the direct catalytic upgrading of solid-residue mixtures (carbohydrate and catalyst) is a
potentially viable solution.
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Figure 1. The chemical-reaction mechanism of lignin-first biorefinery using solvolysis and the
catalytic stabilization of reactive intermediates to stable products or protection-group chemistry and
subsequent upgrading.

As is shown in Table 1, several notable reviews have summarized the recent advances
in lignin-first biorefinery. However, most of these reviews focused on the lignin fractions
unilaterally, and the fate of the carbohydrates has rarely been considered to date. Thus, this
review provides a detailed overview of recent research advances in lignin-first biorefinery,
highlighting the effects of catalyst, solvent, and reactor configurations and functional group
protection reagents on lignin monomer and carbohydrate yields. Subsequently, we classify
intermediate products in detail and summarize high-value utilization strategies for all
lignocellulose components, respectively, including the catalytic conversion pathways of
lignin fractions in the aqueous phase and pyrolysis systems, as well as the applications
of different technology pathways in the conversion of carbohydrate residues such as
fermentation, pyrolysis, and hydrothermal liquefaction.
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Table 1. Summary of notable works previously published that are relevant to lignin-first biorefinery.

Year Key Focus Reference

2017 Fractionation methods that implement active stabilization
mechanisms; techno-economic considerations. [17]

2019
Elementary reductive catalytic fractionation steps; recent
innovations such as flow-through operation and synergy

with feedstock engineering.
[31]

2020 The kinetics of lignin and polysaccharide depolymerization;
the strategies for chemical functionalization. [32]

2020

Chronological overview of the development of the
“lignin-first” approach with the inclusion of reductive

catalytic depolymerization of all lignocellulosic
components.

[15]

2020
Downstream processing strategies of lignin monomers;

methods of separation of aromatic monomers from
lignin-first biorefinery.

[33]

2020

The fundamental catalytic reactions relevant to lignin-first
biorefinery approach; the further transformations of

lignin-derived monolignols and phenolics into value-added
products.

[34]

2021

A set of guidelines for analyzing critical data from
lignin-first approaches, including feedstock preparation and

characterization, reactor design, catalyst efficiency, mass
balances, and product yields.

[16]

Newest

The effects of catalyst, solvent, reactor configurations and
functional group protection reagents on intermediate

products; downstream processing strategies for lignin as
well as carbohydrate fractions.

-

In order to improve the overall efficiency of the resource use of biomass, novel routes
for all components derived from lignocellulosic-biomass hierarchical utilization are pro-
posed based on lignin-first strategies (Figure 2), which provide new ideas for the efficient
conversion of lignocellulosic biomass into fuels and chemicals. Furthermore, we discuss
associated technical challenges and future directions of lignin-first biorefinery.
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2. Overview of Lignin-First Biorefinery

Conventional lignocellulosic-biomass-utilization strategies have difficulty in avoiding
the undesirable condensation of reactive intermediates during biomass deconstruction,
which poses fundamental challenges for commercial applications. Lignin-first biorefinery
inhibits the condensation of reactive intermediates either by selectively catalyzing the
conversion of these intermediates to stable derivatives or by avoiding their formation
by functionalizing natural structures or intermediates [32]. This strategy has attracted
wide attention from researchers since it was proposed. In the past few years, the global
biomass-conversion community has continuously published new studies in this area. This
section introduces the research progress made by domestic and foreign research groups in
this sphere in detail, and also analyzes the existing problems and solutions for this strategy.

2.1. Reductive Catalytic Fractionation (RCF)

One of the most effective strategies is the direct hydrogenolysis of native lignin in
lignocellulosic biomass; that is, a stable, low-Mw lignin oil (phenolic monomers, dimers,
and small oligomers) can be obtained through tandem lignin depolymerization and stabi-
lization [17]. This methodology is now termed reductive catalytic fractionation (RCF) [35],
also known as catalytic upstream biorefining (CUB) or early-stage catalytic conversion of
lignin (ECCL) via H-transfer reactions for the process using 2-PrOH as an H-donor [36,37].
We have introduced the recent progress on RCF and discussed the influences of catalysts,
solvents, and reactor configurations in terms of yield of phenolic monomers, degree of
delignification, and retention of carbohydrate pulps. In Table 2, selected reaction systems
that achieve high-monomer yields are generalized.

Table 2. Reductive catalytic fractionation of biomass feedstock.

Feedstock Catalyst Solvent Monomer Yield Sugar Retention Year Ref

Miscanthus Ni/C Methanol 68 wt% 86 wt% 2016 [38]

Corn
Stover Ni/C Methanol 24.5 wt% 76 wt% 2016 [39]

Flax Shive Ru/C Ethanol 9.5 wt% Glucan 67.2 wt% 2020 [40]

Spruce Ru/C Ethanol 30 wt% Glucan 84.4 wt% 2022 [41]

Bamboo Pd/C Methanol 32.2 wt% Glucan 73.4 wt%
Xylan 57.4 wt% 2019 [42]

Eucalyptus Pd/C Methanol 49.8 wt% Glucan 82.5 wt%
Xylan 67.8 wt% 2020 [29]

Poplar Pd/C Methanol/
H2O (7:3) 43.5 wt% 66.7 wt% 2016 [43]

Zn/Pd/C Methanol 54 wt% 79 wt% 2015 [44]

Birch

Ru/C Methanol 51.5% (C-Yield) 81% (C-Yield) 2015 [35]
Pd/C Methanol 49.3% (C-Yield) 89% (C-Yield) 2015 [45]
Pd/C Water 43.8 wt% 55 wt% 2016 [46]

Pd/C Ethanol/
H2O (1:1) 36% (C-Yield) 84.4 wt% 2016 [47]

Ni/Al2O3
a Methanol 36 wt% 84.9 wt% 2017 [30]

Pd/C+H3PO4
b

Methanol/
H2O (7:3) 37 wt% 56 wt% 2017 [48]

a Ni/Al2O3 pellets in catalyst cage. b Reaction operated in a flow-through reactor.

2.1.1. Role of the Catalyst Used

A general understanding of the RCF processes has been established through mechanis-
tic studies, which can be summarized in three basic steps: lignin extraction, which entirely
depends on the solvent; solvolytic depolymerization and catalytic hydrogenolysis; and
stabilization, which is controlled by a heterogeneous, redox-active catalyst [31]. Since the
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hydrogenolysis of C–O bonds is metal-dependent, the type and yield of products can be
controlled by selecting an appropriate metal [18]. Heterogeneous metals have been shown
to catalyze lignin depolymerization efficiently, including Pt, Pd, Rh, and Ru, as well as Ni,
which is abundant on Earth [19,38,45,49].

Sels and colleagues presented the RCF of birch with a Ru/C catalyst, in which the
lignin fraction was degraded to a propyl-substituted phenol compound with a monomer
yield of 52%. Cellulose retention reached 95%, while hemicellulose retention was only
47% among the carbohydrates, which were converted into C2–C6 sugar polyol products
in the subsequent hydrolysis reaction [35]. Furthermore, Pd/C and Ru/C catalysts were
compared under identical conditions. As expected, the lignin product yields were similar
for the two catalysts. However, the chemical structures of the products were quite different,
and the Pd/C catalyst had a higher selectivity for lignin monomers rich in hydroxyl groups
and a higher retention of carbohydrate residues [45].

Luo et al. have shown that Pd/Zn synergistic catalysis is relevant to lignin conversion
in terms of the cleavage of β-O-4 linkages and the follow-up hydrodeoxygenation [50].
Furthermore, when different types of biomass feedstocks were treated with Zn/Pd/C, the
native lignin was converted into two main products: dihydroeugenol and 2,6-dimethoxy-
4-propylphenol, with lignin monomer yields ranging from 40% to 54% [44]. Further
mechanistic studies revealed a synergistic effect between Pd/C and ZnII; it was proposed
that the addition of ZnII can activate and promote the removal of Cγ-OH from the β-O-4
bond [51].

From the perspective of industrial applications, the development of low-cost and
highly available catalysts is imperative. Song et al. presented a selective hydrogenolysis of
natural lignin fractions from birch wood to dihydroeugenol, 2,6-dimethoxy-4-propylphenol,
and a small amount of propenyl-substituted phenols using a Ni/C catalyst [52]. Interest-
ingly, the Fe-doped bimetallic catalyst showed stronger hydroxyl removal when compared
to the Ni/C catalyst, and the monomer product distribution changed from PG-OH and
PS-OH to PG and PS [53]. Li et al. developed a new Ni-W2C/AC bimetallic catalyst and
found that there was a synergistic effect between the Ni and W2C, which could significantly
promote the formation of lignin-derived monomers. Carbohydrates were further converted
into ethylene glycol and other diol products. This catalyst can be widely used in birch,
poplar, pine, beech, and other raw materials [54].

2.1.2. Influence of Solvents

In the process of the direct catalytic treatment of lignocellulosic biomass, solvent
decomposition can cut the lignin–carbohydrate complex (LCC) between lignin and hemi-
cellulose, realizing lignin stripping from the biomass substrates. Subsequently, the β-O-4
linkage bond in the lignin structure is broken under solvent decomposition. Soluble
lignin fragments are then generated, which make further contact with the catalyst surface
and complete the subsequent activation of the β-O-4 linkage bond into a single-molecule
compound. Solvents play an important role in the delignification of biomass and lignin
depolymerization, affecting the yield of aromatic monomers as well as the retention of
carbohydrate pulps [55,56].

Sels et al. investigated the effects of different solvents on the RCF of birch wood. It was
found that the higher the polarity of the solvent, the higher the degree of delignification.
This was because highly polar solvents can better complete the dissolution of the wood
fiber structure and make the solvents more accessible to lignin; among them, methanol and
ethylene glycol showed the highest efficiencies for delignification. From the distribution
of lignin degradation products in a Pd/C catalytic system, with the increase of solvent
polarity, the monomers and dimers of degradation products increased, while the oligomer
products significantly decreased, indicating that highly polar solvents can also accelerate
the degradation of the lignin oligomer into monomers and dimers [46]. A techno–economic
analysis of the RCF process using different solvents was carried out by Beckham et al.,
who replaced the solvent in the methanol-case with ethylene glycol. Due to the lower
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vapor pressure of ethylene glycol, the overall reactor pressure was reduced substantially.
Generally, lower pressure during RCF results in lower capital costs. On the other hand,
ethylene glycol has a higher cost and higher energy consumption for solvent recovery than
methanol. Overall, on the basis of supporting the sale of bioethanol at USD 2.50 per gallon
of gasoline equivalent, the methanol case has a higher MSP–monomer fraction at USD 3.63
per kg, while the ethylene glycol case has a lower MSP–monomer fraction at USD 3.07 per
kg [14].

Sels and colleagues further investigated the effects of different alcohol/water-mixing
solvent systems on the RCF, and their results showed that the addition of moderate amounts
of water significantly enhanced the extraction efficiency of lignin. However, too much
water resulted in a lower degree of delignification [43]. Chen et al. also confirmed the
positive effect of adding water on the yield of lignin monomers [57]. It should be noted that,
if pure water is used as the medium while the lignin fraction is efficiently separated and
degraded, the carbohydrate fraction also undergoes hydrolysis reactions and almost all of
the hemicellulose and about 20% of the cellulose are removed [46]. Similar solvent-polarity
effects can also be observed in other catalytic systems. When water replaced methanol
as the solvent in the case of the Ru/C system, not only did the yield of phenol monomer
decrease from 52% to 25%, but the carbohydrate fraction was also degraded into soluble
polyols [35]. A plausible explanation for this is the autoionization of water into H+ acid ions
under high temperature conditions, which can catalyze the hydrolysis of carbohydrate [58].
In addition, the redeposition of dissolved lignin on the surface of lignocellulosic fibers
should be considered when water is used as the solvent [59]. Above all, a pure water
system may not be suitable for the current direct catalytic reduction process of biomass
feedstocks.

2.1.3. Flow-Through Reactors

The new strategy of reductive catalytic fractionation has been proposed to depolymer-
ize and stabilize lignin by mixing metal catalysts and biomass; however, this usually results
in the catalyst not being recovered. Thus, flow-through systems for lignin-first biorefinery
were developed (Figure 3). In 2017, two research teams introduced flow-through reactors
for the RCF process, in which the biomass and catalyst were separated by filling into
two different beds. The solvent was passed through the heated biomass bed to extract
and partially depolymerize the lignin polymer. Then a liquid mixture of dissolved lignin
fragments flowed through the catalyst bed for further depolymerization and stabilization
of active intermediates [48,60].
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However, flow-through systems also have certain limitations. For example, they
require harsh reaction conditions in order to realize efficient delignification and stabilization,
which significantly increases reactor costs [14]. Generally, the solvent consumption is high,
because this design may increase the time taken by solvent-extracted lignin fragments to
reach the catalyst bed, and partial lignin may undergo an irreversible condensation reaction,
resulting in a decrease in the final phenolic-monomer yield and selectivity. Therefore,
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kinetic issues such as adequate mass transfer between active lignin fragments and the
catalyst need to be considered [48,60–62].

Beckham and colleagues demonstrated that the lignin oil obtained from the flow-
through system could be stored for a long time without compromising subsequent hy-
drogenolysis activity, but the unusually high ratio of solvent to biomass made it difficult to
implement on an industrial scale [63]. In 2021, the team found that solvent usage exhibits a
significant effect on the GWP; with the methanol solvent loading reducing from a 9 L/dry
kg biomass to a 4 L/dry kg biomass, the GWP reduces from 0.079 kg CO2-eq/kg to a
−1.078 kg CO2-eq/kg lignin fraction [14]. On this basis, a multiple flow-reduction catalytic
fractionation strategy has been proposed, which successfully reduced the solvent–biomass
ratio to 1.9 L/kg with no significant decline of lignin oil quality found in the case of catalyst
overload. This strategy greatly reduces the energy demand and operation cost of solvent
recovery, which has a good development prospect [64].

2.2. Stabilization Strategies

Given that the effective extraction of lignin with a high purity and less-condensed
structure from lignocellulosic biomass is crucial for lignin valorization, various biomass-
fractionation technologies have been developed [65]. Extraction with supercritical fluid
using CO2 in a supercritical condition is generally applied, which can enhance the acces-
sibility of biomass and reduce the pretreatment temperature [66]. Moreover, organosolv
pretreatment is considered one of the most promising methods for biomass fractionation.
The organic media can realize a higher lignin extraction efficiency thanks to its higher lignin
solubility when compared to water [67]. In Table 3, selected extraction systems which
achieve high-lignin isolated yields are generalized.

Table 3. Solvent- or co-solvent-assisted lignin extraction from biomass feedstock.

Feedstock Conditions Organic Media Isolated Lignin a Year Ref

Hemp Hurds 165 ◦C
20 min

Methanol
H2SO4 aqueous

solution
75 wt% 2014 [68]

Switchgrass 180 ◦C
60 min

Ethanol
H2SO4 aqueous

solution
60.5 wt% 2012 [69]

Poplar 160 ◦C
30 min

Methanol
H2SO4 aqueous

solution
Formaldehyde

64 wt% 2018 [70]

Walnut

170 ◦C
30 min

Methanol
H2SO4 aqueous

solution
Formaldehyde

50 wt% 2021 [71]

120 ◦C
150 min

1-butanol
H2SO4 aqueous

solution
85 wt% 2021 [72]

Birch

85 ◦C
180 min

Formaldehyde
1,4-dioxane

Hydrochloric acid
116 wt% 2019 [73]

95 ◦C
210 min

Propionaldehyde
1,4-dioxane

Hydrochloric acid
89 wt% 2019 [73]

a Lignin isolated yields are calculated based on the theoretical amount of lignin in feedstock.

The theoretical maximum yield of lignin depolymerization to monomers is approxi-
mately the square of the cleavable interunit ether bond (β-O-4) content [6]. Therefore, the
retention of the reactive β-O-4 bond is one of the means to realize lignin valorization [21].
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Alcohols can act as external nucleophiles to capture benzyl carbocation intermediates and
form ether at the α-position of the β-O-4 bond, which further inhibits the condensation
reaction [22,32]. Lancefield et al. found that most of the β-O-4 bonds were retained in
bioethanol- and biobutanol-extracted lignin [74]. Zhu et al. found that higher yields of
monomers were obtained by the depolymerization of benzyl alcohol after microwave-
assisted methylation, which meant that etherification improved the reactivity of the β-O-4
bond [75]. Deuss and colleagues reported the semi-continuous extraction of high β-O-
4 content lignin with butanol in a flow-through system, thereby reducing the difficulty
of further catalytic depolymerization [72]. However, when compared to reductive cat-
alytic fractionation, the alcohol–etherification approach usually produces a lower yield
of phenolic monomers owing to inefficient lignin extraction and incomplete intermediate
capture [32].

In 2015, Barta and colleagues proposed the addition of ethylene glycol as a functional
group protector to produce a stable G/S-C2-glycol acetal (1,3-dioxolane) structure through
its combination with the acidolysis reaction intermediate, thus improving the yield of
aromatic monomers [23,76]. On this basis, De Santi et al. used the green solvent dimethyl
carbonate (DMC) to replace 1, 4-dioxane and toluene; meanwhile, sulfuric acid was used to
replace the expensive iron (III) trifluoromethanesulfonate (Fe(OTf)3). The monomer yield
reached 9 wt% when pine was used as raw material [77].

In 2016, Luterbacher and colleagues reported the addition of formaldehyde to organic
solvent processing to avoid repolymerization during lignin extraction. This method takes
advantage of the functional group protection of formaldehyde: formaldehyde reacts with
α-OH and γ-OH on the side-chain of lignin to form a stable 1, 3-dioxane structure through
acylation, which inhibits the formation of benzyl carbocation. At the same time, the
electron-rich positions on the aromatic ring (usually the positions ortho or para to methoxyl
groups) are easily replaced with protonated-formaldehyde electrophilic aromatics to form
a hydroxyl methyl group, which further blocks the polycondensation reaction site [24].
Recently, the team demonstrated that the extracted lignin was able to achieve steady-state,
continuous depolymerization with a Ni/C catalyst in a flow-through system, in which the
yield of 45% monophenol was achieved and maintained for 125 h [78].

In 2018, Abu-Omar and colleagues used a solvent mixture of methanol and dilute
sulfuric acid with a small amount of formaldehyde to extract lignin. Over 68% of the lignin
in poplar was extracted and depolymerized by the Ni/C catalyst, resulting in three major
phenolic monomers: isoeugenol, 4-propenyl eugenol, and guaiacol, with a total yield of
63% [70]. This extraction method is also applicable to walnut-shell biomass. Compared
to ethanol, methanol—as a stronger nucleophilic reagent—is more effective in protecting
carbocation intermediates [71].

In summary, the method of using alcohols or aldehydes to stabilize lignin inter-
mediates is basically compatible with the established organic solvent pulping method.
Compared to the RCF process, its biggest advantage is that it can separate the biomass
fractionation from the subsequent depolymerization step so that the two steps can be
optimized independently and the depolymerization is more flexible. Therefore, only the
solvent and reaction conditions need to be adjusted [32].

3. Downstream Value-Added Terminal Products

Several reviews have summed up recent research progress on lignin-first strategies.
However, most of them were only concerned with the catalytic system design and reaction
mechanism studies. There was little discussion on the downstream-integrated utiliza-
tion strategies of lignin degradation products and carbohydrate residues from lignin-first
biorefinery [16,18]. In order to improve the overall benefits of lignin-first biorefinery, it is
necessary to develop technological pathways for the comprehensive, efficient use of these
compounds to produce liquid fuels and chemicals, which is crucial for the further develop-
ment of lignin-first biorefinery in the future. Recent research results relevant to biomass
valorization for the production of biofuels and chemicals are summarized in Table 4. The
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main strategies through hydrothermal liquefaction, pyrolysis, and fermentation are exam-
ined and further discussed.

Table 4. Comparison of different technology pathways.

Pathways Description Feedstock Conditions Key Products Ref

Hydrothermal
liquefaction

The reaction of
biomass in

hot-compressed or
sub-/supercritical
water or solvent.

2-methoxy-4-
propylphenol

•Pt/C 400 ◦C
•H-ZSM-5 350 ◦C Phenol~60% [79]

3-(4-
hydroxyphenyl)propanol

RuFe/Nb2O5
250 ◦C Ethylbenzene~78.5% [25]

RCF lignin oil Mo2C
350–375 ◦C

C9-C12~56%
C14-C20~11.9% [80]

Organosolv oak lignin Pd/C
180 ◦C

4-n-propyl syringol
/guaiacol~25% [81]

Birch lignin Ru/Nb2O5
250 ◦C

C7–C9 hydrocarbons~
35.5% [82]

Carbohydrates FeCl3
200 ◦C

Furfural~55%
Levulinic acid~76% [38]

Microcrystalline
cellulose

•Tungstosilicic acid
•Ru/C 210 ◦C C5-C6 alkane~60% [83]

Microalgae 330 ◦C Bio-oil~45.7% [84]

Pyrolysis

The light, small
molecules are

converted to oily
products through

homogeneous
reactions in the gas

phase.

Organosolv poplar
lignin

HZSM-5
600 ◦C

Aromatic hydrocarbons
~3.57% [85]

Enzymatic hydrolysis
lignin

Nb2O5
650 ◦C

Aromatic hydrocarbons
~11.2% [27]

Microcrystalline
cellulose 500 ◦C Hydrocarbons~6.5% [86]

Nannochloropsis sp. HZSM-5
400 ◦C

Aromatic hydrocarbons
~48.60% (32.7 MJ/kg) [87]

Microalgae 600 ◦C Bio-oil~21.9% [84]

Fermentation

The heterogeneous
biochemical

process which is
catalyzed by

enzymes.

RCF pulp

•Accelerase trio
enzyme mixture
•GSE16-T18-HAA1 *
yeast suspension

Ethanol~73% of the
maximum

theoretical yield
[30]

Organosolv beech pulp

•Commercial
enzyme solution
Cellic® CTec2
•Saccharomyces
cerevisiae strain
Ethanol Red®

Ethanol~83% of the
maximum

theoretical yield
[88]

Jute

•Commercial
Cellulase
•Beta-glucosidase
enzymes
•Saccharomyces
cerevisiae JRC6

Ethanol~77.73% [89]

Microalgae
•Endoglucanase
•β-glucosidase
•Amylases

Ethanol~87.6% of the
theoretical yield [90]

* A genetically modified yeast strain, which has been engineered for fermentation of both C6 and C5 sugars into
bio-ethanol in non-detoxified lignocellulose hydrolysates.

3.1. Lignin and Its Derivatives

Lignin-first biorefinery achieves the separation of lignin fractions through the solvent-
depolymerization method. Recently, with the continuous establishment and improvement
of various new catalytic systems, the research hotspots in this area will be gradually shifted
to the downstream conversion process, including the efficient conversion of lignin and
its derivatives. In this section, lignin degradation products are classified into two types
according to their structural characteristics. One type includes fragmented small molecules
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obtained from the RCF process, while the other type is retained as macromolecules with
modified functional groups. Both of these types are good feedstocks for the production
of liquid fuels and valuable chemicals. In the following sections, the specific catalytic
conversion pathways of the above components will be discussed in detail (Figure 4), and
the key breakthrough directions for subsequent research will be foreseen.
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3.1.1. Phenolic Platform Compounds

A typical RCF process extracts lignin from biomass by solvation and simultaneous
catalytic depolymerization, after which an oxygenated, aromatic oil consisting of about
50 wt% phenolic monomer and about 50 wt% C-C-linked dimer and larger oligomers is
obtained [91]. Lignin degradation products can be separated into different components for
further use or can be used whole for added value.

Phenolic monomer platform compounds obtained from lignin-first biorefinery retain
the unique methoxyphenol structural unit of lignin, and these platform compounds can be
obtained by the selective breaking of C-O and C-C bonds to obtain bulk chemicals with
simpler structures, such as phenol and monocyclic aromatic hydrocarbons [12,25,92]. Ver-
boekend et al. pioneered the development of a two-step catalytic conversion system for the
highly selective conversion of alkyl phenolic compounds to phenols and olefins through
a molecular sieve catalyst [93]. Obviously, one-step conversion from a lignin-derived
monomer to phenol is much more efficient and better-suited for industrial production com-
pared to the two-step process. Zhang et al. catalyzed demethoxylation and dealkylation
reactions simultaneously through a physical mixture of Pt/C and HZSM-5 with phenol
yields of up to 60% [79]. Our previous studies have shown that a physical mixture of Nb2O5
and Ru/C can realize the complete deoxygenation of complex phenol-monomer platform
mixtures (dihydroeugenol, isoeugenol, and 4-allyl-2,6-dimethoxyphenol) to propyl cy-
clohexane and propyl benzene [94]. Li et al. combined dehydrodecarbonylation and
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hydrodeoxygenation reactions with a FeOx-modified Ru/Nb2O5 catalyst and selectively
converted 4-n-propanol-based phenolic compounds into ethylbenzene (Figure 5) [25]. Con-
sidering the high cost of precious metals in industrial applications, the study on cheap
transition metals (Cu, Fe, Co, and Ni) has become a hotspot. At present, Cu/γ-Al2O3,
Fe/SiO2, Co1@NC-(SBA), and Ni/SiO2 catalysts have been proven to have positive effects
on the hydrodeoxygenation [95–98].
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The complete deoxygenation of RCF oil will produce a mixture rich in alkylated aro-
matic hydrocarbons, which have great potential to produce bio-jet fuel [99]. Rinaldi and
colleagues presented a new approach using a Ni/Nb2O5 catalyst for the hydrodeoxygena-
tion of RCF oil. Despite obtaining products with O/C and H/C ratios of 0.006 and 1.8,
respectively, recycling tests of the catalyst showed that it was severely deactivated after the
first run. This proves that the condensation reaction of oligomers will also occur in RCF oil
under reducing conditions, and coking will lead to catalyst deactivation [100]. Cao et al.
successfully converted RCF oil from a lignin-first biorefinery process into liquid fuel. Firstly,
the lignin in poplar was degraded preferentially using commercial Raney nickel to obtain
RCF oil, followed by the catalytic upgrading of the lignin to aliphatic or aromatic com-
pounds using phosphorus-modified Ni/SiO2 catalysts. Notably, the selectivity of the final
products to aromatic or aliphatic hydrocarbons can be simply modulated by the hydrogen
pressure and temperature. The lignin degradation products were completely converted
into saturated alkanes at 300 ◦C and 5 MPa H2, while the aromatic, hydrocarbon-dominated
liquid fuels were obtained at 350 ◦C and 0.5 MPa H2. In addition, since the HDO reaction
requires a large amount of hydrogen, it is also proposed to use unconverted cellulose as a
source of hydrogen, making the strategy of producing high-energy-density fuels through
lignin-first degradation process more reasonable [101]. L. Stone et al. successfully achieved
the production of sustainable aviation fuel (SAF)-range aromatics through the hydrodeoxy-
genation of poplar RCF oil in a flow-through reactor with an aromatic selectivity of up to
87.5%, due to the selectivity of the Mo2C catalyst to cleave C-O bonds while maintaining
the integrity of the C-C bond of the lignin substrates [80].
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3.1.2. Chemically Stabilized Lignin

During lignin extraction, benzyl carbocation intermediates can be stabilized by ether-
ification and acetal functionalization, which can inhibit undesirable condensations [32].
Since lignin’s β-ether bonds are partially conserved, chemically stabilized lignin can be
further selectively depolymerized into monomers through chemo-catalytic methods. More
importantly, the resulting monomer yield is much higher than that of conventional in-
dustrial lignin [24]. Obviously, the depolymerization products can be further converted
into hydrocarbons by the hydrodeoxygenation strategies of phenolic platform compounds
described in the upper section. In addition, powerful catalysts should be developed to
produce liquid fuels and chemicals directly from lignin [102], which is mainly focused on
aqueous phase systems and pyrolysis systems in recent studies [103].

There are two main types of lignin-aqueous-reduction conversion processes. One is
based on a two-step reaction (“two-step method”) where depolymerization is performed
and followed by de-functionalization or functional group modification to obtain the target
products [20,104–108]. The other is based on a one-step reaction (“one-pot method”) where
the target products are obtained by direct conversion [109–113]. Regarding the aspect of
product yield, the “two-step method” is expected to achieve 30–50% carbon efficiency;
however, the direct conversion of lignin to fully deoxygenated hydrocarbon products by
the “one-pot method” is generally only a 10–30 wt% yield [53,112,114–116]. The “two-
step method” has better controllability for the distribution of target products and is more
flexible. The “one-pot method” increases the complexity of the entire reaction system. and
the matching of catalyst and intermediate product interactions at different stages needs
to be considered during the conversion process, thus increasing the difficulty of effective
regulation. However, this method can directly obtain the target hydrocarbon mixture in the
same batch of reaction, and the operation process is simpler and more convenient.

In addition, pyrolysis is a simple and rapid pathway to decomposing lignin into
smaller fragments [117–120]. Catalytic fast pyrolysis (CFP) is the most efficient method
to produce low-carbon aromatics and has attracted great interest from scholars [121,122].
Zeolite catalysts are commonly used in the catalytic pyrolysis of lignin, and can produce
hydrocarbons suitable for gasoline blending [123,124]. It is generally believed that this
type of catalyst plays two main roles in lignin pyrolysis. One is that its acidic sites can
promote the depolymerization and deoxygenation of lignin to form the target hydrocarbon
products, and the other is that it has the appropriate pore size to improve the selectivity of
the target products through the shape-selective effect. However, the current problems of
zeolite catalysts are mainly its low yield of liquid products and the rapid carbon deposition
and deactivation of catalysts. The acid-active site can be adjusted by introducing metal
loading or changing the pore structure and distribution, so as to delay the deactivation
of catalyst [119,120,125]. However, zeolite catalysts have poor hydrothermal stability. For
example, the Si-O-Si bond structure of a HY molecular sieve is easily dissolved under
water vapor, leading to the loss of the catalyst [126]. Therefore, the introduction of novel
catalysts that are resistant to carbon deposition and that have hydrothermal stability is of
crucial importance for the lignin catalytic pyrolysis system. In recent years, metal oxide
catalysts have also been used in CFP systems to optimize the pyrolysis product distribution.
Hernando et al. studied the effect of ZrO2 doped with zeolite molecular sieves on the
concentration and distribution of Brønsted and Lewis acids. It was found that the modified
catalyst reduced secondary reactions and promoted the conversion of preliminary pyrolysis
products [127]. Moreover, our previous studies have demonstrated that a Nb2O5 catalyst
was effective in promoting the removal of oxygenated functional groups from lignin and
inhibiting the formation of polycyclic aromatic hydrocarbons [27].
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3.2. Carbohydrate

Although the lignin-first strategy was proposed with the primary goal of realizing
lignin valorization, this pretreatment method will inevitably have irreversible impacts on
the structure and downstream transformation of cellulose and hemicellulose [36]. Currently,
most studies on lignin-first biorefinery still focus on the isolation and conversion of lignin
components, and the fate of carbohydrate derivatives has been rarely explored [16,128].
However, as the lignin-first strategy moves toward industrial applications, the fate of these
secondary products will become increasingly important in order to achieve all components’
hierarchical utilization and improve the overall resource-utilization efficiency of biomass.
In fact, the basic units of carbohydrate residues (cellulose and hemicellulose) are C5 and
C6 sugars, which are relatively simple in structure and can be converted into liquid fuels
and platform chemicals through biochemical, pyrolysis, and hydrothermal liquefaction
processes [44].

3.2.1. Fermentation

Most commonly, carbohydrates can be hydrolyzed and fermented to produce fuel
ethanol, which is a comparatively cleaner fuel with high octane and fuel-extension prop-
erties. Recently, an increasing number of countries are using an ethanol–petrol blend as
transportation fuel to reduce the environmental pollution caused by vehicle emissions [129].

Enzymatic saccharification is a heterogeneous biochemical process in which carbohy-
drate hydrolysis is catalyzed by enzymes [130]. In general, cellulose hydrolysis is governed
by many factors, such as cellulose accessibility, crystallinity index, lignin and hemicellulose
content, and inhibitors. Therefore, the efficiency of enzymatic hydrolysis depends on the
combined action of several related factors [131]. The lignin-first strategy is able to achieve a
high degree of delignification, which greatly increases the accessibility to enzymatic hy-
drolysis and breaks the recalcitrance of biomass [24,132–134]. Generally, the delignification
degree can be effectively improved by appropriately extending the pretreatment time and
increasing the pretreatment temperature. Noteworthy, the higher the cellulose content
in the carbohydrate residue, the more conducive it will be to the subsequent enzymatic
hydrolysis [46,135]. Inevitably, the crystal structure and fiber morphology of the solid
residues after lignin-first pretreatment may also be affected to some extent, and the loose
structure is more conducive to the binding of enzymes to cellulose [135]. There are obvious
differences in the morphology of carbohydrate residues obtained by different pretreatment
methods (Figure 6). The surface of organosolv pulps is fibrous and porous, while the CUB
pulps present a more compact surface [36].

However, the feasibility of implementing this technology pathway varies for differ-
ent lignin-first strategies. Zhang et al. found that the residual catalyst could inhibit the
downstream enzymatic hydrolysis and fermentation of carbohydrates from the reduction
catalytic fractionation process [136]. To solve the problem of difficulty in catalyst recovery,
one option is to use ferromagnetic catalysts, such as Ni/C or RANEY@Ni catalysts, which
can be magnetically separated from the carbohydrate pulp after the reaction and have good
reusability [36,52,137]. Using a sieve for the separation is also a viable means [42,132]. In ad-
dition, a smart reactor design can avoid the above problem by using a microporous catalyst
cage or flow-through reactors. These can achieve physical isolation of biomass feedstock
and catalyst, effectively promoting catalyst recovery and clean pulp production [30,47,60].
Sels and colleagues successfully performed multiple catalyst-recovery experiments and
simultaneous saccharification fermentation of highly delignified pulp (93% glucose and
83% xylose retention) with ethanol yields of up to 73% by using a catalyst cage [30].
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3.2.2. Pyrolysis

Rapid pyrolysis is one of the direct liquefaction technologies of biomass and has been
favored by many researchers due to its advantages of rapid and high-volume processing
of biomass feedstocks with high oil yields [138,139]. However, crude bio-oil has a high
water content, low calorific value, high acidity, and high viscosity, amongst other charac-
teristics, which limits its application in automotive or aerospace power machinery [140].
In order to improve the quality of bio-oil and even to produce liquid hydrocarbons di-
rectly from lignocellulosic biomass, many catalytic-assisted pyrolysis processes have been
investigated [141,142]. Generally speaking, it is easier to convert and utilize the lighter
components of crude bio-oil, which are mainly derived from cellulose and hemicellulose,
while the hydrodeoxygenation of monophenols or phenolic oligomers derived from lignin
fraction is much more difficult [143,144]. The lignin-first strategy puts the conversion
of the lignin fraction upstream when processing biomass feedstock, which provides a
novel solution to the current dilemma of difficult bio-oil refining. Meanwhile, the carbo-
hydrate residues can be further converted to liquid fuels and chemicals through pyrolysis
technology.

Theoretically, the lignin-first biorefinery process mainly converts the lignin fraction
to oil while preserving most of the carbohydrate fraction as a solid. Parsell et al. found
that the rapid pyrolysis behavior of carbohydrate residues after lignin-first pretreatment is
closer to that of pure cellulose, which yields a similar product distribution. This is in sharp
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contrast to the highly complex mixtures obtained after rapid pyrolysis of raw biomass [44].
Indeed, the morphological structure and crystallinity of the carbohydrate residues derived
from lignin-first biorefinery differ from that of the original holocellulose, which may largely
affect their downstream applications. Limited studies have found that the lignin-first
pretreatment may lead to partial breakage of cellulose chains, which can aggravate the
production of pyrolytic char to a certain extent. It is worth noting that the catalyst used in
upstream treatment will affect the pyrolysis behavior of holocellulose. When compared
to Ru/C holocellulose, the char yield from RANEY@Ni holocellulose was higher, which
indicates that the RANEY@Ni catalyst breaks cellulose chains more severely during the
related RCF process [145].

The main chemical reactions involved in the catalytic pyrolysis of cellulose include
deoxygenation, cleavage, aromatization, ketonization, aldol condensation, hydrogenation,
and reforming [146,147]. Currently, catalysts commonly used in cellulose-catalytic pyrolysis
studies include alkali metals, alkaline earth metals, metal oxides, zeolite molecular sieves,
etc. [148,149]. The reaction path can be selectively optimized to improve the quality of
pyrolysis products by adjusting the structural properties of the catalysts and changing the
reaction conditions. In addition, the participation of hydrogen gas has many advantages
when compared to the inert atmosphere. On one hand, reducing hydrogen gas generates
hydrogen radicals, which react with volatile fractions released from biomass. In the
presence of a catalyst, the reaction is more likely to remove oxygen in the form of H2O,
CO, and CO2 in order to produce hydrocarbons. On the other hand, the hydrogen radicals
generated in the reaction can stabilize the active intermediates and avoid the polymerization
reaction, thus alleviating the coking deactivation of the catalyst [150]. Li et al. investigated
the reaction mechanism during hydropyrolysis of cellulose (Figure 7), and the introduction
of hydrogen gas promoted the degree of thermal decomposition of cellulose and increased
the H/C ratio of the liquid products at 3 MPa of H2 from 1.4 to 1.9 [86]. Due to the
complexity of hemicellulose and its cross-linking with other biomass components, it is
extremely challenging to obtain natural hemicellulose from biomass. This has led to most of
the relevant pyrolysis studies revolving around model compounds [151,152]. Hemicellulose
is another abundant polysaccharide in biomass, which can be expected to have a similar
pyrolytic reaction mechanism to cellulose [153]. However, the pyrolysis temperature of
hemicellulose is usually lower than that of cellulose [154]. Under the same conditions,
the yield of aromatic hydrocarbons obtained from hemicellulose by the catalytic pyrolysis
over HZSM-5 is lower than that of cellulose, and the relatively high temperature is more
conducive to the formation of aromatic hydrocarbons [155].

3.2.3. Hydrothermal Liquefaction

Hydrothermal liquefaction is another direct-liquefaction technology of biomass, which
generally refers to the reaction of biomass in hot-compressed or sub-/supercritical water or
solvent to obtain bio-crude oil. Generally, the reaction temperature of hydrothermal lique-
faction is in the range of 250–450 ◦C and the pressure is between 5–20 MPa. The biomass
feedstock does not require baking and can be directly used in the reaction [156]. When
compared to the pyrolysis, the low operating temperature, high efficiency, and low tar
yield of hydrothermal liquefaction has prompted researchers to focus on its process [157].
The product distribution obtained from biomass liquefaction mainly depends on the lignin
content in the biomass feedstock. Generally speaking, the higher the lignin content in the
raw material, the lower the conversion rate and oil yield will be. This is due to the fact
that a higher lignin content is prone to more severe condensation and repolymerization
reactions [158]. However, the lignin-first strategy can effectively avoid the problem of un-
desirable condensation between components that exist in a one-pot conversion of biomass
through cascade utilization. As a result, the difficulty of reaction regulation is greatly
reduced. While a high yield of lignin monomer is achieved, the carbohydrate residues are
also easier to convert into platform chemicals and liquid fuels by liquid phase catalysis.
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During the lignin-first pretreatment process, carbohydrates are retained as solid
residues after the removal of the lignin fraction, which can be subsequently converted
into platform chemicals (hydroxymethyl furfural, levulinic acid, formic acid, etc.) using
earth-abundant Lewis acid catalysts such as FeCl3. In this process, the whole components
of biomass are effectively utilized, and 55% of the total available biomass is converted into
high-value-added products [38]. Catalyst recovery is a challenge in the RCF process of
lignocellulosic biomass. Based on this, Guo et al. designed an acid-free reaction system
consisting of THF and concentrated seawater, in which solid residues rich in (hemi)cellulose
can be converted into 5-hydroxymethylfurfural and furfural. Moreover, the effective separa-
tion of the Pd/C catalyst can be achieved easily [159]. Sun et al. designed a catalytic strategy
in which lignocellulose biomass was fully converted. At the core of the strategy was the
flexible use of the copper-doped, porous, non-noble metal-oxide catalyst (Cu20-PMO) in
two distinct steps. First, the lignin fraction was decomposed into monomeric platform
compounds (mainly aromatic alcohols) in a mild methanol system while the cellulose and
hemicellulose components existed in the form of solid residues. Next, the unreacted ligno-
cellulose residues could be easily separated from the liquid phase and directly converted
to aliphatic alcohol platform compounds in the supercritical methanol system. Thereby,
the catalyst could be readily recycled. The complex mixtures of aliphatic alcohols could be
further converted to liquid fuels via fatty-chain elongation and hydrodeoxygenation [28].

The direct catalytic conversion of carbohydrates to aviation fuels is a huge challenge.
Once directly hydrodeoxygenated, they can only produce short-chain alkanes [83,160]. New
C-C bonds must be established between the depolymerization intermediates to produce
aviation fuels with suitable carbon numbers. Existing studies on the topic are usually
focused on converting sugars into platform chemicals with active functional groups, such
as 5-hydroxymethylfurfural (5-HMF), furfural (HMF), angelica lactone (AL), levulinic
acid (LA), and γ-valerolactone (GVL), etc. [161–163]. Various platform chemicals undergo
carbon chain growth through aldol-condensation, hydroxyalkylation/alkylation (HAA),
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pinacolic coupling, oligomerization reaction, self-coupling reaction, etc., and are finally
converted into aviation liquid fuels along with hydrodeoxygenation (HDO), ring opening,
and a series of other reactions (Figure 8) [162,164,165].
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4. Summary and Prospect

In this mini-review, a comprehensive overview of lignin-first strategies that are capable
of breaking native lignin into high-yield phenolic monomers is first presented. The core of
this strategy is to inhibit the irreversible polycondensation reaction of lignin components
so as to obtain more value from lignin. Currently, most research is focused on stabilization
chemistry, catalyst-materials development, or the catalytic process, and the fate of carbohy-
drates has been little explored to date. However, before industrialization, it is necessary
to establish complete, hierarchical utilization routes for all components of biomass. As
was described in detail in Section 3, this review discusses the downstream conversion
pathways of both lignin degradation products and carbohydrate residues to produce fuels
and chemicals.

In recent years, although multiple achievements have been realized in lignin-first
biorefinery, from the point of scaled applications there are still many challenges. Subse-
quent research needs to make breakthroughs in the following directions: (i) Aspplicability
of biomass feedstock. To solve this problem, more widely applicable reaction systems
need to be developed; (ii) In the selection of solvents, the yield of lignin monomers and
carbohydrates should be considered comprehensively, and the cost of solvent recovery
should also be measured; (iii) Catalyst cost and reusability. On one hand, it is necessary
to develop new reaction systems based on non-precious metals or trace precious metals
to replace the current noble-metal heterogeneous catalysts. On the other hand, effective
removal of catalysts from pulp to improve catalyst recyclability is essential to move towards
a true upgrade effort. In addition, it is important to develop carriers with high thermal
and oxidative stability, such as SiC, which can be regenerated simply by calcination [99],
and (iv) The design of the lignin-first strategy should be considered from a more macro
perspective, through a life-cycle assessment (LCA), and a techno–economic analysis (TEA)
of the overall utilization process ought to be carried out.

Lignin has presented a significant challenge for both academia and industry due to
its stubborn and complex structure. A series of innovative achievements in the lignin-first
sphere have made access to liquid fuels and value-added chemicals from lignin easier. In
fact, our team has been working on building new systems to convert lignin into hydrocarbon
fuels. Moreover, future research focus will gradually shift to seeking creative methods for all
lignocellulosic components, as well as a diversification of product portfolio. With increasing
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national requirements for energy conservation and emission reduction, it is imperative to
improve the sustainability of the process. More importantly, industrial implementation
of the lignin-first strategy needs to be economically viable to compete with conventional
refineries. Therefore, optimizing the overall process to produce fuels and chemicals in a
more economical and environmentally friendly way will undoubtedly become a future
research hotspot in this sphere. Through close multidisciplinary cooperation and the efforts
of both academia and industry, the successful development of a lignin-first biorefinery
will provide exciting prospects for the new directions of biomass liquefaction, which will
produce fuels and valuable chemicals in a more sustainable way.
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