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Abstract: Solar photovoltaic (PV) electricity generation is growing rapidly in China. Accurate
estimation of solar energy resource potential (Rs) is crucial for siting, designing, evaluating and
optimizing PV systems. Seven types of tree-based ensemble models, including classification and
regression trees (CART), extremely randomized trees (ET), random forest (RF), gradient boosting
decision tree (GBDT), extreme gradient boosting (XGBoost), gradient boosting with categorical
features support (CatBoost) and light gradient boosting method (LightGBM), as well as the multi-
layer perceotron (MLP) and support vector machine (SVM), were applied to estimate Rs using a k-fold
cross-validation method. The three newly developed models (CatBoost, LighGBM, XGBoost) and
GBDT model generally outperformed the other five models with satisfactory accuracy (R2 ranging
from 0.893–0.916, RMSE ranging from 1.943–2.195 MJm−2d−1, and MAE ranging from 1.457–1.646
MJm−2d−1 on average) and provided acceptable model stability (increasing the percentage in testing
RMSE over training RMSE from 8.3% to 31.9%) under seven input combinations. In addition, the
CatBoost (12.3 s), LightGBM (13.9 s), XGBoost (20.5 s) and GBDT (16.8 s) exhibited satisfactory
computational efficiency compared with the MLP (132.1 s) and SVM (256.8 s). Comprehensively
considering the model accuracy, stability and computational time, the newly developed tree-based
models (CatBoost, LighGBM, XGBoost) and commonly used GBDT model were recommended for
modeling Rs in contrasting climates of China and possibly similar climatic zones elsewhere around
the world. This study evaluated three newly developed tree-based ensemble models of estimating
Rs in various climates of China, from model accuracy, model stability and computational efficiency,
which provides a new look at indicators of evaluating machine learning methods.

Keywords: solar energy resource potential; tree-based ensemble models; prediction accuracy; model
stability; computational efficiency

1. Introduction

Achieving a clear and accurate understanding of global solar radiation/solar energy
resource potential (Rs) is critical to the assessment and design of solar energy development
and utilization [1]. Over the past two decades, solar photovoltaic (PV) installation capacity
in China has rocketed from less than 1 GW in 2000 to 175 GW in 2018, ranking first in the
world [2]. To achieve its “Carbon Neutrality” pledge to the United Nations, the Chinese
government has set a series of goals regarding developing renewable energy, one of which
is that PV maximal installation capacity is expected to reach 2000 GW by 2050 [3]. Therefore,
accurate determination and clear understanding of Rs is crucial for siting, evaluating and
optimizing solar energy systems. Unfortunately, the stations observing Rs are very sparse
around the world due to high instrument costs and technical requirements [4], particularly
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for developing countries such as China [5]. Therefore, developing and employing different
algorithm techniques to predict Rs has been a heavily researched topic in recent years. In
general, there are three different model types to estimate Rs: the empirical models, physical
transmission models and machine learning models.

1.1. A Review of Empirical Models for Rs Estimation

Various types of empirical models have been established for Rs estimation from single
or hybrid-measured meteorological parameters, such as temperature-based models [6],
cloud-based models [7], sunshine-based models [8], day of the year-based models [9]
and hybrid variables-based models [10]. For example, Fan et al. [6] proposed six new
temperature-based models to estimate daily Rs in the south of China, and the results indi-
cated that the newly proposed models exhibited better accuracy than existing temperature-
based empirical models. Fan et al. [8] also proposed and compared various sunshine-based
models for modeling Rs at 20 sites in China. It was found that the values of R2 and RMSE
for the best model were lower than 0.9 and more than 2.4 MJ m−2day−1, respectively.
Zang et al. [9] applied various day of the year-based models for modeling Rs at 35 stations
in various climatic zones of China and found that the newly proposed model obtained
the best performance. Chen et al. [11] conducted a comprehensive study to review and
apply 294 different types of empirical models in China. However, the amount of Rs reach-
ing the surface is greatly affected by geographical, meteorological and terrestrial factors,
and the abovementioned empirical models do not explain the mechanisms, atmospheric
transmittance process and the need to be re-calibrated from one site to another [12]. Thus,
it is limited in general applicability in remote regions and inconvenient for calibrated
parameters.

1.2. A Review of Physical Transmission Models for Rs Estimation

The physical transmission models take into consideration the physical process, which
provides alternative ways to predict Rs: for example, Gueymard [13,14] proposed a physically
based model for estimating the diffuse and clear-sky beam. Yang et al. [15] and Yang et al. [16]
developed a hybrid model to estimate the hourly, daily, and monthly Rs. Qin et al. [17] also
developed an efficient physically based parameterization radiation model to estimate Rs in
different sky conditions. Sun et al. [18] and Sun and Liu [19] proposed a fast scheme called
SUNFLUX for estimating Rs based on the full radiation scheme, and the results showed that
the accuracy of SUNFLUX for 30-minite data was in good agreement with observations. Tang
et al. [20] employed the fast parameterization scheme to estimate instantaneous and daily
Rs based on MODIS products, and the R2 and RRMSE values for daily Rs were 0.92 and
about 16%, respectively. However, previous studies have shown that their accuracy need
to be further improved compared to machine learning models. For instance, Chen et al. [4]
compared the accuracy of different machine learning models and Yang’s hybrid model and
found that the latter performed worst among all models. Qin et al. [21] applied eight artificial
intelligence (AI) models and four physically based models to estimate daily photosynthetically
active radiation (PAR) in China; the results showed that the four physically based models
performed worse than the eight AI models. Moreover, these physical transmission models
often simulate interaction between Rs and the atmosphere, and this simulation requires many
input variables (e.g., moisture, surface albedo, and aerosol optical depth) that are difficult to
obtain. It is apparent from the calculating process that the model performances depended on
input meteorological variables.

1.3. A Review of Artificial Neural Network (ANN) Models for Rs Estimation

In recent years, various machine learning models, as particularly promising ap-
proaches, have been proposed and widely employed for estimating Rs [22]. Artificial
neural network (ANN) models have been successfully applied in estimating Rs. For exam-
ple, Wang et al. [12] compared and evaluated an empirical model and three types (MLP,
GRNN and RBNN) of ANN algorithms for modeling Rs in China, and it was found that
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RBNN and MLP algorithms performed slightly superior to the empirical models and
GRNN. Kaba et al. [23] developed a new DLNN model for predicting Rs and found that
the model performed well, with R2 and RMSE of 0.98 and 0.78 MJm−2d−1, respectively.
Sun et al. [24] estimated Rs from two datasets by training the video image using the CNN
model, and obtained fair NRMSE values of 26–30%. Vakili et al. [25] estimated daily Rs in
Tehran, Iran using ANN and MLP models, and the result showed R2, RMSE and MAPE to
be 0.99, 0.05 J cm−2d−1 and 1.5%, respectively.

The hybrids of ANN models with other modeling techniques have also been studied
worldwide to improve the prediction accuracy of modeling Rs [26]. For example, Qin
et al. [21] applied a BP neural network coupling mind evolutionary model to predict
photosynthetically active radiation (PAR) and found that the hybrid model performed
best among all 12 models and the R, RMSE and MAE for the optimized model were 0.986,
0.393 MJ m−2day−1 and 0.302 MJ m−2day−1, respectively. Heng et al. [27] developed a
hybrid model on the basis of four ANN models to estimate Rs at six sites in America, and
the results showed that the proposed hybrid model performed better in terms of stability
and prediction accuracy. Mousavi et al. [28] estimated daily Rs in Mashhad, Iran using a
hybrid model combining simulated annealing (SA) and ANN, called ANN/SA, and the
results showed that the ANN/SA model performed superior to the single ANN or SVM
model. Deo et al. [29] adopted a support vector machine coupling wavelet (W-SVM) model
to predict Rs, and found that the developed model performed well, with MAPE, RRMSE
and R values ranging 4.696–6.20%, 5.942–7.66% and 0.958–0.965, respectively, in Italy. Wang
et al. [30] applied ANFIS with subtractive clustering (ANFIS-SC), M5Tree, and ANFIS
with grid partition (ANFIS-GP) models for modeling daily PAR and found that the two
optimized ANFIS models outperformed the empirical methods and the M5Tree model.

1.4. A Review of Tree-Based Ensemble Models for Rs Estimation

Most of the abovementioned artificial intelligence models are relatively complex and
require long computational times during the training stage. Meanwhile, few studies
evaluated the performances of the models, comprehensively considering computational
costs and prediction accuracy. Over the past few years, the common tree-based ensemble
models, for example, GBDT, RF, M5Tree and ET models, have been widely applied in
estimating Rs [31], because they have good performance for modeling and predicting
various time series [32]. For instance, Chen et al. [4] applied five machine learning models
(M5Tree, GRNN, BP, MARS and GA) and a physically based model to estimate daily direct
horizontal irradiance (DHI) at 16 stations in China, and the result showed that the M5tree
was superior to GRNN, YHM, Genetic, BP and MARS models, with the mean RMSE
value being 1.989 MJm−2day−1. Fan et al. [33] evaluated the performances of 12 sunshine
duration-based models and 12 artificial intelligence models (including M5Tree, RF and
GBDT) to estimate daily Rs, and found that the above tree-based models were prospective
models for estimating daily Rs. Yagli et al. [34] tested 68 artificial intelligence algorithms for
estimating hourly Rs at seven locations in five climatic zones of the United States and found
that tree-based models outperformed the other models under all-sky conditions. Voyant
et al. [35] applied four regression tree models (normal, pruned, boosted and bagged) to
predict intervals for Rs and obtained good prediction bands with a mean interval length
(MIL) close to 113 Whm−2 and gamma index lower than 0.9. Yang et al. [36] employed
the GBDT model to retrieve daily Rs at a spatial resolution of 5 km from AVHRR, and
the results showed the RMSE and R2 values for clear sky conditions were 27.71 Wm−2

and 0.82, respectively, and the values for cloud sky conditions were 42.97 Wm−2 and
0.64, respectively, in China. Jumin et al. [37] applied a boosted decision tree regression
(BDRT) model and other conventional regression algorithms, such as a neural network,
to predict the changes in solar radiation in Malaysia, and found that BDRT outperformed
other models with a high prediction accuracy. Therefore, tree-based models are powerful
for regression problems and have the ability to obtain good performance in modeling Rs.
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It should be noted that existing studies have shown that the above tree-based methods,
such as RF, may encounter an over-fitting problem, i.e., the phenomenon where the model
performs well on the training data but poorly on the testing data [38]. Some models may
be costly in computational time, i.e., the computational process of models will run ineffi-
ciently. Recently, a newly developed tree-based ensemble model, namely, extreme gradient
boosting (XGBoost), proposed by Chen and Guestrin [39], has been widely applied in many
other fields [40], because it showed better stability and a higher computational efficiency
with satisfactory accuracy. For example, Fan et al. [41] applied various artificial intelligence
algorithms (including XGBoost and GBDT) to predict daily reference evapotranspiration
(ETo), and it was found that the XGBoost and GBDT algorithms showed higher computa-
tional efficiency and acceptable stability and accuracy compared to the other four models
(SVM, ELM, RF and M5tree).

The other two newly developed tree-based ensemble models, i.e., light gradient
boosting method (LightGBM) [42] and gradient boosting with categorical feature support
(CatBoost) [43], have been proposed and widely applied in many other fields in the past
two years [44]. However, similarly to XGBoost, the two models have also been rarely
applied in Rs studies. As far as we know, only Wu et al. [38] tested Catboost’s applicability
in daily Rs estimation at only four sites in the south of China. There are no studies focusing
on accessing the performances of CatBoost’s applicability for Rs prediction in different
climates in China. Meanwhile, the LightGBM model has not yet been applied in modeling
Rs around the world despite being widely employed in many other fields.

It can be seen from the above literature reviews that the XGBoost, CatBoost and
LightGBM algorithms have not yet attracted much attention in modeling Rs. In addition,
comparison of the newly developed tree-based ensemble models (XGBoost, CatBoost and
LightGBM) with the common CART, ET, RF, GBDT, MLP and SVM models has not yet been
comprehensively performed. Moreover, high computational efficiency and good stability
were also essential statistical indicators to consider when applying machine learning
techniques, although improving model accuracy is the priority. Therefore, the objectives of
this study are to compare the performances (stability, computational time and prediction
accuracy) of the three newly developed models with six common models for predicting Rs
under various input combinations in contrasting climates.

2. Materials and Methods
2.1. Study Area

China can be divided into contrasting climatic zones based on precipitation and
temperature in this study (Figure 1). There are various characteristics in various climatic
zones; for instance, Sanya (SY) station is located at a mid-tropical zone, and the annual
mean relative humidity and Tm (80.6% and 25.8 ◦C, respectively) are the highest among
16 stations in China. Wuhan (WH) is characterized by a north subtropical zone, and the
average temperature in January and July are 3 ◦C and 29.3 ◦C, respectively. Shenyang (SY)
is characterized by a mid-temperate zone with a humid climate; the annual mean rainfall is
about 678.8 mm, and the coldest month is January (−11.2 ◦C), whereas the hottest month is
July (25.1 ◦C).

Existing studies have shown that observed Rs over China may have a large inhomo-
geneity in decadal variation due to measurement methods, instrument replacement and
sensitivity drift before 1993 [45]. Moreover, there were only 17 first-class radiation stations
left after 1990. Therefore, only 16 first-class radiation stations (all first-class radiation sta-
tions except Mohe station) from 1993–2016 are chosen in this study considering data quality
and completeness. The geographical distributions of 16 selected radiation stations in China
are shown in Figure 1. As shown in Figure 1, these radiation stations are homogeneously
distributed in different climatic zones.
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Figure 1. Geographical locations of the Rs stations in the different humidity zones (left) and temper-
ature zones (right) of China (A for humid, B for semihumid, C for semiarid, D for arid; I for cold
temperate, II for midtemperate, III for warm temperate, IV for north subtropical zone, V for the
midsubtropics, VI for the south subtropics, VII for the edge of tropical zone, HI for plateau subfrigid
zone, HII for plateau temperate zone, and IIE for midtropical zone with humid weather).

2.2. Data Collection and Quality Control

Daily observed sunshine duration (n), global solar radiation/solar energy resource
potential (Rs), relative humidity (Hr), maximum and minimum temperature (Tmax/Tmin),
precipitation (Pre), wind speed at 10 m height (U10) and pressure (Prs) during 1993–2016
were collected from 16 stations in different climatic zones of China (Figure 1). Detailed infor-
mation from 16 meteorological stations is shown in Table 1. To further provide information
about the measurements, it can be seen in Table 2 that the sensor types are pyrheliometer
and pyranometer in different periods, respectively, and the sampling frequency of the
instruments after 1990 are 60 or 360 per hour, respectively. Moreover, the general-purpose
lacquer coating on the pyranometers installed in China tended to peel off during the 1980s,
and the general-purpose glass did not cover the full solar spectral range and had a lower
transmittance than the quart glass, which may degrade instrument sensitivities and lead to
a larger negative bias. Therefore, we deleted the dataset of Rs before 1993. The meteoro-
logical data were provided by CMA (http://data.cma.cn/, accessed on 1 October 2020).
Moreover, extra-terrestrial solar radiation (Ra) and maximum possible sunshine duration
(N) were obtained using four equations in Appendix A.

Table 1. The geographical locations of 16 stations and information regarding various meteorological
parameters.

Station
Code

Station
Name

Latitude
(N)

Longitude
(E)

Altitude
(m)

SD
(h)

Tmax
(◦C)

Tmin
(◦C)

Hr
(%)

Pre
(mm)
yr−1)

Prs
(hpa)

U10
(ms−1)

Data
Omission

Climatic
Zone

59948 Sanya 18.23 109.52 5.5 6.03 28.66 22.94 80.64 1580.57 996.04 2.85 0.11% A, IIE
59287 Guangzhou 23.17 113.33 6.6 4.24 26.91 19.34 75.33 1944.72 1009.95 1.78 0.12% A, VI
56778 Kunming 25.02 102.68 1891.4 6.02 21.8 11.81 68.7 989.11 812.66 2.09 1.61% A, V
57494 Wuhan 30.62 114.13 23.3 4.94 21.99 14.12 74.88 1286.63 1015.25 1.43 0.42% A, IV
58362 Shanghai 31.40 121.48 3.5 4.76 20.82 14.3 72.89 1189.9 1018.12 3.03 0.26% A, IV
56294 Chengdu 30.67 104.02 506.1 4.76 20.83 14.31 72.91 1193.55 1018.12 3.03 0.07% A, V
57083 Zhengzhou 34.72 113.65 110.4 5.14 20.78 10.84 61.57 639.12 1006 2.15 0.05% B, III
54511 Beijing 39.80 116.47 54 6.74 18.58 8.49 53.39 517.21 1014.95 2.32 0.07% B, III
50953 Haerbin 45.75 126.77 142.3 6.26 10.67 0.18 64.04 521.51 1000.02 2.57 0.05% A, II
54342 Shenyang 41.73 123.45 42.8 6.55 14.43 3.2 63.74 678.75 1013.03 2.64 0.7% A, II
52267 Ejinaqi 41.95 101.07 940.5 9.08 17.71 3.33 32.44 377.05 911.14 2.8 1.79% D, II
51463 Wulumuqi 43.78 87.65 917.9 7.29 13.2 3.7 56.71 316.46 914.78 2.34 0.73% D, II
51709 Kashi 39.47 75.98 1288.7 7.99 18.92 6.98 48.25 79.06 872.21 1.85 0.12% D, III
52889 Lanzhou 36.05 103.88 1517.2 7.64 14.69 3.51 56.07 365.73 813.81 2.07 0.19% C, III
55591 Lasa 29.67 91.13 3648.7 8.22 16.84 3.19 40.2 476.65 656.5 1.72 0.95% C, HII
52818 Geermu 36.42 94.90 2807.6 8.35 13.75 0.27 31.59 46.36 726.88 2.05 0.54% D, HII

http://data.cma.cn/
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Table 2. Instruments and measurement methods used for solar energy resource potential (Rs) in
China. (Reprinted/adapted with permission from Ref. [46]. 2015, Kaicun Wang).

Specifications
Pyrheliometer Pyranometer

1957–1989 1990-Present 1957–1989 1990-Present

Instrument type DFY1 TBS2 or DFY3 DFY2 TBQ2 or DFY4
Thermopile type Solid black Solid black Black-white Solid black

Thermopile coating General-purpose lacquer Optical lacquer General-purpose lacquer Optical lacquer
Dome No Quartz glass General-purpose glass Double quartz glass

Sampling frequency
First-class stations: hourly;

Second-class stations:
half-hourly

60 (RYJ-2) or 360
(DRB-C) per hour

First-class stations:
hourly; Second-class
stations: half-hourly

60 (RYJ-2) or 360
(DRB-C) per hour

To ensure the daily radiation data quality, the daily radiation data were controlled by
the following principles [47]. (1) The observed daily radiation values should not be more
than the extra-terrestrial solar radiation values (Ra, MJm−2d−1), i.e., Rs ≤ Ra; despite the
fact that global solar radiation could exceed the extra-terrestrial solar radiation value due
to the enhancement effect of clouds, it’s usually limited in the case of the minute scale [48].
(2) The measured radiation should not be lower than the lower bound, i.e., Rs ≥ 0.015Ra.
(3) The ratio of observed Rs values to clear-sky Rs values should not be more than 1.1, i.e.,
Rs/Rclr ≤ 1.1. After the quality control and homogeneity, the rest of the data are applied
for model development in this study. Generally, deleted and missing data account for
approximately 0.49% of the database on average, ranging from 0.05% to 1.79% at various
sites (Table 1).

2.3. Tree-Based Ensemble Models
2.3.1. Classification and Regression Trees (CART)

The CART proposed by Breiman et al. [49] is a tree-based nonlinear regression model.
More details about the CART model can be found in Breiman et al. [49].

2.3.2. Extremely Randomized Trees (ET)

The extremely randomized trees (or extra trees) model, proposed by Geurts et al. [50]
and developed from the RF algorithm, is a tree-based model. The ET algorithm uses the
principle to train each base estimator by applying a random subset of features as an RF
model. However, the difference between ET and RF is that the latter applies a bootstrap
replica to train the algorithm, whereas the former trains each regression tree by employing
the whole training dataset. More detailed information about the ET model can be found in
Geurts et al. [50].

2.3.3. Random Forest (RF)

The RF algorithm, proposed by Breiman [51], is a bagging-based model that uses a
regression tree method. More information about this algorithm can be found in Breiman [51]
and the structure of the RF model is shown in Figure 2.
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Figure 2. General structure of the proposed models.

2.3.4. Gradient Boosting Decision Tree (GBDT)

The GBDT algorithm, a tree-based ensemble algorithm, proposed by Friedmen [52],
has been widely applied in regression problems. Different from the RF algorithm or
traditional single-tree models (such as M5Tree), the GBDT algorithm can reduce biases and
yield a combination of trees (Figure 2), while the RF algorithm reduces the variances. The
details regarding this algorithm can be found in Friedmen [52] and the structure of the
GBDT is shown in Figure 2.

2.3.5. Extreme Gradient Boosting (XGBoost)

The XGBoost algorithm, proposed by Chen and Guestrin [39], is based on the idea of
“boost”. The purpose of this idea is to develop a “strong” learner through additive training
strategies. The general equation for the estimation at step t is shown as follows:

f t
i =

t

∑
k=1

fk(xi) = f (t−1)
i + ft(xi) (1)

where xi is the input variable and f (t)i and ft(xi) are the estimations and learner at step t,
respectively [41].

To prevent the over-fitting problem without reducing the computing time of this
algorithm, the objective function is presented as:

Obj(t) =
n

∑
k=1

l(yi, yi) +
t

∑
k=1

Ω( fi) (2)

where n denotes the number of observations, l is the loss function and Ω represents the
regularization in the form of:

Ω( f ) = γT +
1
2

λ‖ω‖2 (3)
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where γ means the minimum loss needed to further partition the leaf node, λ denotes the
regularization parameter and ω represents the vector of scores in the leaves. More details
regarding this algorithm can be found in Chen and Guestrin [39].

2.3.6. Gradient Boosting with Categorical Features Support (CatBoost)

The CatBoost model is a newly developed GBDT algorithm [43]. This algorithm has
improved considerably compared to the traditional GBDT algorithm. (1) When dealing
with categorical features during training, if a permutation exists, it is substituted with:

xσ p,k =
∑

p−1
j=1

[
xσ j,k = xσ p,k

]
·Yσj + β·P

∑
p−1
j=1

[
xσ j,k = xσ p,k

]
+ β

(4)

where β and P are the weights of the prior value and the prior value, respectively [53]. (2)
A new technique, named ordered boosting and proposed by Prokhorenkova et al. (2017),
was used to solve the problem of gradient bias. (3) Oblivious trees were applied as base
predictors. (4) To avoid over-fitting, a new schema was used to calculate leaf values when
selecting the tree structure. More details can be found in Dorogush et al. [43] and the
structure of the CatBoost algorithm can be found in Figure 2.

2.3.7. Light Gradient Boosting Method (LightGBM)

The LightGBM algorithm, a newly developed GBDT model [42], can decrease the
number of data instances and features. In this algorithm, two novel techniques were
proposed to achieve this goal. The first one is Gradient-based One-Side Sampling (GOSS)
and it can achieve a good balance between reducing the number of data instances and
keeping the accuracy of decision trees. The second one is Exclusive Feature Bunding (EFB)
and it can effectively achieve the goal of reducing the number of features.

In the GOSS technique, an instance subset A is obtained by keeping the top-a × 100%
instances with smaller gradients, and a subset B with size b × |Ac| randomly sampled;
finally, the instances are split according to the estimated variance gain Vj(d) over the subset
A ∪ B, i.e.,

Vj(d) =
1
n
(

(
∑xi∈Al

gi +
1−a

b ∑xi∈bl
gi

)2

nj
l(d)

+

(
∑xi∈Ar gi +

1−b
a ∑xi∈Br gi

)2

nj
r(d)

) (5)

where Al =
{

xi ∈ A : xij ≤ d
}

, Ar =
{

xi ∈ A : xij ≥ d
}

, Bl =
{

xi ∈ B : xij ≤ d
}

,
Br =

{
xi ∈ B : xij � d

}
, and the coefficient 1−a

b is used to normalize the sum of the gradi-
ents over B back to the size of Ac [44].

In the proposed EFB method, determining which features should be bundled together
and how to construct the bundle are two inevitable issues. Therefore, a greedy algorithm is
used, which can produce reasonably good results for graph coloring to produce the bundles
for the first issue and a way of merging exclusive features is applied to simplify the training
process for the second issue. More details about the LightGBM algorithm can be found in
Ke et al. [42].

2.4. Multi-Layer Perceotron (MLP)

The MLP neural network, popularly known as ANN models with the capability of
time series prediction, is widely applied in the fields of hydrological cycles and solar
radiation [54]. Each MLP model consists of an input layer, hidden layer and output layer.
More details about the MLP algorithm can be found in Wang et al. [12].

2.5. Support Vector Machine (SVM)

The SVM model, developed by Vapnik [55], is based on a series of kernel functions,
and it has been widely employed in fields such as meteorology, agriculture and hydrology
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studies. The existing studies found that the Radial Basis Function (RBF), regarded as a
kind of non-linear kernel function, performed better in estimating tasks than other kernel
models in all type of SVM models [56]. Therefore, in this study, the SVM model based on
RBF (SVM-RBF) was applied. More details about the SVM-RBF algorithm can be found in
Vapnik [55] and the structure of this algorithm is shown in Figure 2.

2.6. Input Combinations and K-Fold Cross-Validation

Considering the correlations between each input variable and Rs, seven input combina-
tions were employed to access the roles of various meteorological parameters in estimating
daily Rs (Table 3): (1) Ra, n/N; (2) Ra, n/N, Tmax, Tmin; (3) Ra, n/N, Ho, U10; (4) Ra, n/N, Pre,
Prs; (5) Ra, n/N, Tmax, Tmin, Ho, U10; (6) Ra, n/N, Tmax, Tmin, Pre, Prs; (7) Ra, n/N, Tmax, Tmin,
Ho, U10, Pre, Prs. The k-fold cross-validation method was generally applied to make full
use of the time series [41]. The whole time series during 1993–2016 was equally divided
into four sections in this study. The four cross-validation stages are presented in Table 4. In
each simulation, three sections were applied to train the algorithms and the remaining one
for validating the algorithms. Therefore, there are four various validating stages in total in
this study, and the training and testing results in tables are the mean values of four stages.

Table 3. The input combinations of meteorological variables for the developed models (CART, ET, RF,
GBDT, XGBoost, CatBoost, LightGBM, MLP and SVM).

Models Input Combinations

XGBoost CatBoost LightGBM CART ET RF GBDT MLP SVM
XGBoost1 CatBoost1 LightGBM1 CART1 ET1 RF1 GBDT1 MLP1 SVM1 Ra, n/N C1
XGBoost2 CatBoost2 LightGBM2 CART2 ET2 RF2 GBDT2 MLP2 SVM2 Ra, n/N, Tmax, Tmin C2
XGBoost3 CatBoost3 LightGBM3 CART3 ET3 RF3 GBDT3 MLP3 SVM3 Ra, n/N, Ho, U10 C3
XGBoost4 CatBoost4 LightGBM4 CART4 ET4 RF4 GBDT4 MLP4 SVM4 Ra, n/N, Pre, Prs C4

XGBoost5 CatBoost5 LightGBM5 CART5 ET5 RF5 GBDT5 MLP5 SVM5 Ra, n/N, Tmax, Tmin, Ho,
U10

C5

XGBoost6 CatBoost6 LightGBM6 CART6 ET6 RF6 GBDT6 MLP6 SVM6 Ra, n/N, Tmax, Tmin, Pre,
Prs

C6

XGBoost7 CatBoost7 LightGBM7 CART7 ET7 RF7 GBDT7 MLP7 SVM7 Ra, n/N, Tmax, Tmin, Ho,
U10, Pre, Prs

C7

Table 4. The different cross-validation stages used in this study.

Cross Validation Training Dataset Testing Dataset

S1 1993–2010 2011–2016
S2 1993–2004 and 2011–2016 2005–2010
S3 1993–1998 and 2005–2016 1999–2004
S4 1999–2016 1993–1998

The optimization of parameters for various algorithms at each site was a key step
in obtaining optimal predictions. The grid search method was selected to optimize key
hyper-parameters. The key parameters ranged between their thresholds using the trial-
and-error method at a certain interval. All the parameter pairs were tried and the one
with the best accuracy was selected for training and testing the model. For example, for
the CatBoost model, the number of rounds varied from 200 to 800 at 100 intervals, the
maximum tree depth varied between 2 and 10 at 2 intervals, and the subset ratio of all
data sets ranged from 0.5 to 1 at 0.05 intervals. More information about the optimization of
hyper-parameters can be found in Table 5.
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Table 5. The selection and used range of hyper-parameters of the various machine learning models.

Model The Selection and Used Range of Hyper-Parameters

CART The maximum tree depth varied between 1 to 10 at 1 interval and the
number of trees was 1

ET
The maximum tree depth varied between 1 to 10 at 1 interval and the

number of trees ranged from 10
to 100 at 10 intervals

RF
The number of trees ranged from 250 to 500 at 50 intervals and the

maximum depth of tree ranged
from 2 to 12 at 2 intervals

GBDT
The minimum leaf size varied between 2 to 12 at 2 intervals, and the

number of rounds ranged from 1000
to 8000 at 1000 intervals

XGBoost
The eta was 0.01, the minimum leaf size varied from 2 to 10 at 2

intervals and the number of
rounds ranged from 200 to 2000 at 200 intervals

LightGBM
The maximum tree depth varied between 2 to 12 at 2 intervals, and

the number of trees varied between
100 to 600 at 100 intervals

CatBoost

The subset ratio of all datasets ranged from 0.5 to 1 at 0.05 intervals,
the maximum tree depth

varied between 2 and 10 at 2 intervals and the number of rounds
varied from 200 to 800 at 100 intervals

MLP The number of hidden neutrons ranged from 1 to 10 at 1 intervals

SVM
The penalty parameter cost ranged from 10 to 100 at 10 intervals, and

the parameter gamma ranged from
10 to 120 at 10 intervals

All models were run using Programming language in the Python computing environ-
ment (version 3.6). The URLs for the “XGBoost”, “CatBoost” and “LightGBM” package
are: https://xgboost.readthedocs.io/en/latest/, https://github.com/catboost/catboost and
https://lightgbm.readthedocs.io/en/latest/, respectively (accessed on 1 October 2020). All the
computing processes were conducted using a computer with 256 GB of RAM memory and
10×Intel Xeon CPU E5 2650 @ 2.3 GHz, with a Debian x86_64 GNU/Linux operating system.

2.7. Statistical Evaluation

The performances of the developed algorithms for estimating daily Rs are accessed
using four statistical indicators, including R2, RMSE, MAE and MBE [22]:

R2 =

(
n
∑

i=1
(Xmi − Xm)(Xoi − Xo)

)2

n
∑

i=1
(Xmi − Xm)

2 n
∑

i=1
(Xoi − Xo)2

(6)

RMSE =

√
1
n

n

∑
i=1

(Xmi − Xoi)
2 (7)

MAE =
1
n

n

∑
i=1
|Xmi − Xoi| (8)

MBE =
1
n

n

∑
i=1

(Xmi − Xoi) (9)

where n indicates the number of the time series, and Xm and Xo are the simulated and
measured daily Rs, respectively.

https://xgboost.readthedocs.io/en/latest/
https://lightgbm.readthedocs.io/en/latest/
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The raw meteorological variables are normalized using the following equations before
applying these algorithms to the time series:

xn =
xi − xmin

xmax − xmin
(10)

where xi and xn donate the raw and normalized data, respectively; xmin and xmax represent
the extreme values of the dataset, respectively; and xn are scaled in the range [0, 1].

3. Results
3.1. Comparison of Model Accuracy under Various Input Combinations

The statistical results of the developed models (CART, ET, RF, GBDT, XGBoost, Cat-
Boost, LightGBM, MLP and SVM-RBF) for estimating daily Rs under the various input
combinations during training and testing stages at 16 sites are presented in Supplementary
Materials Tables S1–S17. The top three models among the nine models under each input
combination are highlighted in bold, red and blue, respectively.

The accuracy of daily Rs estimation differed significantly from various input com-
binations. Table 6 shows the statistical values of various models with different input
combinations during training and testing stages at all stations on average. It’s clear that all
models using the complete meteorological dataset (C7) achieved the best accuracy (on aver-
age R2 = 0.903, RMSE = 2.091 MJm−2d−1, MAE = 1.579 MJm−2d−1) in comparison to the
other incomplete input combinations. Supplementary Materials Figures S1–S16 show the
scatter plots of the predicted Rs values using all machine learning models under complete
input combinations (C7) at 16 stations. It’s clear that the Geermu station (Figure 3) showed
the best testing accuracy using the CatBoost model (R2 = 0.960, RMSE = 1.412 MJm−2d−1,
MAE = 1.010 MJm−2d−1). In contrast, Sanya station (Figure 4) had the worst testing ac-
curacy using RF model (R2 = 0.764, RMSE = 2.913 MJm−2d−1, MAE= 2.260 MJm−2d−1).
Moreover, it is noteworthy that all models provided acceptable prediction accuracy under
C1 (on average R2 = 0.888, RMSE = 2.249 MJm−2d−1, MAE = 1.696 MJm−2d−1), indicat-
ing that Ra and n/N had a great influence on daily Rs estimation. Moreover, LightGBM
outperformed the XGBoost and GBDT models under C5, C6 and C7, while it performed
worse under C1, C2, C3 and C4 (Table 6), which illustrates that LightGBM exhibited better
prediction accuracy when more variables were input for daily Rs estimation.

Table 6. Statistical values of the developed models (CART, ET, RF, GBDT, XGBoost, CatBoost,
LightGBM, MLP and SVM) with various input combinations during training and testing stages at all
stations on average (The model accuracy ranking first, second and third was highlighted in bold, red
and blue, respectively).

Input/Model
Training Testing

R2 RMSE
(MJm−2d−1)

MAE
(MJm−2d−1)

MBE
(MJm−2d−1) R2 RMSE

(MJm−2d−1)
MAE

(MJm−2d−1)
MBE

(MJm−2d−1)

Ra n/N (C1)
XGBoost1 0.916 1.979 1.464 0.000 0.897 2.159 1.622 −0.011
Catboost1 0.913 2.015 1.488 0.000 0.898 2.144 1.606 −0.013

LightGBM1 0.924 1.876 1.390 0.000 0.893 2.195 1.646 −0.011
CART1 0.895 2.223 1.683 0.000 0.877 2.380 1.820 −0.013

ET1 0.894 2.233 1.692 0.000 0.884 2.306 1.768 −0.013
RF1 0.979 0.992 0.683 0.000 0.866 2.469 1.842 −0.007

GBDT1 0.916 1.971 1.460 0.000 0.897 2.161 1.623 −0.012
MLP1 0.901 2.153 1.608 0.004 0.892 2.213 1.673 −0.011

SVM-RBF1 0.900 2.153 1.587 −0.052 0.891 2.212 1.663 −0.067
Mean 0.915 1.955 1.451 −0.005 0.888 2.249 1.696 −0.017

Ra n/N Tmax Tmin (C2)
XGBoost2 0.926 1.857 1.372 0.000 0.904 2.081 1.561 0.009
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Table 6. Cont.

Input/Model
Training Testing

R2 RMSE
(MJm−2d−1)

MAE
(MJm−2d−1)

MBE
(MJm−2d−1) R2 RMSE

(MJm−2d−1)
MAE

(MJm−2d−1)
MBE

(MJm−2d−1)

Ra n/N (C1)
XGBoost1 0.916 1.979 1.464 0.000 0.897 2.159 1.622 −0.011
Catboost1 0.913 2.015 1.488 0.000 0.898 2.144 1.606 −0.013

LightGBM1 0.924 1.876 1.390 0.000 0.893 2.195 1.646 −0.011
CART1 0.895 2.223 1.683 0.000 0.877 2.380 1.820 −0.013

ET1 0.894 2.233 1.692 0.000 0.884 2.306 1.768 −0.013
RF1 0.979 0.992 0.683 0.000 0.866 2.469 1.842 −0.007

GBDT1 0.916 1.971 1.460 0.000 0.897 2.161 1.623 −0.012
MLP1 0.901 2.153 1.608 0.004 0.892 2.213 1.673 −0.011

SVM-RBF1 0.900 2.153 1.587 −0.052 0.891 2.212 1.663 −0.067
Catboost2 0.929 1.824 1.345 0.000 0.907 2.044 1.526 0.014

LightGBM2 0.946 1.594 1.184 0.000 0.904 2.085 1.556 0.013
CART2 0.897 2.203 1.669 0.000 0.877 2.378 1.817 −0.003

ET2 0.896 2.214 1.686 0.000 0.885 2.291 1.762 −0.012
RF2 0.983 0.889 0.610 0.002 0.891 2.224 1.661 0.015

GBDT2 0.927 1.850 1.368 0.000 0.904 2.080 1.560 0.009
MLP2 0.909 2.073 1.537 0.014 0.900 2.135 1.604 0.013

SVM-RBF2 0.907 2.090 1.530 −0.069 0.897 2.156 1.612 −0.070
Mean 0.924 1.844 1.367 −0.006 0.896 2.164 1.629 −0.001

Ra n/N H0 U10 (C3)
XGBoost3 0.927 1.848 1.365 0.000 0.902 2.090 1.573 0.031
Catboost3 0.926 1.851 1.364 0.000 0.902 2.077 1.560 0.039

LightGBM3 0.944 1.615 1.201 0.000 0.899 2.123 1.590 0.030
CART3 0.899 2.182 1.650 0.000 0.878 2.367 1.806 0.006

ET3 0.898 2.186 1.658 0.000 0.887 2.266 1.739 −0.006
RF3 0.983 0.894 0.617 −0.001 0.885 2.275 1.705 0.026

GBDT3 0.927 1.842 1.362 0.000 0.902 2.091 1.574 0.031
MLP3 0.909 2.063 1.534 0.013 0.898 2.149 1.627 0.032

SVM-RBF 0.908 2.072 1.526 −0.051 0.896 2.153 1.623 −0.032
Mean 0.925 1.839 1.364 −0.004 0.894 2.177 1.644 0.018

Ra n/N Pre Prs (C4)
XGBoost4 0.928 1.836 1.362 0.000 0.905 2.056 1.548 0.019
Catboost4 0.927 1.842 1.364 0.000 0.906 2.040 1.532 0.023

LightGBM4 0.944 1.620 1.212 0.000 0.902 2.089 1.567 0.020
CART4 0.901 2.158 1.632 0.000 0.881 2.335 1.783 0.001

ET4 0.897 2.206 1.676 0.000 0.886 2.284 1.752 −0.003
RF4 0.983 0.892 0.618 0.000 0.889 2.240 1.684 0.019

GBDT4 0.928 1.829 1.359 0.000 0.905 2.058 1.550 0.019
MLP4 0.908 2.075 1.549 −0.008 0.896 2.159 1.634 0.009

SVM-RBF4 0.905 2.098 1.548 −0.058 0.894 2.174 1.638 −0.040
Mean 0.925 1.840 1.369 −0.007 0.896 2.159 1.632 0.007
Ra n/N Tmax Tmin H0 U10 (C5)

XGBoost5 0.933 1.772 1.310 0.000 0.907 2.033 1.528 0.033
Catboost5 0.937 1.723 1.270 0.000 0.911 1.996 1.496 0.046

LightGBM5 0.955 1.449 1.081 0.000 0.909 2.021 1.510 0.030
CART5 0.900 2.181 1.652 0.000 0.877 2.377 1.814 0.010

ET5 0.900 2.175 1.656 0.000 0.887 2.266 1.743 −0.002
RF5 0.985 0.846 0.582 0.001 0.897 2.152 1.612 0.035

GBDT5 0.933 1.767 1.307 0.000 0.907 2.034 1.528 0.032
MLP5 0.915 1.992 1.472 −0.005 0.903 2.086 1.570 0.020

SVM-RBF5 0.910 2.050 1.503 −0.068 0.900 2.125 1.595 −0.049
Mean 0.930 1.773 1.315 −0.008 0.900 2.121 1.600 0.017
Ra n/N Tmax Tmin Pre Prs (C6)

XGBoost6 0.934 1.755 1.301 0.000 0.911 1.996 1.503 0.025
Catboost6 0.937 1.714 1.269 0.000 0.914 1.958 1.468 0.033

LightGBM6 0.955 1.451 1.086 0.000 0.912 1.992 1.492 0.028
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Table 6. Cont.

Input/Model
Training Testing

R2 RMSE
(MJm−2d−1)

MAE
(MJm−2d−1)

MBE
(MJm−2d−1) R2 RMSE

(MJm−2d−1)
MAE

(MJm−2d−1)
MBE

(MJm−2d−1)

CART6 0.901 2.159 1.635 0.000 0.880 2.346 1.792 0.006
ET6 0.897 2.202 1.680 0.000 0.886 2.286 1.761 −0.005
RF6 0.985 0.840 0.580 0.001 0.900 2.123 1.593 0.026

GBDT6 0.935 1.748 1.299 0.000 0.911 1.997 1.504 0.024
MLP6 0.914 2.005 1.488 0.002 0.904 2.089 1.572 0.022

SVM-RBF6 0.909 2.069 1.522 −0.069 0.898 2.145 1.611 −0.049
Mean 0.930 1.771 1.318 −0.007 0.902 2.104 1.589 0.012

Ra n/N Tmax Tmin H0 U10 Pre Prs (C7)
XGBoost7 0.937 1.720 1.275 0.000 0.912 1.986 1.495 0.031
Catboost7 0.941 1.664 1.230 0.000 0.916 1.943 1.457 0.041

LightGBM7 0.960 1.370 1.027 0.000 0.914 1.967 1.472 0.030
CART7 0.901 2.160 1.637 0.000 0.879 2.354 1.798 0.005

ET7 0.899 2.182 1.663 0.000 0.887 2.273 1.749 0.003
RF7 0.986 0.824 0.569 0.001 0.902 2.103 1.578 0.031

GBDT7 0.937 1.715 1.273 0.000 0.912 1.987 1.496 0.029
MLP7 0.917 1.974 1.463 −0.008 0.906 2.063 1.552 0.018

SVM-RBF7 0.910 2.058 1.517 −0.066 0.899 2.141 1.614 −0.040
Mean 0.932 1.741 1.295 −0.008 0.903 2.091 1.579 0.016

Figure 3. The Rs estimates of the developed algorithms versus measurements at Geermu station
under complete input combinations.
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Figure 4. Same as in Figure 3 but at Sanya station.

3.2. Comparison of Various Model Accuracy at Different Stations in Various Climatic Zones

To simplify the results of comparison, we select five typical stations in contrasting
climatic zones to present the performance of various models (Tables S1, S4, S7, S14 and
S16). Table S1 provides the comparisons of the MLP, SVM-RBF and various tree-based
ensemble models for Sanya station. This station performed the worst among all stations in
humid regions of South China. For example, the R2 values of MLP, SVM-RBF, CART, ET,
RF, GBDT, XGBoost, CatBoost and LightGBM models ranged from 0.775–0.795, 0.777–0.798,
0.755–0.782, 0.779–0.797, 0.727–0.791, 0.705–0.806 and 0.739–0.814, respectively; RMSE
values ranged from 2.711–2.823, 2.680–2.820, 2.797–2.963, 2.700–2.813, 2.727–3.127, 2.622–
2.947 and 2.569–3.046 MJm−2d−1, respectively; and MAE values ranged from 2.105–2.199,
2.095–2.162, 2.184–2.292, 2.124–2.212, 2.125–2.398, 2.043–2.280 and 2.000–2.350 MJm−2d−1,
respectively. Table S4 presents the comparisons of all the models at Wuhan station. The R2

values of MLP, SVM-RBF, CART, ET, RF, GBDT and the three newly developed tree-based
ensemble models ranged from 0.888–0.910, 0.881–0.897, 0.880–0.895, 0.883–0.892, 0.854–
0.903, 0.890–0.915 and 0.887–0.918, respectively; RMSE values ranged from 2.243–2.511,
2.407–2.585, 2.422–2.600, 2.457–2.561, 2.323–2.863, 2.171–2.476 and 2.127–2.511 MJm−2d−1,
respectively; and MAE values ranged from 1.655–1.908, 1.808–1.961, 1.831–1.986, 1.885–
1.966, 1.735–2.155, 1.614–1.869 and 1.572–1.901 MJm−2d−1, respectively. Table S7 shows
the training and testing accuracy of all models at Haerbin station. The R2 values of MLP,
SVM-RBF, CART, ET, RF, GBDT and the three newly developed tree-based ensemble models
ranged from 0.913–0.924, 0.917–0.922, 0.895–0.897, 0.904–0.908, 0.894–0.921, 0.915–0.928
and 0.913–0.930, respectively; RMSE values ranged from 1.965–2.098, 1.988–2.046, 2.298–
2.321, 2.168–2.208, 2.007–2.331, 1.911–2.078 and 1.880–2.103 MJm−2d−1, respectively; and
MAE values ranged from 1.450–1.561, 1.471–1.506, 1.720–1.740, 1.625–1.622, 1.484–1.716,
1.424–1.534 and 1.393–1.550 MJm−2d−1, respectively. Table S14 shows the training and
testing accuracy of all models at Geermu station in the Plateau and Mountain climatic zones,
respectively. The R2 values of the MLP, SVM- RBF, CART, ET, RF, GBDT and the three newly
developed tree-based ensemble models ranged from 0.951–0.957, 0.955–0.957, 0.932–0.933,
0.934–0.940, 0.943–0.954, 0.956–0.959 and 0.955–0.961, respectively; RMSE values ranging
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from 1.465–1.569, 1.461–1.510, 1.838–1.845, 1.738–1.812, 1.515–1.691, 1.440–1.490 and 1.405–
1.505 MJm−2d−1, respectively; and MAE values ranging from 1.052–1.122, 1.043–1.068,
1.379–1.382, 1.308–1.379, 1.093–1.205, 1.037–1.069 and 1.010–1.076 MJm−2d−1, respectively.
Table S16 presents the comparisons of all models at Ejinaqi station in the arid temperate
continental climatic zone. Ejinaqi station had the best performance, with R2 values of MLP,
SVM-RBF, CART, ET, RF, GBDT and the three newly developed tree-based ensemble models
ranging from 0.946–0.955, 0.951–0.956, 0.933–0.934, 0.929–0.938, 0.937–0.950, 0.950–0.957
and 0.948–0.959, respectively; RMSE values ranging from 1.601–1.744, 1.575–1.667, 1.939–
1.948, 1.872–1.997, 1.675–1.881, 1.561–1.680 and 1.522–1.711 MJm−2d−1, respectively; and
MAE values ranging from 1.146–1.262, 1.122–1.195, 1.433–1.439, 1.397–1.499, 1.195–1.348,
1.119–1.210 and 1.090–1.226 MJm−2d−1, respectively.

The R2, RMSE and MAE for all models in various climate zones across China are also
shown in Figures 5 and 6, respectively. The CatBoost, LightGBM, XGBoost and GBDT
model significantly outperformed the other models in different humidity and temperature
zones. Moreover, all the models showed the highest accuracy with R2 ranging from 0.910
to 0.949, RMSE ranging from 1.590 to 2.108 MJm−2d−1 and MAE ranging from 1.185 to
1.634 MJm−2d−1 in the semi-humid zone, while the lowest accuracy was observed in
the semi-arid zone, with R2 ranging from 0.841 to 0.886, RMSE ranging from 2.080 to
2.463 MJ m−2d−1 and MAE ranging from 1.627 to 1.923 MJm−2d−1. Furthermore, all the
models performed better in mid-temperate, warm temperate and north subtropical zones,
with R2 ranging from 0.893 to 0.931, RMSE ranging from 1.868 to 2.411 MJm−2d−1 and
MAE ranging from 1.429 to 1.831 MJm−2d−1, respectively, while the lowest accuracy was
observed in the mid-tropical zone, with R2 ranging from 0.764 to 0.810, RMSE ranging from
2.604 to 2.913 MJm−2d−1 and MAE ranging from 2.025 to 2.260 MJm−2d−1. The above
analyses clearly show that the CatBoost model generally provided the best accuracy in
estimating Rs at different stations or in various climatic zones, followed by the LightGBM,
XGBoost, GBDT, MLP, RF, SVM-RBF, ET and CART models.

Figure 5. The R2, RMSE and MAE in different humidity zones.

Figure 6. The R2, RMSE and MAE in different temperate zones.
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3.3. Comparison of Stability of Various Models

The RF and LightGBM models performed significantly superior to the other models
in the training stage (marked in red or bold in Tables S1–S16). However, the CatBoost
and LightGBM models generally performed better than the other models in the testing
stage, and the GBDT and XGBoost models also provided comparable performances to
the CatBoost and LightGBM models (marked in bold or colors in Tables S1–S16). The
mean training and testing RMSE of 16 stations are shown in Figure 7 for all models under
various input combinations. It was obvious that the three newly developed tree-based
ensemble models (CatBoost, LightGBM, XGboost) and GBDT model had the best prediction
accuracy in the testing stage for all input combinations, whereas the CART, ET and RF
provided higher RMSE values. Meanwhile, the increasing percentage in testing RMSE
over training RMSE (average for all sixteen stations) under seven input combinations
is also exhibited in Figure 7. The figure indicates that ET, MLP and SVM-RBF models
were the most stable models with smallest increases in testing RMSE (from 3.5% to 4.4%).
On the contrary, the RF model was the most unstable model with the largest increase in
testing RMSE (152.3%). This suggested that the RF model encountered a serious over-
fitting problem. Moreover, the CART, GBDT, XGBoost, CatBoost and LightGBM models
also showed acceptable percentage increases (on average, from 8.3% to 31.9%) in testing
RMSE, indicating that the above models didn’t encounter an over-fitting problem and had
comparable model stability.

Figure 7. Percentage increase in testing RMSE over training RMSE (average over the sixteen stations)
for the various machine learning models under different input combinations.

3.4. Computational Costs of Various Models

Figure 8 shows the average computational time of the various developed algorithms
under seven various input combinations for all stations in training stages in the Python
computing environment (version 3.6). It is clear that the average computational time cost
by the SVM-RBF (256.8 s) and MLP (132.1 s) were much higher than the other tree-based
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ensemble models (less than 21 s) under seven input combinations. In particularly, CART and
ET showed the highest computational efficiency with 4 s and 4.7 s, respectively. Meanwhile,
CatBoost, LightGBM, XGBoost, GBDT and RF also showed comparable computational
efficiency (from 12.3 s to 20.5 s) to CART and ET. In general, it is clear that the average
computational time depends on the specific model.

Figure 8. Total comparison of computational time of the nine models under seven input combinations
for all stations and all training stages (C1: Ra, n/N; C2: Ra, n/N, Tmax, Tmin; C3: Ra, n/N, Hr, U2; C4: Ra,
n/N, Pre, Prs; C5: Ra, n/N, Tmax, Tmin, Hr, U2; C6: Ra, n/N, Tmax, Tmin, Pre, Prs; C7: Ra, n/N, Tmax, Tmin,
Hr, U10, Pre, Prs).

4. Discussion
4.1. Input Combination Strategy of Meteorological Parameters

The results obtained from the above models indicates that the more complete the input
variables are, the more accurate the prediction accuracy. However, different meteorological
parameters may play various roles in estimating Rs in different climatic zones. For example,
the present study indicates that Tmax and Tmin, or Pre and Prs, were more important than
Ho and U10 for Rs estimation. Fan et al. [32] revealed that the machine learning methods
with Tmax, Tmin and Pre obtained acceptable Rs estimation in central and southern China
with a humid subtropical climate. This also illustrated that the more appropriate the input
combinations are, the more accurate the prediction accuracy. Moreover, previous studies
had demonstrated that sunshine duration (n/N) and Ra were the most significant input
variables in estimating daily Rs, compared to those based on air temperature or other single
meteorological parameters [57], which explains why the models based on only n/N and
Ra (C1) could also produce acceptable prediction accuracy (on average, R2 = 0.888, RMSE
= 2.249 MJm−2d−1, MAE = 1.696 MJm−2d−1) in different stations in our study. Moreover,
previous studies also indicated that temperature-based models could obtain comparable
prediction accuracy for estimating Rs [58,59]. For instance, Fan et al. [6] proposed six
new temperature-based models for daily Rs estimation at 20 solar radiation stations in the
humid subtropical and tropical regions of China. The results showed that R2 values ranged
0.65–0.78, which explained why Tmax and Tmin played more significant roles in modeling
Rs than Ho and U2.

4.2. Prediction Accuracy of Various Models in Various Climatic Zones

Previous studies had found that the most appropriate model for each station differed
in various climatic zones [60]. For example, Wu et al. [38] revealed that the CatBoost model
performed better than MARS, RF, MLP M5tree for daily Rs estimation at four stations
in South China with the R2 ranging 0.887–0.939, RMSE ranging 1.916–2.648 MJm−2d−1

and MAE ranging 1.451–1.873 MJm−2d−1 under complete input combination, which was
in agreement with our findings. Chen et al. [4] also found that M5tree outperformed
BP, GRNN, MARS and GA for estimating daily DHI across China with the R2 ranging
0.824–0.914. Zou et al. [61] also found that the ANFIS model performed better than the
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improved Bristow-Campbell model and Yang’s Hybrid model for daily Rs estimations at
three stations in Hunan province of China, with the R2, RMSE and MAE values for ANFIS
model ranging 0.79–0.86, 2.75–3.90 MJm−2d−1 and 2.08–2.62 MJm−2d−1, respectively.
However, the CatBoost, LightGBM, XGBoost and GBDT models were always ranked first,
second, third and fourth, respectively, in terms of prediction accuracy in all climatic zones or
stations in this study, and this indicated that the three newly developed tree-based ensemble
models (CatBoost, LightGBM, XGBoost) had general applicability in various climatic zones
of China. Moreover, the station with the highest accuracy was Geermu station with an arid
and plateau temperate zone, due to the scarce water vapor and clouds, as well as a thin
atmosphere, leading to a weak radiative attenuation process. On the contrary, Sanya station,
with a humid and midtropical zone, had the worst accuracy, perhaps attributed to adequate
water vapor, clouds and a complex radiative attenuation process. It should be noted that
Wulumiqi, Chengdu and Lasa stations also exhibited worse accuracy compared to the
other stations, which might result from the high atmospheric dust loading for Wulumiqi
station, basin topography for Chengdu station and valley topography for Lasa station. For
example, Chengdu station is located in Sichuan basin, where water vapor and clouds are
not easily dispersed, due to sealed terrain. Lasa station lies in Lasa River valley where
humidity and precipitation are relatively more sufficient than Geermu, although they are
all located in Qinghai-Tibet Plateau. In general, one significant reason for the various model
performances in different climatic zones was related to the local climatic and geographical
conditions at each station. Moreover, the prediction accuracy of various models significantly
differed from one station to another due to the differences in the local microclimate, even if
they were located in same climatic zone.

4.3. Stability of Various Models

The stability of all models was also considered as a vital indicator when estimating
Rs. The results showed that the RF model exhibited the largest percentage increase in
testing RMSE compared to the other models in this study. Hassan et al. [59] had also
revealed that the RF exhibited a larger increase in testing RMSE over training RMSE than
the SVM and tree-based ensemble models for estimating Rs. Huang et al. [53] also found
that the RF model exhibited a larger percentage increase in MAPE and RMSE than the
SVM and CatBoost models for estimating ETo. This illustrated that RF was inferior for
regression problems, despite the fact that it performed well for classification problems.
Due to the RF model not being able to make a prediction beyond the range of the training
dataset, an over-fitting problem arises when noisy data in the testing stage are employed
for prediction. On the contrary, the MLP, SVM-RBF and ET models showed the best model
stability with the smallest percentage increase in RMSE and successfully avoided the over-
fitting problem. Fan et al. [41] revealed that SVM was the most stable model compared to
the XGBoost, GBDT, M5Tree and RF models, which was in agreement with our findings.
In addition, CART, GBDT, XGBoost, CatBoost and LightGBM also exhibited comparable
model stabilities as MLP, SVM-RBF and ET in this study, because the successive trees can
reduce the errors incorrectly predicted by the earlier predictors using extra weight, and a
weight vote is finally adopted for estimation [62].

4.4. Computational Costs of Various Models under Different Input Combinations

The data size used in this study was relatively small, which led to relatively small
differences in computational time among the six tree-based ensemble models (CART, ET,
RF, GBDT, XGBoost, LightGBM and CatBoost). However, the time differences between the
seven models and the other three models (SVM-RBF and MLP) would be much larger when
more variables, more stations, a smaller time scale and longer time series were applied
to develop a general model. For example, it would show enormous computational time
differences when more than 2400 meteorological stations at a three-hour scale from 2001–
2017 in China were used to develop the models. Therefore, computational efficiency was
also considered as a vital indicator when estimating Rs. The present study exhibits that the
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CART, ET, RF, GBDT, XGBoost, LightGBM and CatBoost models had higher computational
efficiency than the SVM-RBF and MLP models in the Python computing environment
(version 3.6). The previous studies had also revealed that the computational time of the
SVM model was 39 times the computational time of the RF model [59]. Wu et al. [38]
argued that the CatBoost model exhibited the highest computational efficiency compared
to MLP, M5Tree, MARS, RF and KNBA models in the R computing environment, and
Huang et al. [53] also found that the average time consumed by the CatBoost model in
the R computing environment was much less than that of the RF or the SVM model when
estimating ETo. The high computational efficiency of the CatBoost, LightGBM, RF and
XGBoost models was largely due to the advantage that they could be trained in parallel,
and CART provided the fastest computing time because it was a single-tree model.

4.5. Comprehensive Evaluation of Various Models

Considering the above analysis comprehensively, the priority of the MLP, SVM-RBF
and seven tree-based ensemble algorithms could be ranked as follows: CatBoost > Light-
GBM > XGboost > GBDT > SVM-RBF > MLP > RF > ET > CART. When it came to model
stability, the nine models could be sorted as follows: SVM-RBF > ET > MLP > CART
> CatBoost > XGboost > GBDT > LightGBM > RF. Similarly, the nine models could be
ordered in terms of their computational time: CART > ET > CatBoost > LightGBM > RF
> GBDT > XGBoost > MLP > SVM-RBF. The CatBoost, LightGBM, XGboost and GBDT
models exhibited the best prediction accuracy, acceptable stability and computational time
among all models in this study. Meanwhile, although the CART and ET models exhibited
good stability and fastest computational speeds, their prediction accuracy performed worst
among all models. Therefore, it was the CatBoost, LightGBM, XGBoost and GBDT models,
not the CART and ET models, that could be recommended for estimating daily Rs in this
study. This also demonstrated that the CatBoost, LightGBM, XGBoost and GBDT models
should be considered as promising artificial intelligence algorithms based on model sta-
bility, computational time and prediction accuracy in the Python computing environment
for estimating Rs in various climatic zones of China and possibly elsewhere in the world
with similar climatic zones (e.g., southeastern United States, southeast Australia, southern
Japan and South Korea for subtropical monsoon climates; northern Japan and North Korea
for temperate monsoon climates; Southeast Asia and India for tropical monsoon climates;
Central Asia for the temperate continental climate; and western America for plateau and
mountain climates).

5. Conclusions

This study developed the three new tree-based ensemble models (XGBoost, LightGBM
and CatBoost) for estimating daily Rs using eight input variables (Ra, n/N, Tmax, Tmin, Ho,
U10, Pre and Prs) under seven input combinations at 16 stations in different climatic zones of
China during 1993–2016. The three newly developed tree-based ensemble models were
also compared to the other four common tree-based ensemble models (CART, ET, RF and
GBDT), one kernel-based model (SVM-RBF) and one artificial neural network model (MLP),
comprehensively considering prediction accuracy, model stability and computational time.
The three newly developed tree-based ensemble models (LightGBM, CatBoost and XG-
Boost) and GBDT model offered a better prediction accuracy than the other models and
acceptable model stability and computational time in the Python computing environment.
Moreover, the more complete the input variables, the more accurate the estimation accuracy,
with extra-terrestrial solar radiation (Ra) and sunshine duration (C1) the most important
influencing factors on daily Rs estimation when applying these models to estimate Rs.

Thus, the three newly developed tree-based ensemble models (CatBoost, LightGBM
and XGBoost) and the GBDT model are highly recommended as promising alternative
models for estimating daily Rs at various stations in different climatic zones of China,
comprehensively considering prediction accuracy, stability and computational efficiency in
the Python computing environment.
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Further investigations are required to evaluate and compare computational costs for
all models in R, Matlab, Fortran or other computing environments. Moreover, it is also
required to evaluate the performances of newly developed tree-based ensemble models
under various input combinations at monthly and hourly time scales in various climates
of China and elsewhere worldwide with similar climatic zones (e.g., southeastern United
States, southeast Australia, southern Japan and South Korea for subtropical monsoon
climates, northern Japan and North Korea for temperate monsoon climates, Southeast
Asia and India for tropical monsoon climates, Central Asia for the temperate continental
climate and western America for plateau and mountain climates) in our subsequent work.
Furthermore, more attention should also be paid to mapping the regional and global
radiation distribution at a high spatial resolution by combining remote sensing techniques
and machine learning models.
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Nomenclature

Rs Global solar radiation/solar energy resource potential (MJ m−2)
Ra Extra-terrestrial solar radiation (MJ m−2)
DHI Direct horizontal irradiance (MJ m−2)
PAR Photosynthetically active radiation (MJ m−2)
n Observed sunshine duration (h)
N Maximum possible sunshine duration (h)
T Air temperature (◦C)
Ta Annual mean air temperature (◦C)
Tmax Maximum temperature (◦C)
Tmin Minimum temperature (◦C)
Hr Relative humidity (%)
Pre Precipitation (mm)
U10 Wind speed at 10 m height (ms−1)
Prs Pressure (hpa)
ETo Reference evapotranspiration (mm)
R Determination coefficient
RMSE Root mean square error
MAE Mean absolute error
MBE Mean bias error
SVM Support vector machine
ANN Artificial neural network
MLP Multi-layer perceptron

https://www.mdpi.com/article/10.3390/en15093463/s1
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ANFIS Adaptive neuro fuzzy inference system
TBAM Tree-based assemble mode
RF Random forest
GBDT Gradient boosting decision tree
XGBoost Extreme gradient boosting
CatBoost Gradient boosting with categorical features support
LightGBM Light gradient boosting method
ANFIS-GP ANFIS with grid partition
ANFIS-SC ANFIS with subtractive clustering

Appendix A

The extra-terrestrial solar radiation (Ra) and maximum possible sunshine duration (N)
were obtained using following equations:

Ra= 24/π × Isc(1 + 0.033 cos
360Nd

365
)×

[
πWS
180

(sin δ sin ϕ) + (cos δ cos ϕ sin WS)

]
(A1)

δ = 23.45 sin[360× (284 + Nd)/365] (A2)

WS = cos−1(− tan δ tan ϕ) (A3)

N =
2

15
cos−1[− tan(δ) tan(ϕ)] (A4)

where Isc is the solar constant (1367 Wm−2), δ indicates the solar declination, ϕ represents
the latitude of the location, WS denotes hour angle, and Nd means the day of the year
starting from January 1st.
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