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Abstract: To reduce the device number per unit level of the existing nine-level inverters, a topology
of single-phase transformerless nine-level inverter was proposed. The proposed topology consists of
only 10 switching devices and 4 capacitors. Firstly, the working principle of the proposed topology
was analyzed in detail, and the comparison with conventional nine-level topologies in terms of device
switching loss and conduction loss was presented. Then, combined with one-dimensional space
vector modulation, a floating capacitor voltage estimation method was presented by the analysis
of the operation mode before the arrival of redundant switching state. On this basis, a floating
capacitor voltage sensorless control scheme was proposed, to achieve the balance of the floating
capacitor voltages. Finally, simulations and experiments verified the effectiveness and correctness of
the proposed topology and floating capacitor voltage sensorless control method.

Keywords: nine-level inverter; one-dimensional space vector modulation; floating capacitor voltage
estimation; voltage balancing control

1. Introduction

In recent years, high-order multi-level inverters have attracted the attention of many
scholars in low-voltage applications such as new energy power generation, microgrids, and
motor drives, due to their advantages of high output power quality, low current harmonics,
and low voltage stress of switching devices [1–5]. At present, multi-level inverter circuits
mainly include neutral-point-clamped (NPC), flying capacitors (FC), cascaded H-bridge
(CHB), stacked multicell converter (SMC) and other topologies. A nine-level active NPC
(ANPC) inverter topology is proposed to expand the inverter capacity while reducing the
filter size by interleaving and paralleling two five-level ANPC inverters [6]. However,
this topology requires 24 switching devices, and the circuit hardware cost is high. A new
approach is developed in [7], which connects four flying capacitor H-bridges in series
with one two-level half bridge, effectively reducing the number of switching devices in
the nine-level topology to 18, but the flying capacitor voltage control of this topology
is relatively complex. The nine-level inverter topology presented in [8] uses a switched
capacitor circuit combined with an H-bridge. This circuit only needs one voltage source,
and fewer switching devices. Although the voltage stress of switching devices is relatively
small, the energy of this circuit can only be transmitted in one direction. The stacked multi-
unit multi-level circuit is proposed in [9,10], which not only reduces the energy storage of
the inverter, but also improves the voltage withstand capability of the circuit. The above-
mentioned multi-level topology is not suitable for low-voltage application, due to the large
number of devices and complex control. In order to solve the above problems, four nine-
level topologies suitable for low-voltage application are proposed in the literature [11–13].
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However, these topologies require more DC power sources in practical applications, which
greatly increases the system cost.

The unbalance of floating capacitor voltages has always been one of the key problems
to be solved in high-order multilevel inverters. Thus, several floating capacitor voltage
balance control methods have been proposed. A capacitance voltage estimation method
is proposed in [14]. By connecting a voltage sensor between two capacitor anodes and
analyzing the current flow path, only half of the voltage sensors can estimate the overall
capacitance voltage. The SVPWM modulation strategy is adopted in [15,16], and the balance
between the dc-link capacitor voltages and the floating capacitor voltages is achieved by
reasonably selecting the redundant vector. However, due to the large number of voltage
vectors, the calculation is very complicated. Compared with the SVPWM method, the
SPWM is simple and has been widely used in high-order multi-level topologies. A simple
logic-form equation based PWM is designed in [17], which can make the floating capacitors
voltage around its reference value. An inverter capacitor voltage balancing method based
on optimal zero sequence voltage injection is proposed in [18]. This method is realized by
hybrid carrier pulse width modulation, which can balance and adjust the voltage of DC link
capacitor and floating capacitors in the topology. A new carrier-based modulation scheme
was adopted in [19], which solves the problem of floating capacitors voltage balance by
clamping the modulation reference safely to the pole voltage level conducive to floating
capacitors voltage balance. A SPWM-based floating capacitor voltage control method is
proposed in [20], which achieves the balance of the floating capacitor voltage by reasonably
selecting redundant switch states during phase switching. By adjusting the duty cycle,
the dwell time of the redundant switch state is changed, and then the floating capacitor
voltages are controlled to be balanced [21]. A one-dimensional space vector modulation
method is proposed in [22], which can achieve the voltage balance of the floating capacitors
while reducing the switching loss and the control complexity. Compared with SPWM, the
one-dimensional space vector can increase the control degree of freedom of the inverter,
which is more conducive to the high-frequency output of the inverter.

However, the realization of the above-mentioned floating capacitor voltage balance
methods requires the use of voltage sensor to obtain a voltage signal. Since the actual
operating environment of the inverter is complex, humidity, vibration, noise, electromag-
netic interference, etc. will affect the measurement accuracy of the sensor, and even lead to
sensor failure. Therefore, how to realize sensorless control or less sensor control is the key
to ensure the reliable operation of the inverter system. However, most of the existing sen-
sorless control strategies are proposed to cancel the grid voltage or current sensors [23–25],
while the floating capacitor voltage sensorless control is relatively rarely reported.

To tackle the above problems, this paper proposes a low-voltage single-phase non-
isolated nine-level inverter topology with simple structure and few switching devices, and
it presents a floating capacitor voltage sensorless control strategy based on one-dimensional
space vector modulation. First, the working principle of the proposed nine-level inverter is
analyzed in detail, and the comparison with the existing nine-level topologies is presented.
Then, combined with the one-dimensional space vector modulation algorithm, a control
strategy without floating capacitor voltage sensor is proposed, and the voltage balance is
realized by estimating and predicting the floating capacitor voltages. Finally, simulation
and experimental results have verified the validity and feasibility of the proposed topology
and control algorithm.

2. The Proposed Nine-Level Inverter Topology and Its Working Principle
2.1. Topology

The proposed single-phase non-isolated nine-level inverter topology is shown in
Figure 1. The circuit is mainly composed of 10 switching devices and 4 capacitors. S2, S3,
and S7 are composed of two switching devices, which are bidirectional blocking switches,
and S1, S4, S5 and S6 are unidirectional blocking switches. Assuming that the total dc-link
voltage VDC is 8E, the voltage of the dc-link capacitors C1 and C2 is 4E, and the voltage of



Energies 2022, 15, 3418 3 of 17

the floating capacitors C3 and C4 is E. IDC and IO are the dc-link current and load current,
respectively, while IC1, IC2, IC3 and IC4 are the currents flowing through the capacitors C1,
C2, C3 and C4, respectively.
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Figure 1. The topology of the proposed 9-level converter.

2.2. Working Modal Analysis

Figure 2 shows the 12 working states of the proposed topology. The solid arrows in
the figure represent the reference positive direction of the current on each path, and the
dashed arrows represent the actual flow direction of the current. The detailed switch status
analysis is as follows:

(1) State P4 (Figure 2a): The switches S1 and S5 are turned on, the current flows from the
positive terminal of the dc-link through the switches S1, S5 and the load, and then
returns to the neutral point, the inverter output voltage VO = VDC/2. The current
flowing through capacitors C3 and C4 is IC3 = IC4 = 0.

(2) State P3 (Figure 2b): The switches S1 and S7 are turned on, the current starts from the
positive end of the dc-link and returns to the neutral point after passing through S1,
C3, S7 and the load, and the output voltage VO = 3VDC/8. The current through C3 is
IO and the current through C4 is 0.

(3) State P2P (Figure 2c): the switches S1 and S6 are turned on, the current starts from the
positive terminal of the dc-link and returns to the neutral point through S1, C3, C4, S6
and the load. The output voltage VO = VDC/4, and the currents IC3 = IC4 = IO.

(4) State P2N (Figure 2d): the switch S3 and S5 are turned on, the current starts from the
neutral point and returns to the neutral point after passing through S3, C4, C3, S5 and
the load. The output voltage VO = VDC/4, and the currents IC3 = IC4= −IO.

(5) State P1 (Figure 2e): the switches S3 and S7 are turned on, the current starts from the
neutral point and returns to the neutral point after passing through S3, C4, S7 and the
load. The output voltage VO = VDC/8, while the currents IC3 = 0 and IC4 = −IO.

(6) State OP (Figure 2f): The switches S2 and S5 are turned on, and the current starts from
the neutral point and returns to the neutral point after passing through S2, S5 and the
load. At this time, VO = 0, IC3 = IC4 = 0.

(7) The state is ON (Figure 2g): the switches S3 and S6 are turned on, the current starts
from the neutral point and then returns to the neutral point after passing through S3,
S6 and the load, and the voltage VO = 0, and the currents IC3 = IC4 = 0.

(8) State N1 (Figure 2h): The switches S2 and S7 are turned on, the current starts from the
neutral point and returns to the neutral point after passing through S2, C3, S7 and the
load. The output voltage VO = −VDC/8, and the currents IC3 = IO, IC4 = 0.
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(9) State N2P (Figure 2i): The switch tubes S2 and S6 are turned on, the current starts
from the neutral point and returns to the neutral point after passing through S2, C3,
C4, S6 and the load. The voltage VO = −VDC/4, and the currents IC3 = IC4 = IO.

(10) State N2N (Figure 2j): The switches S4 and S5 are turned on, and the current starts
from the negative end of the dc-link and returns to the neutral point through S4, C4, C3,
S5 and the load. The output voltage VO = −VDC/4, and the currents IC3 = IC4 = −IO.

(11) State N3 (Figure 2k): the switches S4 and S7 are turned on, the current starts from the
negative end of the dc-link and then returns to the negative end of the dc-link through
S4, C4, S7 and the load. The voltage VO = −3VDC/8, and the current IC4 = −IO.

(12) State N4 (Figure 2l): The switches S4 and S6 are turned on, the current starts from the
negative end of the dc-link and returns to the neutral point after passing through S4,
S6 and the load. The voltage VO = −VDC/2, and the currents IC3 = IC4 = 0.
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Table 1. Switching states of the proposed 9-level converter.

S1–S7 States
VC3 VC4

VO
IO > 0 IO < 0 IO > 0 IO < 0

1000100 P4 - - - - 4E
1000001 P3 ↑ ↓ - - 3E
1000010 P2P ↑ ↓ ↑ ↓ 2E
0010100 P2N ↓ ↑ ↓ ↑ 2E
0010001 P1 - - ↓ ↑ E
0100100 OP - - - - 0
0010010 ON - - - - 0
0100001 N1 ↑ ↓ - - E
0100010 N2P ↑ ↓ ↑ ↓ −2E
0001100 N2N ↓ ↑ ↓ ↑ −2E
0001001 N3 - - ↑ −3E
0001010 N4 - - - - −4E

Note: ‘↑’ means capacitor charging; ‘↓’ means capacitor discharge.

2.3. Comparison with Existing Nine-Level Inverter Topologies

In order to explain the advantages of the proposed topology more intuitively, this
paper selects the traditional ANPC and SMC nine-level topology as the comparison objects.
Figure 3 shows the above circuit topologies.
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Table 2 presents the main circuit parameter comparison between the proposed topol-
ogy and two typical nine-level topologies. In terms of the number of switching devices, the
number of switching devices in the proposed topology is 5/8 than that of the SMC-9L topol-
ogy and 5/6 than that of the ANPC-9L topology. The proposed topology can effectively
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reduce the difficulty of circuit design, reduce the system cost, and improve the reliability of
the inverter. Compared with ANPC-9L, the number of floating capacitors in the proposed
topology is reduced by 1, and 4 less than that of SMC-9L, and the withstand voltage is
lower, which can reduce the volume of floating capacitors. In addition, the number of
sensors of the proposed topology is also less than other topologies.

Table 2. Parameters comparison of the main circuit.

Parameters ANPC-9L SMC-9L Proposed Topology

number of switching devices 12 16 10
switching devices withstand voltage 4E × 4 + E × 8 E × 16 4E × 6 + E × 4
capacitive voltage sensing number

of devices 5 8 4

number of floating capacitors 3 6 2
suspension capacitance

withstand voltage 3E × 1 + 2E × 1 + E × 1 3E × 2 + 2E × 2 + E × 2 E × 2

In order to compare the switching losses of the above three topologies, the ANPC-9L
is divided into 5 units, the SMC-9L is divided into 4 units, and the proposed topology is
divided into 2 units, as shown in Figure 3. It can be seen that the ANPC-9L unit 1 has
the same structure as the unit 1 of the proposed topology, and the voltages of the devices
are both 4E. Therefore, under the same switching frequency, the switching losses of the
devices in the two topological units 1 are the same. The devices of ANPC-9L units 2, 3, 4,
and 5 and the devices in the proposed topology unit 2 are both subjected to voltage E, but
the proposed topology unit 2 has only 4 switching devices, while the ANPC-9L units 2,
2, There are a total of 8 switching devices in 3, 4 and 5. Obviously, at the same switching
frequency, the proposed topology has smaller switching losses.

Compared with the SMC-9L, the proposed topology unit 2 and SMC-9L unit 4 have
the same structure, and the voltages of the devices are both E. Under the same switching
frequency, the switching loss of the proposed topology unit 2 and SMC-9L unit 4 is the
same. There are 6 switching devices in the proposed topology unit 1, the withstand voltage
is 4E, the number of switching devices in SMC-9L units 1, 2, and 3 is 12, and the device
withstand voltage is E; thus, under the same switching frequency, the device switching loss
of the unit 1 in proposed topology is slightly larger than that of the sum of the units 1, 2, 3
in SMC-9L.

Table 3 shows the comparison results of the total number of devices in the current
path when the three nine-level topologies output different voltage levels. It can be seen
that when the proposed topology outputs each level, the number of devices through which
the current flows is the smallest, so the conduction loss is also the smallest. Generally, the
switching frequency of a multilevel inverter is low, and the conduction loss accounts for
the main part of the device loss. Therefore, the topology proposed in this paper has the
lowest total device loss.

Table 3. Comparison of the total number of devices in the current path.

VO
Total Number of Devices in the Current Path

ANPC-9L SMC-9L Proposed Topology

4E 5 4 2
3E 5 5 3
2E 5 6 2
E 5 7 4
0 5 8 3
−E 5 7 4
−2E 5 6 2
−3E 5 5 3
−4E 5 4 2
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3. Control Strategy of Voltage Sensor without Floating Capacitance

The control objectives of the proposed nine-level inverter are: output voltage VO,
dc-link capacitor voltages VC1, VC2, and flying capacitor voltages VC3, VC4. Since the
one-dimensional space vector modulation algorithm has the advantages of high degree
of freedom and can control multiple targets at the same time [26,27], the one-dimensional
space vector modulation algorithm is adopted in this paper. On this basis, by analyzing
the circuit state before the redundant switch state arrives, the estimation method of the
floating capacitor voltage is given, and then the appropriate value is selected according
to the difference between the estimated value of the floating capacitor voltage and the
reference value and the positive and negative current of the current. Redundant switching
state, a voltage sensor control algorithm without floating capacitance is proposed.

3.1. One-Dimensional Space Vector Modulation Algorithm

Let the output voltage vector of the single-phase nine-level inverter be VO, and the
reference voltage vector be the modulating wave vector ur. Figure 4 shows the one-
dimensional space vector diagram of the single-phase nine-level inverter.
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The expression of the modulation signal ur is defined as

ur =
1
2

MVDC sin(ωt), (1)

where M is the modulation degree, and 0 ≤M ≤ 1. In the one-dimensional vector space,
select the most recent two voltage vectors to synthesize the reference voltage ur. Let the
vector with the larger modulus value be Vp, and the vector with the smaller modulus value
be Vn. It can be noticed that the interval where ur is located can be determined according
to the sign and modulus value of ur. If ur is in the interval VI, the vector 2E and E are used
for synthesis.

According to volt-second balance principle, the dwell time of the vectors Vp and Vn
satisfies Equation (2), where Ts is the switching period.{

urTs = VpTp + VnTn
Ts = Tp + Tn

, (2)

3.2. Control Strategy of Voltage Sensor without Floating Capacitance

From Table 1, the redundant switch states P2P, P2N, N2P and N2N can affect the
floating capacitors C3 and C4 at the same time. Therefore, the floating capacitor voltage can
be adjusted by reasonably selecting the redundant switch states corresponding to the ±2E
level. In order to cancel the floating capacitor voltage sensor, it is necessary to accurately
estimate the floating capacitor voltage before outputting the ±2E level.

Figure 5 shows the switch sequence diagram in which the output levels 2E and −2E
participate. Before the output voltage reaches the 2E level, there are two level states, 3E
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and E. Therefore, it is necessary to perform voltage estimation in these two states. Taking
Figure 5a as an example, the floating capacitor voltage value is estimated when the 3E
level is output, and the redundant switch state selection is performed when the 2E level is
output. Before the output voltage reaches the −2E level, there are two level states, −3E
and −E, and the voltage needs to be estimated in these two states. In Figure 5c, when the
output voltage is at the −E level, the floating capacitor voltage value is estimated, and the
redundant switch state selection is performed when the output −2E level.
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In order to distinguish the four level states of 3E, E, −E, and −3E, define the inverter
output voltage to round up the level N:

N = ceil(
VO

E
), (3)

where ceil(x) is the round-up function.
As can be seen from Figure 5, there are 3 sampling data reading points in one switching

sequence cycle, and the values of VC1, VC2, VO, and IO can be read at the sampling points.
In Figure 2b, when the level state is 3E, the current flows through C1, C3 and the load and
returns to the neutral point. According to Kirchhoff’s voltage law, the floating capacitor
voltage VC3 can be expressed as VC1 − VO. In Figure 2h, when the level state is −E, the
current flows through C3 and the load and returns to the neutral point, and the floating
capacitor voltage VC3 can be expressed as −VO. Therefore, when the switch states are P3
and N1, the voltage of C3 can be estimated. In Figure 2e, when the level state is E, the
current flows through C4 and the load and returns to the neutral point, and the floating
capacitor voltage VC4 can be expressed as VO. When the flat state is −3E, the current flows
through C2, C4 and the load and returns to the neutral point, and the floating capacitor
voltage VC4 can be expressed as VO + VC2. Therefore, when the switching states are P1
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and N3, the voltage of C4 can be estimated. Therefore, the voltage estimation formula of
capacitors C3 and C4 can be expressed as:

VFC_est =


VC1 −VO, VO= 3E
VO, VO = E
−VO, VO = −E
VO + VC2, VO = −3E

, (4)

However, when voltage estimation is performed, there will be cases where the esti-
mated value changes abruptly as the switch state changes. Therefore, it is necessary to deal
with this sudden change in the control algorithm: use the estimated value at the previous
moment to select the redundant switch state, so as to avoid the sudden change in the
estimated value causing the estimated voltages of C3 and C4 to be unbalanced.

Since the proposed topology and modulation signal ur are both symmetrical, in theory,
the charge and discharge capacities of capacitors C3 and C4 are not much different, and
the redundant switch states at 2E and −2E levels have the same effect on the charge and
discharge of C3 and C4. Therefore, it is not necessary to set the priority of voltage regulation
of C3 and C4 in the proposed control algorithm, and unified tracking regulation can be
performed according to the estimated floating capacitor voltage value corresponding to
the moment before the arrival of the output level ±2E. Let ∆VCF be the voltage offset state
between the estimated value of C3 or C4 and the reference value, the polarity of the voltage
offset of C3 and C4 can be expressed as:

DC =

{
1, ∆VCF > 0
0, ∆VCF ≤ 0

, (5)

Let the direction of the current flowing out of the inverter be the positive direction,
and the current direction is represented by DI:

DI =

{
1, iO > 0
0, iO ≤ 0

, (6)

It can be seen from the literature [28] that the selection of the reference value of the
floating capacitor voltage determines the storage and transmission of capacitive energy in
the topology, and the transfer relationship of the capacitive energy is:

∆QC1 + ∆QFC_P = ∆QC2 + ∆QFC_N, (7)

In the formula, ∆QC1 and ∆QC2 are the energy transferred from C1 and C2 to the load
in one modulating wave cycle, respectively; ∆QFC_P and ∆QFC_N are the energy transferred
from C3 and C4 to the load in the positive and negative half cycles. Therefore, the voltage
reference value of the positive and negative half-cycle floating capacitors can be set as:

V∗FC_P = E + K(2E− VC2

2
), (8)

V∗FC_N = E + K(2E− VC1

2
), (9)

In the formula, K is the voltage correction coefficient, and the value of K affects the
balance degree of VC1 and VC2.

When the estimated voltage of the floating capacitor C3 or C4 is greater than or less
than the reference voltages VFC_P* and VFC_N*, it needs to be discharged or charged, and
then the switch state at the next moment is selected according to the direction of the output
current IO at this time. When the inverter outputs 2E and −2E levels, the switching state
selection principle for balancing the voltage of the floating capacitor is as follows:

SP2 = [DC � DI] ∗ P2P+[DC ⊕ DI] ∗ P2N, (10)
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SN2 = [DC � DI] ∗N2P+[DC ⊕ DI] ∗N2N. (11)

3.3. Implementation of the Proposed Algorithm

The implementation process of the floating capacitor voltage estimation is shown in
Figure 6. By judging the size of the output voltage rounding up the level N, the estimation
formula of the floating capacitor voltage is selected.
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The flowchart of redundant switch state selection is shown in Figure 7. Combined
with Table 1, if the sampled output current IO > 0 and the output voltage VO is positive,
when the estimated value of the floating capacitor voltage is greater than the reference
value, select the P2N switch state to discharge; when the estimated value of the floating
capacitor voltage is less than the reference value, select the P2P switching state for charging,
so that the voltage of the floating capacitor returns to a balanced state. Similarly, other
redundant switch states can be selected according to Figure 7.

The block diagram of the proposed control strategy is shown in Figure 8. The nine-level
inverter adopts one-dimensional space vector modulation, obtains the real-time operating
parameters VC1, VC2, VO, IO of the inverter through sampling, selects the calculation
formula of the floating capacitor voltages according to the redundant switch state, judges
the positive and negative output current. Then, calculate the difference between the
estimated value of the floating capacitor voltage and the reference value, and select the
redundant switch state according to the charging and discharging requirements of the
floating capacitor, and finally output the driving pulse of the switch tube Sk (k = 1, 2, . . . 7).
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4. Simulation and Experimental Analysis
4.1. Simulation Analysis

In order to verify the validity of the proposed topology and the feasibility of the control
strategy, a single-phase nine-level inverter simulation model was built in Matlab/Simulink.
The simulation parameters are listed as follows: dc-link voltage reference value is 400 V, bus
capacitor C1 = C2 = 6720 uF, flying capacitor C3 = C4 = 6 mF, output voltage fundamental
frequency is 50 Hz, load Lf = 30 mH, Rf = 10 Ω. The voltage correction coefficient K in
Equations (8) and (9) is tuned as 0.1.

Figure 9 shows the steady-state simulation waveforms of the proposed topology. It can
be seen from Figure 9a,b that the output voltage of the proposed topology is a nine-level
staircase wave, the output current has a high sine degree, and the current THD is 0.28%.
In Figure 9c, the bus capacitor voltage is stable around 200 V, with a fluctuation range of
±3.8 V, and the floating capacitor voltage is stable around 50 V, with an up and down
fluctuation range of ±2.2 V.
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(c) Simulation Waveforms of dc-link Capacitor Voltage and Suspended Capacitor Voltage.

Figure 10 shows the simulation waveforms of the dc-link voltage, bus capacitor voltage,
floating capacitor voltage, output voltage and output current when the modulation factor
M = 0.7, M = 0.85 and M = 1. THDV and THDI are the THD values of the output voltage and
output current, respectively. It can be seen from Figure 10 that when the modulation degree
is small, the output voltage presents a seven-level staircase wave. When the modulation
degree changes, the output voltage can achieve a smooth transition. Under different
modulations, both the bus capacitor voltage and the floating capacitor voltage are stable
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near their reference values, where the bus capacitor voltage ripple is 7 V, and the floating
capacitor voltage ripple is 5 V.
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Figure 10. Simulation results under different modulation degree M.

Figure 11 shows the simulation waveforms of the proposed voltage sensorless control
strategy. It can be seen from Figure 11a that the proposed control method can track the
voltage of the floating capacitor quickly and accurately under different modulation degrees,
and the error rate is less than 2%. Comparing Figures 10 and 11b, the proposed method
has the same output performance as the traditional sensor measurement method, but its
capacitor voltage ripple is larger than that of the sensor measurement, the bus capacitor
voltage ripple is 13 V, and the floating capacitor voltage ripple is 7 V. Because the floating
capacitor voltage estimation method is affected by the sampling time and the system
calculation time, a slight delay leads to a larger estimation error.
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4.2. Experimental Analysis

To further verify the effect of the circuit topology and control method proposed in
this paper, an experimental platform is built, as shown in Figure 12. The experimental
parameters are as follows: dc-link voltage reference value is 400 V, dc-link capacitor
C1 = C2 = 6720 uF, floating capacitor C3 = C4 = 6 mF, output voltage fundamental frequency
f g = 50 Hz, load Lf = 30 mH, Rf = 6 Ω, and system switch Frequency f s = 2 kHz. The switch
device model used in this platform is IPW60R070C6, and its driver is QC962-8A.



Energies 2022, 15, 3418 14 of 17

Energies 2022, 15, x FOR PEER REVIEW 14 of 18 
 

 

 
 

(a) (b) 

Figure 11. Simulation waveforms of the proposed floating capacitor voltage sensorless control 
scheme. (a) Simulation waveform of actual and estimated value of floating capacitor voltage; (b) 
Capacitor voltage, output voltage and output current simulation waveforms. 

4.2. Experimental Analysis 
To further verify the effect of the circuit topology and control method proposed in 

this paper, an experimental platform is built, as shown in Figure 12. The experimental 
parameters are as follows: dc-link voltage reference value is 400 V, dc-link capacitor C1 = 
C2 = 6720 uF, floating capacitor C3 = C4 = 6 mF, output voltage fundamental frequency fg = 
50 Hz, load Lf = 30 mH, Rf = 6 Ω, and system switch Frequency fs = 2 kHz. The switch 
device model used in this platform is IPW60R070C6, and its driver is QC962-8A. 

 
Figure 12. Scaled-down experimental platform of the proposed single-phase nine-level inverter. 

Figure 13 shows the experimental waveforms of the proposed topology at different 
modulation degrees. In Figure 13a, the experimental waveform is basically consistent with 
the simulation result, the output voltage is a nine-level staircase wave, and the output 
current has a high sine degree. Due to the influence of the load inductance Lf, the current 
lags the voltage. It can be seen that the nine-level topology has good output performance. 
It can be seen from Figure 13b that VC1 and VC2 are both stable at about 200 V, and the 
voltage fluctuation range is ±12 V. It can be seen from Figure 13c that VC3 and VC4 are both 
stable at about 50 V, and the voltage fluctuation range is ±4 V. 

  

Figure 12. Scaled-down experimental platform of the proposed single-phase nine-level inverter.

Figure 13 shows the experimental waveforms of the proposed topology at different
modulation degrees. In Figure 13a, the experimental waveform is basically consistent with
the simulation result, the output voltage is a nine-level staircase wave, and the output
current has a high sine degree. Due to the influence of the load inductance Lf, the current
lags the voltage. It can be seen that the nine-level topology has good output performance.
It can be seen from Figure 13b that VC1 and VC2 are both stable at about 200 V, and the
voltage fluctuation range is ±12 V. It can be seen from Figure 13c that VC3 and VC4 are both
stable at about 50 V, and the voltage fluctuation range is ±4 V.
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Figure 14 shows the experimental waveforms of the proposed voltage sensorless
control strategy. It can be seen from Figure 14a that under different modulation degrees,
the proposed method has the same effect as using the floating capacitor voltage sensor, and
both can achieve stable output of the inverter. In Figure 14b, VC1 and VC2 have the smallest
ripple when M = 0.85, and the voltage ripple range is ±14 V. From Figure 14c, it can be
noticed that the voltage fluctuation range of VC3 and VC4 is ±8 V, which is slightly larger
than that of the method with floating capacitor voltage sensor. It is because the voltage
ripple is affected by factors such as the control frequency of the system, the correction
coefficient K, and the number of estimated sampling points. Although the voltage ripple is
large, the proposed sensorless control strategy can reduce the hardware cost of the system,
since there is no need to design the sampling circuit of the floating capacitor voltages.
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5. Conclusions

This paper proposes a single-phase non-isolated nine-level inverter topology. Com-
pared with the traditional topology, this topology has the advantages of fewer switching
devices and fewer floating capacitors. Additionally, a floating capacitor voltage sensor-
less control algorithm is presented. The algorithm realizes the estimation of the floating
capacitor voltages by sampling the output voltage and the bus capacitor voltage, and it
achieves the balance of the floating capacitor voltages combined with the one-dimensional
space vector modulation method. Finally, the proposed algorithm is verified by computer
simulation and experiments. Theoretical analysis and simulation experimental results show
that the proposed topology and control method have the following advantages:

(1) Compared with the traditional nine level inverter topology, the proposed nine level
inverter has obvious advantages in the number of switching devices and the number
of flying capacitors. The most prominent is that the number of switching devices
through which the current flows is the least, which reduces the device switching loss
in the inverter.

(2) The proposed method reduces 50% capacitor voltage sampling circuit, which can
greatly reduce the cost of the system, and it can realize the accurate estimation of the
floating capacitor voltage and its balance control at a specific moment.
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