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Abstract: As the use of photovoltaics becomes more widespread, new technologies for more efficient
energy generation, transmission, and distribution based on power electronics converters are being
developed. The most common applications are grid-on, energy storage, hybrid, and high voltage
gain applications. These applications impose several additional requirements in the design of power
converters associated with the solar battery’s maximum power tracking and operation in a wide
range of input currents and voltages. The practical realization of such solutions can be implemented
on the basis of various topologies, which requires a preliminary application of criteria for assessing
their effectiveness. The paper conducts a comparison of different topologies on power converters
based on two parameters that describe their cost and power loss for various PV applications. For a
straightforward study, these parameters are represented using the gain factor, which allows for an
accurate comparison of the efficiency of various types of converters.

Keywords: power converters; PV applications review; cost factor; power loss

1. Introduction

The modern development of the energy industry implies a gradual abandonment of
fossil energy sources and a transition to renewable energy, i.e., solar, wind, geothermal,
hydro energy, and biofuels [1]. Wind power plants currently produce 52% of total electricity
generated from renewable sources (excluding hydropower), while solar power plants
produce 26% [2]. Solar power plants, on the other hand, rank first in terms of installed
capacity for 2020, with 125 GW compared to 110 GW for wind power plants. There are
cheaper materials for solar panels, such as silicon [3], and it costs less to keep them up and
running [4].

The main economic constraint on the use of solar power plants, namely the higher cost
of electricity than for fossil energy sources, is gradually being eliminated. However, solar
energy loses in terms of technical indicators: specific capacity, generation stability, cost of
maintenance, and infrastructure, which is the main deterrent to its rapid spread [5,6]. So, to
overcome this gap, it is necessary to modernize power plant infrastructure. Among these
actions, here are the ones that should be highlighted [7]:

- Maximum power point tracking;
- Energy storage and balancing;
- Electric parameter transformation and stabilization.
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The generation of solar battery power is characterized by a family of power curves for
different solar insolation powers: PSI1, PSI2, and PSI3 as functions of voltage U, P = f (U),
or current I, P = f (I), as shown in Figure 1a,b. A high level of efficiency is reached when
the solar battery is near the maximum power point (MPP) [8], where PMPP = f (UMPP) or
PMPP = f (IMPP) with power from the solar panel 1, 2, and 3.
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U, P = f (U); (b) as functions of current I, P = f (I). 

For voltage curves, MPP coordinates UMPP are defined by the open circuit solar bat-

tery voltage UOC which is almost constant and belongs to the narrow range UMPP ∈ 

[0.72·UOC; 0.76·UOC] that slightly depends on solar insolation power PSI. The current MPP 

co-ordinate IMPP is influenced by the short-circuit current ISC, IMPP ∈ [0.9·ISC; 0.93·ISC]. How-

ever, the short-circuit current, ISC, in contrast to the open-circuit voltage, varies widely and 

is proportional to PSI [9]. 

If a load with resistance RL is connected directly to a solar battery, maximum power 

PMPP is delivered to the load when the equivalent resistance of the solar battery RSB is equal 

to the load resistance RL in MPT: 

,MPP
SB L

MPP

U
R R

I
= =  (1) 

in another case, when RSB ≠ RL, power converters as maximum power point trackers 

(MPPT) are used [10]. The power converter via output voltage (current) UL (IL) regulation 

tunes equivalent load resistance RL(eq) on the converter primary side according to Equation 

(2) as shown in Figure 2: 

( ) 2

1
,MPP L L

SB L eq

MPP L

U U R
R R

I G I G G
= = =  =  (2) 

where G is a converter voltage gain.  

+ +

  

)eq(LR

MPPI +

 

LR

LI

Solar battery Power converter

MPPU LU

 

Figure 2. Equivalent load resistance RL(eq) tuning with a power converter. 

Figure 1. A family of power curves for different solar insolation powers: (a) as functions of voltage
U, P = f (U); (b) as functions of current I, P = f (I).

For voltage curves, MPP coordinates UMPP are defined by the open circuit solar battery
voltage UOC which is almost constant and belongs to the narrow range UMPP ∈ [0.72·UOC;
0.76·UOC] that slightly depends on solar insolation power PSI. The current MPP co-ordinate
IMPP is influenced by the short-circuit current ISC, IMPP ∈ [0.9·ISC; 0.93·ISC]. However,
the short-circuit current, ISC, in contrast to the open-circuit voltage, varies widely and is
proportional to PSI [9].

If a load with resistance RL is connected directly to a solar battery, maximum power
PMPP is delivered to the load when the equivalent resistance of the solar battery RSB is
equal to the load resistance RL in MPT:

RSB =
UMPP
IMPP

= RL, (1)

in another case, when RSB 6= RL, power converters as maximum power point trackers (MPPT)
are used [10]. The power converter via output voltage (current) UL (IL) regulation tunes
equivalent load resistance RL(eq) on the converter primary side according to Equation (2) as
shown in Figure 2:

RSB = RL(eq) =
UMPP
IMPP

=
UL
G
· 1

ILG
=

RL

G2 , (2)

where G is a converter voltage gain.
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However, even a power converter such as MPPT does not always provide an efficient
mode of solar battery operation. As shown in Figure 3a, only constant solar battery current
IMPT that fits MPP allows for generating of maximum power for defined solar insolation PSI.
If the solar battery current has ripple ∆I, output power pulsation ∆P appears and decreases
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average power P proportionally to ripple amplitude ∆I as shown in Figure 3b [11]. If the
input current is discontinuous, then solar battery energy is used inefficiently as shown in
Figure 3c. Therefore, the aforementioned features of the solar batteries impose additional
requirements on the power converter as an MPPT, specifically:

- Continuous low ripple input current I;
- High efficiency in a wide power range.
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Figure 3. The Impact of MPPT input current shape on the value of solar battery power: (a) continuous
current; (b) current with ripple ∆I; (c) discontinuous current.

There is an input inductor L in the boost converter [12]. This inductor produces
continuous current and can be used directly as an MPPT (Figure 4a). Because it has a
series-connected transistor, buck and buck/boost converters have an extra capacitor CF
that filters the input current, as shown in Figure 4b.
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inductor L; (b) with an additional capacitor CF for a converter with a series transistor.
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The equivalent resistance of solar battery, RSB, varies as a function of solar insolation
power and is greater than the minimum value RSB(min) attained for maximum insolation:

RSB(min) =
UMPP
IMPP

∣∣∣∣ PSB → max
. (3)

When solar insolation is zero, RSB tends to infinity. In practice, MPPT works effectively
with some range of solar battery resistance RSB ∈ [RSB(min); RSB(max)], where RSB(max)
defines the minimum solar insolation power PSB(min) where MPPT may operate [13,14].
Therefore, MPPT has to effectively shift the operating point of the solar battery to MPP in
the defined range of resistance RSB. MPPT converters with different voltage gains G are
used depending on the relationship between the resistances of a solar battery RSB and the
load RL:

- Boost converters (G > 1), if RSB(max) < RL;
- Buck/boost converters (G = G(min) . . . 1 . . . G(max)), if RSB(min) < RL < RSB(max);
- Buck converters (G < 1), if RSB(min) > RL.

The common foregoing conditions of effective PV system design are complemented
by the technical aspects of connecting the solar batteries to the power grid or its standalone
operation. In Table 1, the topologies of common PV applications and their modifications
are listed.

Table 1. Common PV application descriptions and requirements.

PV Application Modifications

1. Standalone PV applications [15,16]

- DC or AC;
- with DC-link or without it (only for AC systems)
- low, middle, or high voltage;
- with electric battery or without it;
- DC or AC battery connected;
- isolated or transformerless;
- one, three, or multiphase.

2. On-grid PV applications [17,18]
3. Hybrid PV applications [19,20]

For the efficient design of PV systems, the key task is the correct choice of power
converter topology for providing effective energy transfer and conversion. Therefore,
it is necessary to pay attention to the following features of power converter design for
PV systems:

1. The multifunctional purpose of the power converters is:

- MPPT in a standalone DC or AC system simultaneously provides maximum
power and charges an electric accumulator, as shown in Figure 5a,b [21];

- In AC on-grid applications that directly deliver energy to the AC power grid,
MPPT maximizes energy, converts it from DC to AC form, and provides power
factor correction and reactive power generation as needed, as shown in
Figure 5c [22].

2. Advanced schematic and control algorithms:

- For energy balancing and stable generation, often for AC grid-connected applica-
tions, electric batteries with bidirectional chargers are connected [23], as shown
in Figure 5c. To make sure that electricity has the right dynamics and quality,
you need to use advanced control algorithms with multi-loop and predictive
control [24].

- Co-ordination of parallel operations of several energy sources and determination
of their priority in a hybrid system [25], as seen in Figure 5d.

3. Special issues in converter design:

- For high voltage DC and AC on-grid systems, specialized converters adapted for
PV applications are being developed [26];
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- Hybrid systems provide parallel operation of several alternative power supplies
connected to the power grid and load that in general may be considered a mul-
tiport power system [27]. As a result, a reduced-component multiport power
system can be made instead of having a lot of separate power converters that do
the same thing [28].
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(c) on-grid AC systems with energy storage; and (d) hybrid systems.

Implementation of the aforementioned PV applications is covered by a set of con-
verter topologies with their own advantages and disadvantages. The choice of the most
appropriate solution depends on many factors [29]:

- System type (standalone or grid-on, DC or AC);
- Voltage and power level (low, middle, or high);
- The relationship between the voltage of the solar battery and the grid;
- Additional requirements on power factor value and power stability.

For instance, an MPPT unit may be effectively realized with either a DC–AC converter
or a two-stage power system with DC–DC and DC–AC converter; a storage system may be
installed on the DC–DC side of the PV system or directly on the DC or AC system; a PV
system may be connected to the grid with one or few high-power converters, or realized as
a distributed system with a set of low or middle power converters, etc.

This paper looks at different topologies that could be used to solve the discussed
problems It also tries to show the good and bad points of the solutions based on proper
generalization parameters that allow comparing their effectiveness.

In general, power converter comparative analysis is performed based on their complex-
ity, i.e., number of inductors, capacitors, and semiconductor components [30], also taking in
to account voltage gain characteristics, control strategy, efficiency, etc. However, the most
fruitful results are obtained by comparing converters designed to solve a particular problem
that put forward a number of specific requirements to the power converter. For instance,
for designing a dynamic voltage restorer [31], these parameters are high dynamics, wide
reactive and active power regulation range, and easy energy storage integration, whereas
for AC/DC Microgrids [32] parameters are the value of output impedance, type of power
flow control, voltage modulation strategy, and voltage and frequency regulation. For solar
applications, the main requirement, as mentioned before, is high efficiency in a wide power
range and, as for industrial solutions, low cost per unit of power.
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As a numerical criteria of the converter cost per unit of output power, Pout may be
measured by the cost factor kC which is inverse to the transistor utilization factor kU [33]:

kC =
1

kU
=

S
Pout

, (4)

where S is total switch stress and:

S =
N

∑
k=1

Ukmax · Ikmax, (5)

where N is the switch number of the power converter, and Ukmax and Ikmax are the maxi-
mum voltage and current stress of the switch k, respectively. Normalized power loss P* [34]
of the switch can be used to estimate power converter efficiency.

Detailed and comprehensive comparative PV converter analysis in space of cost factor
and normalized power loss is carried out in the paper in such a sequence.

Section 2 discloses a methodology of deriving cost factor and normalized power loss
for DC–DC and DC–AC converters with hard and soft-switching transistor commutation.

In Sections 3–6, classification, cost, and efficiency comparisons of power converters for
AC grid, energy storage, high voltage gain, and hybrid PV applications are given.

Discussion (Section 7) deals with the overall analysis of PV application design and
recommendations.

2. Materials and Methods

According to standards for solar batteries and inverters [35–38], the maximum oper-
ating voltage of PV equipment currently does not exceed Umax = 1500 V. In this case, the
converter is connected to 1–3 solar battery strings with a short-circuit current of 10 A per
string. Application design with such operating voltage and current, as usual, is performed
based on Si IGBT or SiC MOSFET transistors [39]. Due to less static and dynamic power
loss, and a permanent price reduction in SiC transistors, Cree C2M0080170P is used for loss
calculation [40]. Static loss of the transistor Pst* with a constant current IDC that provides
output power Pout at voltage Umax is normalized and defined as PTst* = 1 p.u. It is well
known that the resistance RDS(on) of SiC and MOSFET transistors quadratically increases
with voltage. Additionally, power loss depends on transistor current shape, which in
a general case for DC-DC converters is shown in Figure 6. There are shown peak and
minimum transistor values, Ipeak and Imin, correspondingly. Average value of transistor ITav
on interval DT is calculated as ITav = (Ipeak + Imin)/2.
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Figure 6. The current shape of a transistor in a DC–DC hard-switching converter. Figure 6. The current shape of a transistor in a DC–DC hard-switching converter.

Thus, the RMS value of ISW(RMS) compared with IDC is calculated as follows:

ISW(RMS)

IDC
=

√
D(Ipeak

2 + Ipeak Imin + I2
min)√

3IDC
= kTst

√
D
3

, (6)
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where kTst is the factor that depends on converter topology.
If there is no pulsation in the current, Ipeak = Imin = ITav, and the RMS value is calculated

using the average transistor current value ITav on the interval DT:

ISW(RMS)

IDC
=

ITav
IDC

√
D.

Therefore, k switch power loss PTst(k)ht* for hard-switching converters with overvoltage
Ukmax is defined as:

PTst(k)ht
∗ = PTst

∗
(

Ukmax
Umax

)2 D(Ipeak
2 + Ipeak Imin + I2

min)

3IDC
2 =

D
3

kTst(k)
2
(

Ukmax
Umax

)2
, (7)

Whereas in resonant converters with sine wave current shape, the power loss PTst(k)s*
is multiplied by shape factor ksh = π2/8 [41]:

PTst(k)s
∗ =

π2

8
DkTst(k)

2
(

Ukmax
Umax

)2
. (8)

Due to the nearly rectangular shape of the current in soft-switching converters, the
static power loss is considered the same as for constant current PTst*.

The dynamic power loss PTd∗ for hard-switching mode is calculated using a compari-
son of transistor static and dynamic losses at maximum power IDC = 30 A, Umax = 1500 V
at switching frequency fsw = 40 kHz, PTd∗ = 0.5 p.u. The dynamic loss PT(k) d* for defined
transistor current ITk and voltage UTk is:

PTd(k)
∗ = PTd

∗
(

UTk
Umax

)(
ITk
IDC

)
= 0.5

(
UTk

Umax

)(
ITk
IDC

)
. (9)

It is considered that in resonant and soft-switching converters, dynamical loss is
absent.

A diode’s static power loss PDst* is calculated based on Cree C5D25170H [42] and
expressed in units of PTst*, PDst* = 0.8 p.u for constant current IDC. If the diode’s forward
VD is assumed to be constant and proportional to reverse voltage Ukmax, its static loss for
the hard-switching converter is calculated as follows:

PDst(k)hd
∗ = PDst

∗kDst(k)

(
Ukmax
Umax

)
(1− D) =

0.8kDst(k)Ukmax(1− D)

Umax
, (10)

where kDst(k) is the relationship between the average value of the diode current IDk on the
interval (1 − D) to current IDC:

kDst(k) =
IDk
IDC

, (11)

whereas in the case of soft-switching:

PDst(k)s
∗ = PDst

∗kDst(k)
π

2
√

2

(
Ukmax
Umax

)
(1− D) =

0.8kDst(k)πUkmax(1− D)

2
√

2Umax
. (12)

Dynamic loss of the diode for current IDC is PDd∗ = 1 p.u. For defined diode current
IDk and voltage UDk, dynamic loss PD(k)d* is calculated similarly to the Formula (9):

PDd(k)
∗ = PDd

∗
(

UDk
Umax

)(
IDk
IDC

)
=

(
UDk
Umax

)(
IDk
IDC

)
. (13)

The final values of static and dynamic power losses for DC–DC converters are given
in Table 2.
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Table 2. Normalized power loss of the transistor and diode for DC–DC converters.

Power Loss Type Converter Type

Hard-Switching Soft-Switching Resonant

Transistor static power loss, PTst* D
3 kTst(k)

2
(

Ukmax
Umax

)2 D
3 kTst(k)

2
(

Ukmax
Umax

)2
π2D

8 kTst(k)
2
(

Ukmax
Umax

)2

Transistor dynamic power loss, PTd* 0.5UTk ITk
Umax IDC

0 0

Diode static power loss, PDst*
0.8kDst(k)Ukmax(1−D)

Umax

0.8kDst(k)Ukmax(1−D)
Umax

0.8kDst(k)πUkmax(1−D)

2
√

2Umax

Diode dynamic power loss, PDd* 0.5UDk IDk
Umax IDC

0 0

For DC–AC and AC–DC converter output, AC side voltage and current are sinusoidal;
therefore, diodes and transistor current, as well as power loss, depend on grid voltage
phase ϕ = 2π·t/Tf, where Tf is the fundamental period of the grid voltage that is shown in
Figure 7.
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Figure 7. Transistor current shape for AC–DC and DC–AC hard-switching converters.

The amplitude peak current values Ipeak(m), ITav(m), and Imin(m) are used to calculate the
AC shaped current cost factor kc, whereas the power loss Pcon(AC)∗ analysis is performed
based on the integration of instantaneous power loss Pcon(AC)∗ from Table 2, where duty
cycle D is a function of power grid phase ϕ, D [0; Dmax], and normalized with current inorm:

Pcon(AC)
∗ =

1
2π

2π∫
0

Pcon
∗(ϕ)inormdϕ, (14)

where inorm = π·sin(ϕ)/2 has a half-period average value of unity:

1
π

π∫
0

inormdϕ = 1. (15)

Thus, equations have been derived that can be used to calculate the total converter
power loss Pcon∗ and the cost factor kc for both AC and DC applications. These numbers
are used to compare different PV applications with different converters for each type of PV.

3. AC Grid on PV Applications

AC grid-connected renewable applications aim to deliver the maximum possible en-
ergy to the grid as efficiently as possible. This will be accomplished using single-stage
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or two-stage systems. The single-stage application is an inverter that simultaneously per-
forms the functions of MPPT, boosting, and voltage conversion from DC to AC [43]. In
the two-stage converter, these functions are split between DC–DC and DC–AC invert-
ers [44]. Depending on the safety conditions or voltage gain requirements, applications
may be equipped with transformers or be transformerless. Typical structures of on-grid
applications are shown in Figure 8.
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application; (b) single-stage on-grid application; and (c) distributed two-stage applications.

In terms of improving efficiency and reducing the cost of the system, single-stage
systems have clear advantages over two-stage. Nevertheless, two-stage systems are actively
used due to simple system control and the opportunity to connect energy storage to DC-link
or design multi-string PV systems [45]. In two-stage systems, any non-isolated DC–DC
converter can be used as MPPT [12], but mostly boost, buck, and buck-boost converters
are used due to less transistor stress [46]. For reducing power loss, soft-switching [47] or
interleaved converters [48,49] are used.

As usual, single-phase or three-phase bridge topologies are implemented for the design
of DC–AC converters in single and two-stage topologies [50]. Soft-switching commutation
and reduced power loss are possible with advanced control methods [51,52].

Non-isolated one-phase inverters with common full or half-bridge topology suffer
from leakage current that flows between AC grid ground and PV through parasitic ca-
pacitors [53] and brings about safety and interference issues [54]. Additional transistors
implemented in H5, H6, HERIC, and hybrid-bridge topologies [55] cut off the leakage
current path and eliminate it. For transistor overvoltage limitation, multilevel inverters,
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for instance, 3L-NPC [56] and 3L-SC [57], are used. The aforementioned DC–AC PV ap-
plication schematics are illustrated in Figure 9 and listed in Table 3 for one stage DC–DC
and DC–AC converters, respectively, with cost factor kC and normalized power loss of the
converter Pcon*.
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Figure 9. Converter topologies for grid-based applications: (a) buck; (b) boost; (c) buck-boost;
(d) SEPIC; (e) Cuk’; (f) soft-switching buck; (g) soft-switching boost; (h) interleaved buck; (i) inter-
leaved boost; (j) half-bridge; (k) full-bridge; (l) three phase full-bridge; (m) H5; (n) H6; (o) HERIC;
(p) 3L-NPC; (q) 3L-SC.
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Table 3. The cost factor kC and the normalized power loss for common DC–DC and DC–AC converters.

Converter Topology kC Pcon *

DC–DC converters

Buck [12], Figure 9a Ipeak
DITav

4
3D

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8(1−D)

D +
Ipeak

DITav

Boost [12], Figure 9b Ipeak

D(1−D)ITav
4D

3(1−D)2

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8 + Ipeak

(1−D)ITav

Buck-boost, SEPIC, Cuk’ [12], Figure 9c–e Ipeak

D(1−D)ITav
4

3D(1−D)2

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8

D +
Ipeak

(1−D)DITav

Soft-switching buck [47], Figure 9f 2Ipeak
DITav

4
3D

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8(1−D)

D

Soft-switching boost [47], Figure 9g 2Ipeak

(1−D)ITav
4D

3(1−D)2

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8

Interleaved buck [48], Figure 9h, m cells Ipeak
DITav

4
3Dm

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8(1−D)

D +
Ipeak

DmITav

Interleaved boost [49], Figure 9i, m cells Ipeak

(1−D)ITav
4D

3(1−D)2m

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8 + Ipeak

(1−D)mITav

DC–AC converters

Half-bridge [50],Figure 9j 8Ipeak(m)

Dmax ITav(m)

4π2

3D2
max

(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+ 1.6

Dmax

(
π
2 + 1

)
+

2Ipeak(m)

Dmax ITav(m)

Full-bridge [50], Figure 9k 8Ipeak(m)

Dmax ITav(m)

(
2π

3Dmax
+ π2

3D2
max

)(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+ 0.8

Dmax

(
π
2 + 1

)
+

Ipeak(m)

Dmax ITav(m)

Triple-bridge [50], Figure 9l 12Ipeak(m)√
3Dmax ITav(m)

2π
9Dmax

(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+ 0.8

Dmax

(
π
2 + 1

)
+

Ipeak(m)

Dmax ITav(m)

H5 [55], Figure 9m 10Ipeak(m)

Dmax ITav(m)

(
2π

3Dmax
+ π2

3D2
max

)(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+ 0.8

Dmax

(
π
2 + 1

)
+

1.5Ipeak(m)

Dmax ITav(m)

H6 [55], Figure 9n 12Ipeak(m)

Dmax ITav(m)

(
2π

Dmax
+ π2

3D2
max

)(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+ 0.8

Dmax

(
π
2 + 1

)
+

1.5Ipeak(m)

Dmax ITav(m)

HERIC [55],Figure 9o 12Ipeak(m)

Dmax ITav(m)

(
2π

3Dmax
+ π2

3D2
max

)(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+ 0.8

Dmax

(
π
2 + 1

)
+

1.5Ipeak(m)

Dmax ITav(m)

3L-NPC [56], Figure 9p 8Ipeak(m)

D1 ITav(m)

(
2π

3Dmax
+ π2

3D2
max

)(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+ 0.8

Dmax

(
π
2 + 1

)
+

Ipeak(m)

Dmax ITav(m)

3L-SC [57], Figure 9q 10Ipeak(m)

D1 ITav(m)

(
π

2Dmax
+ 5π2

12D2
max

)(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+ 0.8

Dmax

(
π
2 + 1

)
+

Ipeak(m)

Dmax ITav(m)

Because low current ripple ∆I is a key requirement of the grid on applications for
sufficient power factor, the majority of converters use Imin = 0.9 ITav(m), Ipeak = 1.1 ITav.
However, interleaved converters operate in boundary mode, when Imin = 0 and Ipeak = 2
ITav. Based on the aforementioned assumptions, the cost factor kC and normalized power
loss Pcon* of DC–DC converters are shown in Figure 10a,b, respectively. The same curves
for DC–AC converters are shown in Figure 11a,b.

Because of a larger number of transistors, DC–AC converters are weaker in terms of
parameter values kC and Pcon* than their DC–DC counterparts. Among DC–DC converters,
the most effective solutions are based on buck and boost converters. Whereas buck-boost
solutions (buck-boost, SEPIC, Cuk’ converters) increase costs and losses. interleaved
converters allow for reduced losses at the expense of an increase in price and dimensions.

Among DC–AC converters, three-phase is the most efficient converter because of the
minimum number of transistors per phase. For single-phase applications, full-bridge, H5,
H6, and HERIC converters have very similar kC and Pcon* values.
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Figure 10. DC–DC converters: (a) cost factor kC; (b) normalized power loss Pcon*. 
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Figure 11. DC–AC converters: (a) cost factor kC; (b) normalized power loss Pcon*. 
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Figure 11. DC–AC converters: (a) cost factor kC; (b) normalized power loss Pcon*.

Two-stage DC–AC applications may be used for PV applications in the following
cases:

- Boosting DC voltage;
- Decreasing kC and Pcon* to allow for a wider range of input/output voltage operations;
- Inconsistency of power grid and solar battery voltages.

In a two-stage system, voltage regulation is performed at the DC–DC stage, whereas
the DC–AC stage operates with the maximum duty cycle, Dmax → 1, that provides min-
imum power loss. For instance, Figure 12a compares the cost factor kC of single-stage
applications based on a full-bridge converter and a two-stage application designed on
buck and full-bridge converters. Figure 12b compares power loss for the same configura-
tions with Dmax = 1 for the DC–AC converter of the two-stage system. Formulas for the
considered cases are shown in Table 4.
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Table 4. The full-bridge converter is used to calculate the cost factor kC and the normalized power
loss for single- and two-stage applications.

kC Pcon *

Single-stage application
with a full-bridge converter

8Ipeak(m)

Dmax ITav(m)

(
2π

3Dmax
+ π2

3D2
max

)(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+ 0.8

Dmax

(
π
2 + 1

)
+

Ipeak(m)

Dmax ITav(m)

Two-stage application
with buck and full-bridge converters

Ipeak(m)

ITav(m)

(
8 + 1

D

) (
2π
3 + π2

3 + 4
3D

)(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+ 0.8

(
π
2 + 1

)
+

Ipeak(m)

ITav(m)

(
1 + 1

D

)
+ 0.8(1−D)

D

Figure 12 shows that for Dmax < Dcr1 = 0.87 and Dmax < Dcr2 = 0.78, the two-stage
system has a lower cost factor kC and a lower power loss Pcon* than the one-stage system.
This means that the two-stage system is more efficient than the one-stage system.

Aside from energy-delivery, common DC–AC applications have additional functional-
ity [58]:

- Voltage conversion and power grid synchronization;
- Disconnection and anti-islanding protection when power grid fault appears; Correc-

tion of the power factor of the input current.

The rapid evolution of on-grid PV applications with unstable generation complicates
the grid’s stable operation. Due to the common DC–AC application’s disconnection from
the power grid fault, the grid operation only worsened and became unbalanced. As a result,
using converters with advanced functions that remain connected to the grid during faults
and attempt to maintain a stable operation not only mitigates the impact of renewable
energy instability, but also creates additional opportunities for power grid control and
improves reliability [59].

The list of additional converter functions that improve power grid operation and
converter control approaches, as well as topologies that may perform them, are given in
Table 5.
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Table 5. List of additional converter functions.

Opportunities for Power Grid Control Converter Function Control Strategy

Reactive power control [58] Independent reactive and active
power generation

Sinusoidal pulse width modulation (SPWM),
space vector modulation (SVM) or hysteresis

modulation in dq or αβ space

Voltage stabilization [60–65]
Voltage and frequency ride through,

voltage sag detection, reactive
power generation

For frequency synchronization:
zero-crossing method and the

phase-locked-loop. For sag detection: RMS
value estimator, synchronous rotating reference

frame, wavelet, and Fourier transform. For
power generation: SPWM, SVM or hysteresis

modulation in dq or αβ space

Grid power quality control [62] Controlled injected current SPWM or hysteresis modulation, frequency
synchronization

As usual, the inverter’s advanced functions are realized with basic inverter topologies
with improved control strategies and require no extra elements except for sensors.

4. Energy Storage Applications

An energy storage system is an integral part of renewable power supply systems.
The main purpose of the storage system is to provide a powerful balancing of unstable
renewable sources that operate at MPP and variable load. Typical converter topologies of
energy storage applications are shown in Figure 13.
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Figure 13. The following are typical energy storage converter topologies: (a) single-stage DC–
DC application; (b) single-stage DC–AC application; (c) two-stage isolated DC–DC application;
(d) two-stage DC–AC application.

Single-stage DC–DC and DC–AC topologies in Figure 13a and 13b respectively have
simple structures and functionality. DC–DC converters for built-in energy storage connect
to two-stage on-grid PV inverters or DC power grids, whereas DC-AC topologies are con-
nected directly to the AC power grid. Figure 13c,d are used for energy storage isolation in
DC power grids or AC grids and provide much more functionality, i.e., multi-mode charg-
ing, a wide range of battery charging voltages and currents, advanced control, improved
performance, and energy quality control.

With increasing renewable energy penetration, energy storage systems are becoming
a necessary element to maintain stable grid operation. In particular, in the concepts of
intelligent transmission and control of distributed systems FACTS [66], Smart Grid [67],
and Vehicle to Grid (V2G) [68], energy storage is considered as a system-forming unit or
unit that strongly improves the system operation, specifically:

- Load shifting occurs when renewable energy mostly charges the energy storage
during the day, and the energy storage is discharged in the late hours of peak power
demand [69];
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- Shutdown protection in smart distributed power grids that allows supplying end-
users when loss of power arises [70];

- Energy quality control (voltage, frequency, reactive power compensation, high har-
monic reduction) [71].

Therefore, distributed systems usually use a single common storage system which
improves the functioning of the entire system.

Because of the unstable generation of renewable sources, energy storage is permanently
switched between charge and discharge modes with the unstable current. Therefore, energy
storage control is much more intelligent than for a common charging device [72,73].

For DC–DC in stage energy storage applications, some of the converters discussed
in the section about grid applications with modified control laws, such as full or half-
bridge [74] and 3L-NPC [75] converters, require minor modifications and an increase in the
number of transistors, for instance, SEPIC, Cuk’ [76], or cascaded [77] and interleaved [78]
half-bridge converters.

Electric isolation in DC applications is provided with a high-frequency transformer in-
termediate AC link. An AC link may be organized with dual full- or half-bridge converters
and their soft-switching modifications [79–81].

Multi-level [82,83] or high-frequency link AC–AC converters [84] are used for single-
stage AC applications, whereas full- and half-bridge converter modifications [85,86] are
used for two-stage solutions.

Figure 14 depicts converters for single-stage storage applications, and Table 6 compares
them based on the parameters kC and Pcon*, whereas two-stage solutions are shown in
Figure 15 and Table 7, respectively.
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Figure 14. Converters for single-stage storage applications: (a) half-bridge; (b) Cuk’; (c) SEPIC/Luo;
(d) interleaved half-bridge; (e) cascaded half-bridge; (f) half-bridge rectifier with neutral point switch
clamped scheme; (g) capacitor clamped three-level; (h) high-frequency-link inverter.
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Table 6. A Comparative analysis of single-stage energy storage converter effectiveness.

Converter Topology kC Pcon *

DC–DC converters

Half-bridge [74], Figure 14a 4Ipeak
D1 ITav

4
3D2

1

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8

D1
+

Ipeak
D1 ITav

3L-NPC [75], Figure 9q 4Ipeak
D1 ITav

(
4

3D1
+ 4

3D2
1

)(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8(1−D1)

D1
+

Ipeak
D1 ITav

Cuk’ [76], Figure 14b, SEPIC/Luo [76],
Figure 14c

2Ipeak

D1(1−D1)ITav
4

3D1(1−D1)
2

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.4

D1(1−D1)
+

Ipeak

D1(1−D1)ITav

Interleaved half-bridge [77], Figure 14d 2Ipeak
D1 ITav

2
3mD2

1

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8

D1
+

Ipeak
D1mITav

If UBT > Ug →
Cascaded half-bridge [78],

Figure 14e
If UBT < Ug →

2Ipeak(1+D1)
D1 ITav

2Ipeak(2−D1)

(1−D1)ITav

4
3D2

1

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8

D1
+

Ipeak

D1(1−D1)ITav

4
3(1−D1)

2

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8

1−D1
+

Ipeak

D1(1−D1)ITav

DC–AC converters

Half-bridge, Figure 9j 8Ipeak(m)

Dmax1 ITav(m)

4π2

3D2
max1

(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+ 1.6

Dmax1

(
π
2 + 1

)
+

2Ipeak(m)

Dmax1 ITav(m)

Full-bridge, Figure 9k 8Ipeak(m)

Dmax1 ITav(m)

(
2π

3Dmax1
+ π2

3D2
max1

)(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+

0.8
Dmax1

(
π
2 + 1

)
+

Ipeak(m)

Dmax1 ITav(m)

Half-bridge rectifier with neutral point
switch clamped scheme [82], Figure 14f

5Ipeak(m)

Dmax1 ITav(m)

4π2

3D2
max1

(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+ 3.2

Dmax1

(
π
2 + 1

)
+

2Ipeak(m)

Dmax1 ITav(m)

Capacitor clamped three-level PWM
converter [83], Figure 14g

8Ipeak(m)

Dmax1 ITav(m)

8π2

3D2
max1

(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+

0.5Ipeak(m)

Dmax1 ITav(m)

High-frequency link inverter [84],
Figure 14h

24Ipeak(m)

Dmax1 ITav(m)

(
2π

Dmax
+ π2

3D2
max

)(
1− Ipeak(m) Imin(m)

(Ipeak(m)+Imin(m))
2

)
+ 0.8

Dmax

(
π
2 + 1

)
+ 3.2

π
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Figure 15. Converters for two-stage storage applications: (a) dual active bridge; (b) dual active
bridge soft-switching; (c) with two voltage-fed half-bridges; (d) combined voltage- half-bridge and
current-fed full-bridge; (e) half-bridge and full-bridge; (f) full-bridge DC–AC and dual active bridge
DC–DC.
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Table 7. A Comparative analysis of the two-stage energy storage converters’ effectiveness.

Converter Topology kC Pcon *

DC–DC converters

Dual active bridge, Figure 15a 8Ipeak
D1 ITav

4
3D2

1
(1 + D1)

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8

D1
+ 0.8 + 3Ipeak

D1 ITav

Dual active bridge soft-switching [79],
Figure 15b

8Ipeak
D1 ITav

4
3D2

1
(1 + D1)

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8

D1
+ 0.8

Converter with two voltage-fed
half-bridges [80], Figure 15c

8Ipeak
D1 ITav

8

Combined-voltage half-bridge and
current-fed full-bridge [81], Figure 15d

11Ipeak

(1−D1)ITav

(
5+4D1

3(1−D1)
2 +

8(1−D1)
3D1

2

)(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8

1−D1

DC–AC converters

Half-bridge and full-bridge [85],
Figure 15e

Ipeak(m)

ITav(m)

(
8

Dmax1
+

2
(1−D3)

)
(

2π
3Dmax1

+ π2

3D2
max1

+ 4D3

3(1−D3)
2

)(
1− Ipeak(m) Imin(m)

(Ipeak+Imin)
2

)
+

0.8
Dmax1

(
π
2 + 1

)
+ 0.8 +

Ipeak(m)

ITav(m)

(
1

Dmax1
+ 1

(1−D3)

)
Full-bridge DC–AC and dual active

bridge DC–DC [86], Figure 15f
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As usual, the voltage gains of the power converters used in energy storage applications
are different. This means that the duty cycle values and power loss values (Pcon*) are
different depending on which way the power converters are used. For instance, a full-
bridge converter, shown in Figure 9k, operates as a boost converter with duty cycle D1
when energy is stored and as a buck converter with duty cycle D2 when delivering energy
to the power grid. The relationship between the parameters D1 and D2 is equal to:

D2 = 1− D1. (16)

Thus, power loss Pcon* estimation depends on the direction of energy transfer. As long
as the same amount of energy is sent in both directions, the power loss weight formula is
used with weight factor w = 0.5:

Pcon
∗ = 0.5Pcon1

∗(D1) + 0.5Pcon2
∗
(D2), (17)

where Pcon1* is the power loss value for operation in energy storage mode with duty cycle
D1, and Pcon2* is the power loss value for operation in delivering energy to the power grid
with duty cycle D2.

In two-stage DC–AC energy storage applications, the first and second stages operate
independently, so their operation is defined by four duty cycles, i.e., D1, D2 for the first
stage and D3, D4 for the second stage. However, DC–DC two-stage applications always
contain AC links that are used for electric isolation and soft-switching. Therefore, one of
the stages always works in passive mode as a rectifier with the same duty cycle.

Derived results in Figures 16 and 17 make it clear that more effective applications are
designed with basic half- and full-bridge topologies with improved dynamic loss. For DC–
DC applications, there are cascaded and interleaved half-bridge topologies and 3L-NPC
converters, whereas effective DC–AC applications are based on full-bridge, and full-bridge
and half-bridge topologies.
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Figure 16a,b show the cost factor kC and normalized power loss Pcon∗ of DC–DC
energy storage, while Figure 17a,b show the parameters for DC–AC applications.

5. High Voltage Gain Converters

Solar panels have relatively low voltage and current and are usually combined with
batteries in parallel and series connections. The variation of power in solar radiation and
in the parameters of the panels in the battery leads to a decrease in overall efficiency [87]
and may cause system instability due to partial shadowing effects [88]. For mitigation of
the aforegoing drawbacks, high voltage gain converters are used. The common voltage
boosting method, with a high-frequency transformer and high turns ratio n, increases
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component stress on the secondary size and causes leakage inductance voltage spikes, thus
non-isolated converters are often used in practice. A high gain value G for the conventional
boost converter is achieved to the detriment of power loss with operation in modes with a
close to unity duty cycle [89]. A cascading technique involves a series connection of several
converters and expands the total voltage gain value G several times [90]. It increases the
cost and complicates the converter design and control. For efficiency improvement the
interleaving technique is used [91].

Other DC–DC converters, such as SEPIC and Flyback, can provide galvanic isolation
via additional winding on the inductor core. These converters are used for high voltage
gain but require additional snubber circuits to mitigate issues caused by leakage induc-
tance [92] and usually suffer from increased transistor overvoltage with factors of 1.5–2.0.
Passive dissipative RCD snubbers are commonly used [93], but for high-efficiency solutions
more sophisticated active [94,95] or passive [96,97] regenerative snubbers deliver energy
leakage inductance on the load or primary energy source. In addition, an isolated solution
with leakage inductance allows the implementation of transistor soft-switching as well as
voltage doubling, for instance, in an LC parallel current source converter with a voltage
doubler [98]. The idea of capacitor voltage doubling is used for a set of multi-cell flying
capacitor converters: super lift voltage converter [99], modified voltage lift converter [100],
Cockcroft Walton multiplier based boost converter [101], Dickson multiplier based boost
converter [101], boost derived MIESC SC-cell converter [102], and buck-boost derived
MIESC SC-cell converter [102]. Capacitor voltage doubling is also realized in converters
based on a three-state switching cell (3SSC) that is a combination of two switching PWM
cells (2SSC) [103]. Such converters have reduced the size, weight, and volume of magnetics
and reduced the current stress of switches.

Figure 18 shows the reviewed topologies of high gain converters, whereas Table 8
analyzes the main features of high gain converters, i.e., voltage gain G, switch voltage
stress, and basic parameters kC and Pcon*.

As shown in Figure 19a, an essential problem for high gain applications is significant
transistor overvoltage. As a result, power converters with lower transistor stress recal-
culated on the gain unit, such as Cockcroft–Walton and Dickson multiplier-based boost
converters, boost derived MIESC SC-cell converters, and boost 3SSC cell converters, are
more appealing for high voltage application design.
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Figure 18. High voltage gain converters: (a) isolated full-bridge; (b) cascaded boost converter;
(c) flyback; (d) LC parallel resonant converter with voltage doubler; (e) super lift voltage converter;
(f) modified voltage lift converter; (g) Cockcroft–Walton multiplier based boost converter; (h) Dickson
multiplier based boost converter; (i) boost derived MIESC SC-cell converter; (j) boost 3SSC cell
converter; (k) buck-boost derived MIESC SC-cell converter.
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Table 8. High voltage gain converters: comparative analysis.

Converter Topology G kC Pcon*

Isolated full-bridge,
Figure 18a nD 8Ipeak

DITav
32
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1− Ipeak Imin

(Ipeak+Imin)
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)
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Conventional boost converter,
Figure 9b
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4D
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Cascaded boost converter [90],
Figure 18b
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SEPIC [92], Figure 9d,
Flyback [92], Figure 18c
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LC parallel current source
converter with voltage

doubler [98], Figure 18d
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Super lift voltage converter
[99], m cells, Figure 18e
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Modified voltage lift converter
[100], m cells, Figure 18f
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boost converter [101], m cells,
Figure 18g,h
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Figure 18i
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Boost 3SSC cell converter
[103], m cells, Figure 18k
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6. Hybrid PV Applications

Hybrid PV systems are complex solutions that include multiple energy sources, such
as a diesel generator [104], a wind turbine or a fuel cell [105]; integrated energy storage with
an interruptible power supply function; and multiple AC and/or DC outputs. The system
is often used for standalone applications for reliable power supply [106] or as an advanced
uninterruptable power system that allows generating or consuming energy from the grid for
imbalance elimination of PV systems and load [107]. The hybrid system consists of several
stages which, in the common case, are realized with individual power converters, which is
the redundant solution. Combining identical converter links makes it possible to reduce the
number of elements in the system and simplify control [108]. The simplest case is the use of
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multi-winding transformers [109]. In non-isolated applications, combinations of cells with
boost, buck, and buck-boost converters with unidirectional [110] or bidirectional [111–113]
energy flow are implemented. For distributed systems, interleaved multi-input solutions
are also used [114].

As usual, multi-port solutions are designed for DC–DC [115] or DC–AC [116–119]
applications with renewable sources and energy storage suitable for PV and wind applica-
tions as well. Table 9 lists the analytical expressions of the multiport converter parameters
shown in Figure 20.

Table 9. A comparative analysis of the effectiveness of the hybrid converter.

Converter Topology kC Pcon *

Boost three-port converter [110],
Figure 20a
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Figure 20b
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Figure 20c
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Bidirectional buck-boost converter [111],

Figure 20d
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Switched capacitor multi-port converter
[112], Figure 20e
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converter [116], Figure 20g
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Figure 20. Hybrid converters: (a) boost three-port converter; (b) buck three-port converter; (c) buck-
boost three-port converter; (d) bidirectional buck-boost converter; (e) switched capacitor multi-port
converter; (f) dual active bridge multi-port converter; (g) double-stage with battery boost converter;
(h) fully soft-switched multi-port DC–DC converter; (i) multiple-input SEPIC converter; (j) NPC
multiport converter.

Hybrid converter parameters kC and Pcon* are shown in Figure 21a,b, respectively.
As shown in Figure 21, the lowest values of kC and Pcon* parameters are achieved for

converters with basic buck and boost topologies, as well as for more complex switched-
capacitor multi-port converters and dual active bridge multi-port converters with soft-
switching transistor commutation. However, the analyzed hybrid converters generally
have the same number of transistors as common power converters with the same features.
The hybrid converters, on the other hand, have about the same power loss and cost as their
counterparts with common topologies.
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Figure 21. Hybrid converter parameters: (a) cost factor kC; (b) normalized power loss Pcon*.

7. Discussion

Derived analytical expressions for cost kc and power loss Pcon* factors are evaluation
indicators for selecting the converter topology for PV application design based on duty
cycle D. Such parameter representations are strictly related to the converter operation mode
and help to define the duty cycle D range of the PV application. However, the comparative
analysis of the converter based on kC and Pcon* factors as functions of D, kc = f (D), and Pcon*
= f (D), is inconvenient due to their different voltage gains. This is especially true when
comparing different types of converters, i.e., buck, boost, and buck-boost converters. It is
more informative to analyze parameters kC and Pcon* in some load voltage ranges (UL(min),
UL(max)) where the PV application operates for comparative analysis unification. If voltage
UL(min) is associated with voltage gain Gmin and voltage UL(max) with voltage gain Gmax,
we can define the maximum gain factor Gmax*:

Gmax
∗ =

Gmax

Gmin
. (18)

The real gain factor G* of a converter is always varied in the range [1, Gmax*] and may
be used as a universal parameter for comparing different types of power converters.

Due to the opportunity to achieve gain factor Gmax* on different duty cycle D ranges
[Dmin; Dmax], the range is defined according to providing the lowest cost and/or power
loss. According to the specified conditions and obtained results:

- In buck converters, the output voltage maximum value UL(max) is fixed to the input
voltage Uin, UL(max) = Uin that corresponds to Dmax = 1;

- In boost converters, the output voltage minimum value UL(min) is fixed to the input
voltage Uin, UL(min) = Uin that corresponds to Dmin = 0;

- In buck-boost converters, the lowest values of kc and Pcon* are achieved in the middle
of the duty cycle range, D = 0.5. Therefore, for the proper definition of Dmin < 0.5 and
Dmax > 0.5, one of the following equations is solved:
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kC(Dmin) = kC(Dmax);
or

Pcon
∗(Dmin) = Pcon

∗(Dmax),
(19)

The values of UL(min) = f (Dmin) and UL(max) = f (Dmax) are defined depending on the
choice of minimization parameter.

After the proposed transformation, parameters kC and Pcon* may be defined based on
a function of the parameter G* that varies in the range [1, Gmax*]. Due to this representation,
a comprehensive comparison analysis of converters for the defined value of parameter
G* may be conducted. However, in real PV applications, because of variations in solar
insolation, temperature, battery state of charge, grid voltage, etc., the gain parameter G*
varies in range of 1 . . . G*max, and the parameters kc and Pcon* change, respectively. The
cost factor kc of the PV application is obviously defined by the largest value of G*max,
whereas the power loss parameter Pcon* is defined as an intermediate mean value Pcon(av)*
between Pcon*(min) = f (G* = 1) and Pcon*(max) = f (G* = Gmax*). The precise Pcon(av)* value is
determined by a weighted function that defines a probability distribution law of G*, p(G*),
with values ranging from 1 to Gmax* [120]:

Pcon(av)
∗ =

Gmax
∗∫

1

p(G∗) · Pcon
∗(G∗)dG∗. (20)

For example, in the case of a continuous uniform distribution, p = 1/(Gmax* − 1) [121]
Formula (20) yields:

Pcon(av)
∗ =

1
Gmax∗ − 1

Gmax
∗∫

1

Pcon
∗(G∗)dG∗. (21)

Additionally, analytical expressions of converter efficiency parameters kC and Pcon(av)*
for DC–DC converters listed in Table 3 in space of the variable G* are shown in Table 10
and illustrated in Figure 22a,b, respectively.

A representation of the parameters kC and Pcon(av)* with the gain factor G* aids in the
estimation of converter features within a given voltage range, as well as the comparison
of different converter types (buck, boost and buck-boost). For example, a buck converter
has the lowest cost factor kC value for G* ∈ (1; 4.5), whereas a buck-boost converter is
preferable for G* ∈ (4.5; ∞) applications. A similar decision may be made for mean power
loss Pcon(av)*, which has the lowest value for buck converter modifications in all G* ranges.

Obviously, for different models of semiconductor devices and other probability distri-
bution laws, the results would be different. This allows you to compare power converters
based on the PV application’s start-up conditions.
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Table 10. Comparative analysis of the DC–DC converter’s effectiveness in space of the variable G*.

Converter Topology kC Pcon(av) *

Buck Gmax
∗ Ipeak

ITav
1

Gmax
∗−1

(
Gmax

∗2−1
2

(
4
3

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8 + Ipeak

ITav

)
− 0.8(Gmax

∗ − 1)
)

Boost Gmax
∗ Ipeak

ITav

1
Gmax

∗−1

((
4(Gmax

∗3−1)
9 − 2(Gmax

∗2−1)
3

)(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+

+0.8(Gmax
∗ − 1) + (Gmax

∗2−1)Ipeak
2ITav

)

Buck-boost, SEPIC, Cuk’ (1+
√

Gmax
∗)

2
Ipeak√

Gmax
∗ ITav

1
Gmax

∗−1

((
4
3

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+

Ipeak
ITav

)
×(

2
3 (Gmax

∗)3/4 + 3(Gmax
∗)1/2 + 6(Gmax

∗)1/4 + 1
2 ln(Gmax

∗)− 29
3

)
+

+0.8
(
(Gmax

∗)1/2 − 1
)
+ 0.53

(
(Gmax

∗)3/4 − 1
)
+

1.6
(
(Gmax

∗)1/2 − (Gmax
∗)1/4

)
+

0.8
(

Gmax
∗ − (Gmax

∗)1/2
)
+

(
4
3

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+

Ipeak
ITav

)
×(

2
(
(Gmax

∗)3/2 − (Gmax
∗)3/4

)
+ 1

2

(
Gmax

∗2 − Gmax
∗
)

+2
(
(Gmax

∗)1/2 − (Gmax
∗)1/4

)
+ 3
(

Gmax
∗ − (Gmax

∗)1/2
))

Soft-switching buck 2Gmax
∗ Ipeak

ITav
1

Gmax
∗−1

(
Gmax

∗2−1
2

(
4
3

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8

)
− 0.8(Gmax

∗ − 1)
)

Soft-switching boost 2Gmax
∗ Ipeak

ITav

1
Gmax

∗−1

((
4(Gmax

∗3−1)
9 − 2(Gmax

∗2−1)
3

)(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+

+0.8(Gmax
∗ − 1)

)
Interleaved buck Gmax

∗ Ipeak
ITav

1
Gmax

∗−1×(
Gmax

∗2−1
2

(
4

3m

(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+ 0.8 + Ipeak

mITav

)
− 0.8(Gmax

∗ − 1)
)

Interleaved boost Gmax
∗ Ipeak

ITav

1
Gmax

∗−1

(
1
m

(
4(Gmax

∗3−1)
9 − 2(Gmax

∗2−1)
3

)(
1− Ipeak Imin

(Ipeak+Imin)
2

)
+

+0.8(Gmax
∗ − 1) + (Gmax

∗2−1)Ipeak
2mITav

)
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(a) cost factor kC; (b) normalized mean power loss Pcon(av)*. 
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(a) cost factor kC; (b) normalized mean power loss Pcon(av)*.

8. Conclusions

Industrial PV solutions contain different kinds of applications designed with power
converters as electric energy transformers and interconnectors. Thus, the specific con-
verter requirements vary depending on the application which complicates the selection
of the appropriate type of converter for a specific task. The paper highlights generalized
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criteria that have a critical impact on the efficiency and cost of converter topologies for
PV applications that allows performing a comparative analysis in space of two numerical
parameters, namely cost and power loss factors, of common PV applications, i.e., grid-on,
energy storage, hybrid, and high voltage gain, based on cost and power loss factors.

According to the results of the analysis, the following conclusions are made:

- Basic DC–DC buck and boost topologies, as well as full-bridge topologies for DC-
AC applications, have lower cost and power loss factors, whereas more complex
interleaved or soft-switching topologies may decrease power loss by increasing the
converter total cost;

- For DC–AC applications with a low or medium voltage range, it is advisable to
use single-stage DC–AC converters, whereas for wide voltage range applications,
two-stage converters have better cost and power loss factors;

- High voltage gain applications suffer from high transistor voltage stress. Therefore,
specialized power converter topologies with reduced voltage stress, such as Cockcroft–
Walton and Dickson multiplier-based boost converters, boost derived MIESC SC-cell
converters, and boost 3SSC cell converters, have the advantage over their counterparts;

- Hybrid converters have approximately the same power loss and cost as power con-
verters with common topologies because of the same number of power transistors;

- For clear analysis of different types of converters, it is better to represent cost and
power loss factors in the space of gain factor and analyze the impact of the environment
on gain factor probability distribution during operation.
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