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Abstract: Offshore wind turbine drive train technology is evolving as developers increase size, aim
to maximise availability and adapt to changing electricity grid requirements. This work first of
all explores offshore technology market trends observed in Europe, providing a comprehensive
overview of installed and planned capacity, showing a clear shift from smaller high-speed geared
machines to larger direct-drive machines. To examine the implications of this shift in technology
on reliability, stop rates for direct-drive and gear-driven turbines are compared between 39 farms
across Europe and South America. This showed several key similarities between configurations,
with the electrical system contributing to largest amount of turbine downtime in either case. When
considering overall downtime across all components, the direct-drive machine had the highest value,
which could be mainly attributed to comparatively higher downtime associated with the electrical,
generator and control systems. For this study, downtime related to the gearbox and generator of
the gear-driven turbine was calculated at approximately half of that of the direct-drive generator
downtime. Finally, from a perspective of both reliability and fault diagnostics at component level, it
is important to understand the key similarities and differences that would allow lessons learned on
older technology to be adapted and transferred to newer models. This work presents a framework for
assessing diagnostic models published in the literature, more specifically whether a particular failure
mode and required input data will transfer well between geared and direct-drive machines. Results
from 35 models found in the literature shows that the most transferable diagnostic models relate to
the hydraulic, pitch and yaw systems, while the least transferable models relate to the gearbox. Faults
associated with the generator, shafts and bearings are failure mode specific, but generally require
some level of modification to adapt features to available data.

Keywords: wind energy; offshore; reliability; fault detection; geared; direct drive; transfer learning

1. Introduction

Wind turbine generator and drive train technology has developed rapidly over the
last decade as utility-scale wind turbines have increased in size and contribute to a greater
share of the electricity market [1–3]. This fundamental shift in the energy mix requires
wind turbines to cope with greater flexibility in generation, with wind farms now operating
more like traditional power plants to reach increased demand that meets current electricity
grid conditions. As the generator and wider drive train configuration has adapted to
meet changing grid requirements, wind turbine developers and operators have also been
challenged to lower the overall LCOE by reducing the OPEX. The response to this challenge
has been to find opportunities to maximise availability, increase system reliability, decrease
the cost of repairs, reduce downtime and minimise lost production over the lifetime of a
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site due to unplanned maintenance activities [4]. In recent years, system reliability issues
have also been addressed by simplifying and reducing the number of potential points of
failure, with some OEMs taking the strategic decision to remove the gearbox and focus on
direct-drive technology.

1.1. Problem Statement

In the offshore environment, where turbines are now increasing to 14 MW rated power,
not only is access at a premium, but lost production is also very expensive to operators,
with research recently suggesting that O&M could contribute up to 30–40% of the total
LCOE [5]. This scenario provides developers with extra motivation to increase overall
wind turbine reliability. This has lead some OEMs to focus on eradicating components that
have conventionally caused expensive repairs and high amounts of downtime relative to
other elements of the drive train. Examples of this behaviour would be in removing the
gearbox for a direct-drive machine, or removing the high-speed stage of the gearbox for a
medium-speed machine. For wind energy to continue to be financially viable, the wind
industry must continue to adapt and improve technology; however, it must also ensure
knowledge gained from older systems is understood and transferred where possible to
ensure any lessons learned are appropriately recorded and applied.

When a new technology or wind turbine model is deployed, there is little or no
operational data and maintenance records to understand reliability at a system-wide level.
The transition to larger turbines with direct-drive train technology therefore poses an
interesting hurdle to asset owners and operators that are looking to scale and optimise
maintenance activities; in the context of wind turbine reliability and condition monitoring,
how much insight can be drawn from data gathered on older technology and applied to
modern direct-drive machines?

1.2. Motivation, Paper Structure and Novelty

Literature surrounding wind farm O&M commonly falls into several distinct cate-
gories; reliability analysis, performance optimisation, fault diagnostics, failure prognostics
and maintenance optimisation. To date, reliability analysis has been used to determine
critical components in order to focus efforts on fault detection, failure prediction and main-
tenance optimisation to minimise both OPEX and lost production, a process which has been
identified as a key driver to achieve higher wind farm availability. Papers published to date
have proposed a range of fault diagnostic methods primarily focusing on using SCADA
data to detect anomalies across the wind turbine gearbox [6–8], blades [9], generator [10,11],
pitch [12] and yaw [13] systems and main bearing [14]. Earlier approaches such as [15]
used a linear auto-regressive model model to detect generator bearing failure by modelling
bearing temperature and [16], which developed higher-order polynomial models of drive
train temperatures. More recently, nonlinear auto-regressive neural networks with exoge-
nous inputs (NARX) models have been used in [17,18] to detect gearbox issues. Several
review papers [19–22] have also been published over the last several years providing a
comprehensive overview. That being said, no study to date has attempted to review and
evaluate previous work with an emphasis on highlighting the potential of transfer learning
between direct-drive and geared machines.

Section 2 of this paper aims to provide a comprehensive overview of geared and
direct-drive train taxonomy, with an emphasis on highlighting the key differences and
similarities at assembly and component level that can be used to gather and transfer
information. In addition, this section will take a look at real-world SCADA data to evaluate
what information is typically gathered across different monitoring systems for each drive
train configuration. This initial assessment is a vital step to determine which failure modes
are likely to be common across both configurations and what associated monitoring data
are readily available.

Using standardised research methods observed in the literature, Section 3 will present
new results from a reliability study of 617 wind turbines across Europe and South America
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with a combined total of 217 operational years. Wind turbine stoppage rates and downtime
related to a range of components are assessed, with the study encompassing both direct-
drive and gear-driven systems all under 3.2 MW rated power. Initial results are then
compared to results from other reliability studies found in the literature.

Section 4 builds on previous sections and presents a framework to assess existing
literature in the area of fault diagnostics and prognostics. The aim of this review is to
provide an overview of existing techniques and case studies that are most applicable to
direct-drive machines, making use of existing datasets made up of mainly gear-driven
wind turbines. Not only does this allow for some immediate insight into the direct-drive
machines, this study also opens up opportunities in areas such as transfer learning and
reinforcement learning to adapt models as more data and information are made available
for modern, larger, direct-drive machines. Finally, drive train components and failure rates
common to both configurations are brought together to assess which components are most
critical for future research into direct-drive diagnostics and prognostics. In the context of
existing literature in this area, the contribution of this work is to:

• Provide an overview of the current technology trends observed in the European
offshore wind sector.

• Present results from a new reliability study of over 617 wind turbines, directly com-
paring down times associated with direct-drive and geared machines.

• Introduce a framework for evaluating how transferable previous diagnostic models
published in the literature using older technology are when considering newer large-
scale direct-drive generators.

• Deliver insight into key components that must be considered a priority for large-
scale direct-drive generators with regards to diagnostic and prognostic modelling
considering both reliability and previous research.

2. Drive Train Configuration Trends

When describing a wind turbine drive train configuration, it is typically expressed as
a series of assemblies and components required to convert the kinetic energy in the rotor to
electrical energy needed for a stable grid connection. In modern utility-scale wind turbines,
there are four major categories as described in [4,23]. Note configuration type A and B
from [4] have been excluded due to a focus on current utility-scale technology applicable to
the offshore environment that meets modern grid requirements [24,25].

Full details of each configuration type along with schematic diagrams can be found
in [4,23]; however, a brief overview of the important configurations used in this work will be
provided. Configuration one is the doubly-fed induction generator (DFIG). A partial power
converter is used to control the electrical current in the generator’s rotor. Configuration
two has a full-power converter which enables the decoupling of the generator and grid
frequency. This means that the frequency on the generator side can be fully controlled
allowing for enhanced grid services and the use of a gearbox can be avoided. A synchronous
electrical generator (which can be either an electrically excited synchronous generator
(EESG) or a permanent magnet synchronous generator (PMSG)) is directly coupled to
the main shaft of the rotor. Configuration three is a gearbox-equipped wind turbine
with a full-power converter and medium/high-speed synchronous generator, which can
be EESG or PMSG. In this arrangement, it is possible to choose between a relatively
small gearbox (with moderate gear ratios) at the expense of using a large medium-speed
synchronous generator. On the other hand, it is possible to assemble a gearbox with a
higher gear ratio in order to reduce the size of the generator (high-speed configuration with
synchronous generator). Configuration four is a gearbox-equipped wind turbine with a
full-power converter; however, it has a high-speed asynchronous generator. As the full-
power converter enables the speed to be controlled by modifying the operating frequency,
a squirrel cage induction generator (SCIG) is generally employed in this configuration.
In the context of offshore wind energy more broadly, configuration three corresponds to a
geared multistage high-speed wind turbine, configuration two is a direct-drive machine,
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while type three and four are hybrid models. In relation to the work completed in this paper,
configuration two makes up the direct-drive wind turbine category, while configurations
one, three and four are grouped together into the gear-driven wind turbine category.

According to the JRC Wind Energy Database, in terms of market share, geared turbines
have dominated the global onshore market, with the vast proportion of these turbines
onshore made up of a DFIG arrangement below 3 MW rated power output. This is particu-
larly true across Europe, Asia and North America. Further analysis presented in [1] shows
the evolution of configuration types with geographical location, with configuration four
more prevalent in North America and configurations two and three having more market
share in Europe and Asia. If we look offshore across Europe, DFIG models dominated the
early market predominately close to shore. This has vastly changed over the last 5–7 years,
with direct-drive and hybrid models now making up a significant proportion. PMSGs
have seen an explosion in the Asian market in particular, while EESGs are typically more
common in European waters. Conversely, PMSGs have been gaining more traction in
Europe as turbines increase beyond 5–6 MW [2,23,26–29]. The technological shift towards
direct-drive PMSGs over other types of generators is predominately due to the perceived
increase in reliability that can be achieved with fewer components and importantly, no
gearbox. Whether the reliability of the system as a whole does in fact increase is still up for
debate, with further evidence required in order to conclusively state either way. This topic
will be discussed in greater detail throughout the reliability analysis section of this paper.

Looking offshore, this shift is even more apparent, with direct-drive machines starting
to dominate the UK market over the last 5 years. In fact, from the 1725 wind turbines
currently installed or under development in UK waters since 2016, 70.1% (or 1221) have
direct-drive PMSG technology. This accounts for an installed capacity of just over 11.1 GW
since 2016, 73.4% of total capacity either installed or under development.

Figure 1 shows the technology shift in the UK and wider European market from
the first offshore wind farm to all current wind farms either operational or currently in
development (due to be commissioned by 2026). These plots were developed by the authors
using open source information found in [30]. In Figure 1a, each circle represents a wind
farm, with the size of each circle scaled with the number of turbines that make up the
site. Direct-drive configurations are shown in red, while gear-driven wind turbines are
represented in blue. The y-axis displays individual wind turbine rated power of each site
which, as shown on the plot, has increased significantly over the last 20 years along with
the average site size. Figure 1b shows these same technology trends but split into each
European country for comparison. Observed trends are similar, with turbine rating and
total site capacity getting larger, with a large number of direct-drive machines entering the
market over the last 5 years. Looking more closely at wind turbine manufacturers, Figure 2
shows a breakdown of OEM market share across Europe. SGRE currently has the largest
share, with over 58% of installed capacity, followed by Vestas (28%) and GE Renewable
Energy (11%).

Each wind turbine drive train configuration can be broken down into a common
series of major components, each assigned a unique set of failure categories, which will
be discussed extensively throughout the next section. Looking specifically at SCADA
data related to the generator and gearbox, Figure 3 shows the average number of data
channels recorded for both direct-drive and geared machines. Three examples of each
configuration type were used, each ranging from 1 to 3 MW rated power. This information
has been included to showcase the key differences when it comes to which sensors are
available to create features for fault detection. This approach will later be used to assess
model transferability. Based on these examples, direct-drive models have on average
fewer channels and sensors than their geared counterparts. With regards to the generator
specifically, temperature readings are typically available for the bearings, stator and rotor
across both configurations, along with generator shaft speed and electrical current, voltage
and power measurements.
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Figure 1. Overview of offshore wind turbines drive train technology trends in Europe. (a) Comparison
of geared and direct-drive offshore wind turbine installed capacity in Europe; (b) installed capacity
of different drives by country.
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3. Wind Turbine Stop Rate Analysis

Wind turbine reliability rates cover a range of metrics regarding wind turbine reli-
ability. These can be wind turbine failure rates, stop rates, downtimes, or possibly lost
production. For the purposes of this paper, the reliability rates examined are the stop rates
and downtimes for wind farms in Europe and South America.

Wind turbine stoppages can occur for a range of reasons, from manual stops relayed
from the owners or operators of the turbine to faults in the turbine components. Different
metrics have been used in the past to assess the reliability of wind turbines, and their com-
ponents. These metrics provide different levels of information, such as turbine availability
percentage, stop rates, or failure rates. Wind turbine failures differ from wind turbine
stops, and therefore cannot be directly compared. However, the general trends may still be
examined and discussed, as stop rates will also include any failures, or faults, that caused
the turbine to stop.

Previous studies have investigated the reliability of wind turbines, typically focusing
on failure rates of wind turbine components. These are usually presented as number of
failures per turbine per year, and are presented alongside the number of hours of downtime
per turbine per year.

Several studies have collated reliability results from papers that have investigated
wind turbine datasets. These studies typically present failures by component group,
and these are usually similar with some slight variations in category definitions. The results
presented in this section will be compared against the various past studies. Several of
these studies also present the downtime per turbine per year in hours for the datasets.
The studies cover wind turbines from across Europe, Asia, and the USA. The majority of
these studies are focused on onshore turbines, and typically gear-driven turbines with
some direct drives. In particular, a study from S. Ozturk et al. [31] has compared sub-1 MW
geared and direct-drive wind turbines from the WMEP dataset in Germany. The papers
collated in these reviews are described in Table 1.

The data provided for this study consisted of 39 farms, located in either South America
or Europe. The majority of turbines assessed were located in South America, approximately
470, and the others, approximately 150, located in Europe. The European turbines are from
either around the Mediterranean sea, or the British and Irish Isles.

Three of the farms investigated consisted of direct-drive turbines, approximately
50 turbines in total, with all of these located in Europe. The turbines rated between 1.5 and
3.5 MW, and aged between 2 and 13 years. The majority of turbines were operating for less
than 7 years, with a small minority in operation longer. The data provided cover the life of
the turbines investigated from when they were first operational until the beginning of 2020.
A factor that is of interest in the wind energy community is how wind turbine reliability
rates, such as stoppages, scale with turbine size. This link is unfortunately beyond the
scope of this paper, as the dataset is limited to turbines of similar rating. Future work,
utilising a dataset with more varied turbine rating, could examine the change in reliability
rates between small and large rated turbines.
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Table 1. Failure rate studies featured in the reviews previously discussed.

Author Title Dataset Turbine Number Years Collected Country Top 3 Failures Top 3 Downtimes

M. Reder [32]
Wind Turbine Failures—

Tackling current Problems
in Failure Data Analysis

AWESOME 4300 - Europe

<1 MW: (Gearbox, Blades,
other blade brake)

<1 MW: (Gearbox, Generator,
Blades)

>1 MW: (Gearbox,
Controller, Pitch)

>1 MW: (Gearbox, Generator,
Blades)

DD: (Controller, Met
Station, Yaw)

DD: (Generator, Blades,
Controller)

G. Wilson [33]
Assessing wind farm reliability

using weather dependent
failure rates

Blacklaw and Whitelee Over 250 - Scotland Control, Drivetrain, Yaw -

V. Hines [34]

Continuous Reliability
Enhancement for Wind (CREW)

Database: Wind Plant
Reliability Benchmark

CREW 800–900 2013 USA Rotor, Generator, Controls Yaw, Brakes, Controls

Y. Lin [35] Fault analysis of wind turbines in China CWEA

111 2010

China

Pitch, Frequency
Converter, Generator

-560 2011 Frequency Converter,
Generator, Pitch

640 2012 Frequency Converter,
Generator, Pitch

C. Crabtree [5]
Wind Energy: UK experiences

and offshore
operational challenges

Egmond aan Zee 36 3 years Netherlands Control, Yaw, Scheduled,
Pitch Gearbox, Generator, Blades

I. Dinwoodie [36]

Analysis of offshore wind turbine
operation & maintenance

using a novel time domain
meteo-ocean modeling approach

Egmond aan Zee 36 3 years Netherlands
Control, Yaw, Scheduled,

Pitch Gearbox, Generator, Control

J. Ribrant [37]
Survey of failures in wind power

systems with focus on Swedish wind
power plants during 1997–2005

Elforsk 786 2000–2004 Sweden
Electric, Sensors,

Blades/Pitch Gearbox, Control, Electric

J. Ribrant [38]
Reliability performance

and maintenance—
A survey of failures in wind power systems

Elforsk 786 2000–2004 Sweden Electric, Sensors,
Blades/Pitch Gearbox, Control, Electric

VTT 92 2000–2004 Finland Hydraulics, Blades/Pitch,
Gearbox

Gearbox, Blades/Pitch,
Hydraulics

WMEP 650 2003–2004 Germany Electric, Control,
Sensors/Hydraulics Generator, Gearbox, Drivetrain

Z. Ma [39]
A Study of Fault Statistical

Analysis and Maintenance Policy of
Wind Turbine System

Huadian 1313 2015 China
Transformer, Generator,

Pitch Transducer, Generator, Control
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Table 1. Cont.

Author Title Dataset Turbine Number Years Collected Country Top 3 Failures Top 3 Downtimes

C. Su [40] Failures analysis of wind turbines:
Case study of a Chinese wind farm

Jiangsu 1 61 2009–2017 Control, Pitch, Electrics Control, Pitch/Blade, Electrics

Jiangsu 2 47 2011–2017 China Pitch, Control, Electrics Pitch/Blades, Control, Electrics

G. Van Bussel [41]
Reliability, Availability and

Maintenance aspects of large-scale
offshore wind farms, a concepts study

LWK 643 1995–1999 Germany Control, Inverter, Gearbox -

G. Herbert [42]
Performance, reliability and

failure analysis of wind farm in a
developing Country

Muppandal 15 2000–2004 India
Blades, Gearbox,

Hydraulics -

M. Wilkinson [43]
Measuring wind turbine
reliability: results of the

Reliawind project
Reliawind Around 350 - Europe Electrics, Rotor, Control Electrics, Rotor, Control

R. Bi [44]

A survey of failures in wind
turbine generator

systems with focus on a
wind farm in China

SUZHOU 134 2011 China Pitch, Control, Sensors Cables, Pitch, Control

F. Spinato [45]
Reliability of wind

turbine subassemblies

Windstats Denmark
(WSDK) 2345–851 - Denmark Converter, Yaw, Generator -

Windstats Germany (WSD),
Schleswig Holstein (LWK)

1295–4285,
158–643

- Germany Electrical, Converter, Rotor -

P. Tavner [46] Reliability analysis
for wind turbines

Windstats Germany (WSD) up to 4500

1994–2004

Germany Grid/Electrical, Yaw, Pitch
Control -

Windstats Denmark
(WSDK) up to 2500 Denmark Yaw, Hydraulic, Generator -

S. Ozturk [31]

Failure Modes, Effects and Criticality
Analysis for Wind Turbines

Considering Climatic Regions and
Comparing Geared

and Direct Drive Wind Turbines

WMEP—DD 500 kW

1500 1989–2006 Germany

Control, Electric,
Generator/Hub

Rotor Blades, Parts/Housing,
Drive Train

WMEP—GD 200 kW Control, Electric,
Hydraulic

Gearbox, Electric, Rotor Blades/
Control/Parts/Housing

WMEP—GD 300 kW Electric, Control,
Hydraulic

Gearbox, Generator, Rotor
Blades

WMEP—GD 500 kW Electric, Control, Yaw Generator, Control, Electric

S. Faulstich [47]
Wind turbine downtime and its

importance for offshore deployment WMEP 1500 1989–2006 Germany
Electrical system, Electrical

Control, Sensors
Gearbox, Drivetrain, Generator

B. Hahn [48]
Reliability of Wind Turbines:

Experiences of 15 years with 1500 WTs WMEP 1500 1991–2006 Germany
Electrical, Plant Control,

Sensors
Generator, Gearbox, Drivetrain
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The categories used here were defined based on a combination of two reliability
studies [5,49], which was done to allow for ease of comparison with previous work. The first
set of categories were taken from Figure 8 in [49], with the addition of Grid from [5],
and finally Nacelle, Shafts and Bearings categories were added.

Stop rate was calculated by taking the number of stops in each category and dividing
through by the number of turbines and years of operation in each farm, this gave a number
of stops per turbine per year.

S =
Ns

NT ∗ T
(1)

where S is the stop rate, Ns is the number of stoppages recorded for that category, NT is the
number of turbines in that farm, and T is the years in operation for that farm. Downtime
was calculated, for each farm, by dividing the total days of downtime per category by the
number of turbines in the farm and the number of years in operation.

DT =
TD

NT ∗ T
(2)

where DT is the downtime, TD is the total days of downtime for recorded, NT is the number
of turbines in the farm, and T is the years in operation for that farm. These two values
allow for fair comparison across all farms and turbines, as it negates the effect of farm size
or age.

Figure 4 shows the average stop rates and downtimes for the direct-drive and gear-
driven farms respectively. As can be seen, the generator has roughly double the stop rate in
direct-drive turbines, and there is also a much greater average downtime for direct-drive
generators. The top three stoppage and downtime categories for each turbine type are
shown in Table 2. There are some similarities between both turbine types; however, from
Figure 4, it can be seen that direct-drive turbines seem to have higher overall downtimes.
Even for components that are assumed to be similar between turbine configurations, there
are quite large differences in stop rate and downtimes. For example, the sensors and pitch
systems both have differences in stop rate and downtime, whilst being components that
should not differ too much between configuration. It is possible that the pitch system could
be hydraulic or electric, and this could bring about some of the change. There may also be
a difference in turbine operation that could account for these differences.

Figure 4. Comparison of the Geared and Direct Drive turbines within the dataset based on average
stop rates and downtimes for each configuration.

Before any comparisons are made between the results presented here and in other
studies, it is important to note that stoppages are not the same as failures, therefore a
direct comparison cannot be made. Stoppages can include failures; however, they also
include stoppages due to alarms. These alarms can be for any reason, such as temporary
overheating of a component. It is possible that these stops are indicators of failure; however,
developing a model to represent this link is beyond the scope of this paper.
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Table 2. Top three stoppage and downtime categories per turbine type.

Turbine Type Top 3 Stoppage Categories Top 3 Downtime Categories

Direct-Drive Turbines Pitch, Yaw, Blades and Hub Electrical, Controls, Pitch

Gear-Driven Turbines Pitch, Electrical, Sensors Electrical, Grid, Pitch

Comparison with Previous Studies

Table 1 presents the details of previous failure rate and downtime studies examined.
The table outlines the different databases used by each paper, the number of turbines
contained, the time period examined, and the country of origin for each database. The last
two columns of the database present the top three turbine components by failure rate,
and downtime per failure respectively. From this table, two studies examined the reliability
data for direct-drive turbines in Europe. The first, from M. Reder et al. [50], found that the
top three, in descending order, components by failure rate were the Controller, Met Station,
and Yaw systems, and by downtime were the Generator, Blades, and Controller. The second
study, from S. Ozturk et al. [31] found that the top three components by failure rate were
Controls, Electric Systems, then the Generator and Hub were tied for third. The top three
by downtime were the Rotor Blades, Parts/Housing, and then the Drivetrain. When this
is compared against Figure 4, it can be seen that there are some differences. The top three
categories are shown in Table 2; however, these are for stoppages rather than failures. So it
may not be appropriate to make a direct comparison.

The frequency of which each component is featured within the top 3 failures or
downtimes is plotted in Figure 5. This bar chart plots the number of times each component
was featured in the top three of either metric in Table 1. This chart can then be used to find
out the overall top three components for both failure rates and downtimes. For failure rates,
the top three components were the Controller, Pitch, and Generator, with the Controller,
Gearbox, and Generator coming in at top three for downtime.

Figure 5. Frequency of each component being within studies top three failures or downtimes from
Table 1.

One review from Crabtree et al. [5] presented the stop rate for the Egmond aan Zee
offshore wind farm situated in the Netherlands. This farm consisted of 36 turbines with
3 years of operational data. These were geared 3 MW turbines, and unlike other studies
presented stop figures instead of fault data. The control system, yaw system, and service
stop categories were the top three, with the Gearbox, Generator, and Blades stops being the
top three categories for downtime. This review is of particular interest as it presents stop
rates, which can be directly compared against the results presented here.
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Compared with Figure 4, the geared turbines from this study have relatively low stops
due to the yaw and control systems, and low service stops on average with quite extreme
outliers. For the downtime, the Generator, Gearbox, and Blades were relatively low.

Stop rates are explicitly different from failure rates in several ways—for example stop
rates are caused by an wind turbine stoppage, whereas failure rates are due to an unsched-
uled, or unplanned, failure of the turbine due to some fault or malfunction. Therefore,
several categories are found in stop data that would not be found for failure data, such
as scheduled service as these are known in advance, or grid failures which are outwith
the operator control. Stoppages are also typically more frequent and should have lower
downtimes on average per stoppage as they are usually less severe than turbine failures.
Within the stop data there will be failure examples, as these are examples of wind turbine
stoppages; however, they will be less frequent.

4. Framework for Assessing the Transferability of Diagnostic Techniques between
Drive Trains
4.1. Framework

In the previous section, reliability rates (wind turbine stop rates and downtimes) for
both direct and geared wind turbines were presented, where several key differences were
highlighted. Building on these results, a framework for assessing the transferability of
failure modes and associated sensors will now be presented. The aim for this framework is
to help determine how well a particular fault could be diagnosed in modern direct-drive
wind turbines using data and diagnostic models demonstrated on geared wind turbines.
This framework does not make any attempt to predict future reliability rates of larger
direct-drive machines. Stop rates and downtimes presented in Section 3 will be used in
conjunction with the framework to assess which components need to be the focus of future
diagnostic research. An example of how this framework can be used is presented later
in this section, which examines previous fault detection papers by assessing their failure
mode and input data to examine how transferable the fault case from each paper was.
By doing this, we can see which components in particular are suitable to assessment in the
future with direct-drive machines, and whether the data inputs used previously would
be suitable or would require some level of processing. The transferability of each paper
was assessed over two dimensions to examine overall transferability. The first dimension
examined how transferable the sensors, or data channels, used by each paper to predict,
or diagnose, the fault. The second dimension assessed how well the specific failure mode
transferred between geared and direct-drive turbines based on fundamental understanding
of the physics of failure.

Two small-scale decision trees were drawn up to assess each paper examined for
their transferability, one for each dimension. The first tree, Figure 6, is used to assess the
transferability of the sensors, or channels, used in each paper. So this assesses the paper’s
selection of features for modelling a particular failure mode—and how well these features,
and required sensors, transfer from a geared to a direct-drive machine. The first question,
in the top diamond, asks if the direct-drive would have all the sensors required for the
features used by the paper. The second question, in the middle two diamonds, asks if
the majority of the sensors used in the paper would be in the same location within the
turbine. The third question, the bottom four diamonds, asks if these sensors are of the same
specification as those on an arbitrary direct-drive machine. This question is essentially used
to assess if the general expected data range you would get from this sensor would be the
same as one on a geared machine. An example could be bearing temperature, you could
consider if a similar thermistor could be used to cover the expected range and resolution
of recorded temperatures. This helps to assess scale of component as well, for example a
generator bearing in a direct-drive machine will be much larger than one in a similarly rated
geared machine. For all of these questions, it was assumed that the direct-drive and geared
machines were of the same arbitrary turbine model; however, the only difference being that
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the the direct-drive machine had no gearbox and the generator was of an appropriate size
for the same power rating as the geared machine.

Both configura�ons 
have all sensors types 

to model required 
features.

Majority of sensors 
are in a similar 

loca�on.

Are required sensor 
specifica�ons 

similar? 

TrueFalse

-4 -3

Set of features used in modelling 
technique

Diagnostic model

Majority of sensors 
are in a similar 

loca�on.

Are required sensor 
specifica�ons 

similar? 

TrueFalse

TrueFalse

-1

TrueFalse

-2

Are required sensor 
specifica�ons 

similar? 

1 2

Are required sensor 
specifica�ons 

similar? 

TrueFalse

TrueFalse

4

TrueFalse

3

Figure 6. Decision tree for sensor/channel group transferability.

The second decision tree, Figure 7, assesses how transferable the physics of failure
mode of each paper is. This tree examines the particular component that failed, and any
failure mode information provided by each paper. First the papers are split by if the fault,
or damage, can be found anywhere across either turbine configuration. Next it is split
by whether it can be found on a specific component—if it can then it asks if the fault
progresses in the same physical manner, and if not then it asks if the model corresponds to
a specific failure mode. If it cannot be found on a specific component, then the questions
determine if it is on an assembly within the turbine, and then if it follows the same physical
manner, and lastly if it is specific to the failure mode examined. Again these questions were
answered under the assumption that the turbines would be of similar models, with the
exception of the gearbox and generator.

To test these decision trees, a database of past fault detection papers were collected
and their fault and input data were collated. Table 3 shows all the past papers examined,
and their scores based on the decision trees referenced earlier. The majority of these
faults occurred on the drivetrain, with some in the blades. SCADA data were the focus
of this study; however, some papers were assessed that used images as their input data.
The input data that each paper utilised were assessed with the first decision tree, and the
fault itself was assessed using the second decision tree. The data ranged both in terms of
years assessed, but also in the turbine rating. All the turbines within the dataset of papers
examined were geared turbines.
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Table 3. Database of papers examined for their transferability.

Author Year Turbine
Rating Fault Examined Data Sensor

Score
Component
Score

Dhiman [6] 2021 Sub 1 MW Gearbox SCADA −4 −5

L. Yang [7] 2021 Unknown Gearbox SCADA −4 −5

X. Yang [51] 2021 Unknown Blade Damage Images 4 5

0.5–1 MW High Speed Shaft −2 −2
Turnbull [10] 2020

2–4 MW Generator Bearing
SCADA

3 2

W. Chen [52] 2021 1.5 MW Blade Ice Accretion SCADA 4 5

S. Moreno [53] 2020 2 MW Load and Wind Sensor Failure SCADA 4 4

X. J. Zeng [54] 2018 1.5 MW Gearbox Oil Temperature
Over Limit Fault

SCADA −3 −3

Bearing HSS Replacement

Generator BrushesM. Beretta [11] 2020 2 MW

Generator Non-Drive End Bearing

SCADA 3 1

J. Chen [55] 2020 1.6 MW Overheating Generator Bearing SCADA −2 2

Rezamand [9] 2020 ∼2.5 MW Blade Fault SCADA 4 4

X. Liu [56] 2020 Unknown Gearbox and Generator SCADA −2 −5

McKinnon [57] 2020 Unknown High Speed Shaft Faults SCADA 3 2

Y. Wang [58] 2019 Unknown Blade Damage Images 4 5

Gearbox Bearing −4 −2
J. Carroll [59] 2019 2–4 MW Gear Tooth Fault

SCADA and
Vibration −2 −5

McKinnon [57] 2020 2–4 MW Intermediate Gear Fault SCADA −4 −5

H. Yun [60] 2019 Unknown Ice Detection SCADA 4 5

C. Yang [61] 2019 Unknown Pitch Limit Switch and Angle Encoder SCADA 3 5

L. Wei [12] 2018 2 MW Pitch System SCADA 4 5

R. Pandit [13] 2018 2.3 MW Yaw Error SCADA 4 5

Gearbox −4 −5

Generator Rear Bearing 3 2H. Zhao [62] 2018 1.5 MW

Inverter Failure

SCADA

3 5

Y. Zhao [63] 2017 1.5 MW Generator Fault SCADA 3 3

Y. Zhao [64] 2016 Unknown Generator Fault SCADA 3 3

M. Beretta [14] 2021 2 MW Main Bearing SCADA −2 5

McKinnon [65] 2021 1.8 MW Pitch System Bearing SCADA 4 5

M. Cardoni [66] 2021 Unknown Oil leaks between HSS and Generator Images 4 5

P. Mucchielli [67] 2021 Unknown A Range SCADA 4 1

Gearbox Planetary Bearing −2 −2

Gearbox HSS Bearing −2 1X. Liu [68] 2021 Unknown

Gearbox

SCADA

−4 −5

A. Heydari [69] 2021 2 MW Gearbox Bearing Fault SCADA −2 −2

L. Xiang [70] 2022 750 kW Gearbox Gear Failure SCADA −2 −5
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Figure 7. Decision tree for component failure mode transferability.

This technique could potentially be expanded to papers that utilised high-frequency
conditon monitoring systems (CMS) data, which is commonly used in the literature.
SCADA data, which is 10 min aggregate data, is what is examined here. High-frequency
CMS data may be of interest in transfer learning for two reasons, the first being the lack
of direct-drive data for the larger machines, but also because CMS data are much more
difficult to acquire. SCADA systems are commonly installed on wind turbines; however,
CMS sensors are less so (particularly on older machines). Typically, CMS data are specifi-
cally used to target an area of interest; however, it is becoming cheaper to install relative to
power output and therefore more common.

4.2. Framework Application Results

Results are presented based on the framework explained in the above section for the
literature stated in Table 3. Figure 8 shows the component tranferability scores on the
x-axis and the sensor tranferability scores on the y-axis. Each single point represents a
diagnostic model presented in the literature (see Table 3) with the fault grouped into the
corresponding component or wider assembly. The mean value per component for each axis
was calculated and plotted as a larger cross on Figure 8. Note that this does not correspond
to any particular model, but simply represents the average transferability of that component
or assembly. All 35 models from Table 3 are shown, although some points have identical
coordinates and cannot be easily distinguished. The most transferable diagnostic models
relate to the hydraulic, pitch and yaw systems, which makes sense due to them being
mostly universal to different wind turbine drive train configurations. For this same reason,
sensor faults and electrical issues also scored highly. The least transferable models were,
as expected given the drive train topology, associated with the gearbox. The components
with the most variability in scoring were the the generator, shafts and bearings. For these,
the overall transferability was largely dependent on both the sensors required to create
model features and specific failure mode being diagnosed.
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Figure 8. Results showing transferability of diagnostic model.

4.3. Discussion

The framework presented is built upon several questions determined by the authors to
distinguish diagnostic models by two key metrics. The first decision tree (Figure 6) is designed
to split models and features by which channels and sensors are similar across both turbine
configurations. This decision is of course influenced by the selection of features used in each
paper, which can lead to some variation in what channels were deemed relevant. The papers
chosen for this study have been peer reviewed; therefore, it is assumed that the channels were
selected either through some expert domain knowledge, or through a data-driven technique
to select variables relevant to the component examined. For this reason it can also be assumed
that these features would prove to be related to the component and how transferable these
features are will help decide how transferable each particular failure mode is.

The second decision tree (Figure 7) is designed to compare faults across different
components, as well as the manner in which a particular fault is likely to develop through
time. Although the decision tree itself is designed to be as general as possible, the specific
failure modes related to the diagnostic models presented here do not represent all possible
failure modes, or even components, within the wind turbine. In Figure 7, faults to be
diagnosed are first split at a component level, as this is the fundamental aspect of how
transferable a fault is. From here, faults are split by the manner they are likely to progress
and present themselves, which is more specific to the fault and failure mode itself. This
requires some expert knowledge of wind turbines and mechanical or electrical systems
depending on the individual fault.

Some papers presented in Table 3 were less specific about the fault than others. For ex-
ample, Dhiman [6] presents a gearbox fault, whereas Zeng [54] presents a gearbox oil
temperature over limit fault. The more specific a fault, the easier it can be scored using
the decision trees; however, it is more sensitive. Conversely, as a more general fault is
harder to score without further information about the failure mode from the authors, more
general faults will typically score lower than a specific fault. Similarly, those papers which
utilise a wider range of SCADA channels, compared to ones that use channels picked for
their relevance to the fault, will typically score lower. By using a wider range of data, it is
less likely that all of the features used will still be transferable to a direct-drive machine.
For example, while a paper may examine a generator fault which is fairly transferable,
the authors may incorporate many features from the gearbox. Obviously, most SCADA
channels in the gearbox will not be transferable to those in a direct-drive turbine.

The transferability of each diagnostic model is shown in Figure 8. Each quadrant
relates to a different level of transferability. The bottom left quadrant is the least transferable
section, with both the required sensors and physics of failure relating to a particular
component fault being unsuitable. The top left quadrant is where the sensors required to
create the model features are available, and hence more transferable, but the fault is not
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relevant. An example of this could be a gearbox failure sensed through other means such
as power curve analysis. The bottom right quandrant represents models which scored
a high score on the component metric, but a low score on sensor metric. An example of
this could be in detecting a high-speed bearing fault using features primarily created from
sensors associated with the gearbox. Although the sensors are not available across both
configurations, high-speed bearing faults could still be relevant to a lower-speed shafts on
the direct-drive machine. The top right quandrant consists of the most transferable fault
cases, with both the sensors and components being relevant and transferable.

The most transferable components in this upper right quadrant appear to be the
components more ubiquitous across turbine configurations, such as pitch and yaw systems.
The channels relevant to these faults are usually quite ubiquitous as well. The generator
is also a fairly transferable component; however, due to its size compared to that of a
direct-drive turbine, some processing may be required to the channels to engineer more
appropriate features. As expected, the least transferable component is the gearbox; however,
as can be seen, some failure modes and sensors are slightly more transferable to a direct
drive. For example, a gearbox bearing may exhibit similar behaviour to other bearings
within a direct-drive turbine. One interesting component group is general shafts and
bearings of the turbine. These are typically transferable faults; however, the choice of
sensors may need examined. Many of these failures focus on the high-speed shaft, which is
not present in a direct-drive turbine, but could be transferred with some feature engineering.

5. Conclusions

This paper presents a comprehensive look at the future trends in European offshore
wind energy. First, it was shown that offshore wind in Europe is currently moving more
towards direct-drive turbines, with each individual installed turbine having a higher
rated power. Overall capacity of new sites is also increasing on average. To examine the
implications of this change, the stop rates for direct-drive and gear-driven turbines were
compared between 39 farms across Europe and South America. It was found that there was
some differences, and in particular the top components by stop rate and downtime were
different from previous papers that had examined failure rates of wind turbines. In the
future, it would be of value to develop a way of mapping stop rates to failure rates, thereby
allowing a more direct comparison to be made.

Finally, this paper presented a framework for analysing how well published fault
detection models transfer between geared and direct-drive turbines. For this, two decision
trees were created to enable a quantitative score to be placed on both the required input
channels and failure mode respectively. Overall transferability could then be assessed by
considering both metrics together. It was found that components, or assemblies, that were
ubiquitous across turbine configurations, such as the pitch system, were more transferable.
Whereas, as expected, the gearbox was the least transferable component. The generator,
shafts and bearings were somewhat transferable; however, in general, these would require
some level of feature engineering to improve the potential performance. While this paper
has examined over 25 papers in testing of the proposed framework, not all turbine com-
ponents or fault conditions were presented. Further study may be needed to apply this
framework to these components. Additionally, this paper has focused mostly on SCADA
data from wind turbines; however, this technique could be applied to papers that have
utilised high-frequency CMS data.

Based on market trends, it is important for researchers to focus their efforts on develop-
ing fault detection techniques for the most critical components related to large direct-drive
technology. Since no such reliability study exists in the literature on large direct-drive wind
turbines, for the time being, previously observed reliability rates must be used and adapted
where appropriate. Based on these studies, the most common critical components stated
with extended downtime are related to the controller, pitch system, generator and gearbox.
Based on the transferability scores presented in this paper, the components that would
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require further work are those related to the direct-drive generator. Additional work is
required in this area in order to utilise, adapt and improve existing fault detection methods.
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DFIG Doubly-fed induction generator
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