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Abstract: The optimization of drilling operations is an ongoing necessity since the major proportion of
the terrestrial hydrocarbon reservoirs has been exhausted. Furthermore, there is a growing tendency
among the space exploration agencies to drill the subsurface formations of the remote planets, such
as the Moon and Mars. To optimize the drilling efficiency in such complicated conditions, the
mechanical specific energy (MSE) must be efficiently reduced. The available MSE models incorporate
the different parameters related to the surface rig, drill bit, and the underlying rocks to estimate the
MSE values. In this research, the current status of those MSE models is assessed, and their relevant
assumptions, limitations, applications, and pros and cons are profoundly argued. From the current
scrutiny, it was deduced that the available MSE models require more geomechanical parameters
to be included in their formulations. Furthermore, the use of artificial intelligence (AI) techniques
was identified as an effective solution to incorporate such geomechanical parameters in the MSE
models. Moreover, the establishment of suitable MSE models for off-Earth drilling applications was
also revealed to be very urgent and essential. The performed analyses together with the comparative
assessments are contributing factors for the modification and establishment of future MSE models.

Keywords: drill bit; ROP; MSE; DSE; drilling optimization; space drilling; UCS; Moon; Mars; regolith

1. Introduction

Drilling operation is considered an integral part of any Earth-related engineering
project, i.e., in civil engineering, mining engineering, and petroleum engineering. It can be
expressed that the depth of the drilling operations spans a few ten meters in the field of
civil engineering, a few hundred meters in mining engineering, and a few thousand meters
in petroleum engineering. The emergence of the hydraulic fracturing technique together
with the extended reach drilling (ERD) technology have contributed to drilling operations
in which the horizontal distance between the well-head and the target reservoir can be
stretched unprecedentedly. The complexity of the drilling process chiefly stems from the
uncertainties related to the subsurface formations, active tectonic regimes, pore pressure,
rock fracture distribution, etc.

To minimize the cost and time related to the drilling operations, a number of different
approaches have been proposed so far. Amongst them, the concepts of mechanical specific
energy (MSE) and rate of penetration (ROP) have achieved rather significant popularity
to enhance the whole efficiency of the drilling operations [1]. From the chronological
standpoint, the concept of ROP was first suggested by Maurer in 1962 [2]. Then, it was
followed by the proposition of the MSE concept by Teale in 1965 [3]. From that time
onwards, several researchers have strived to improve those pioneering concepts through
the incorporation of new parameters within the early models. Such improvements (models)
of MSE and ROP are elaborated in the next sections of this research.

The preliminary utilization of the MSE concept was initially limited to the optimization
of the drilling operations. Nevertheless, subsequent improvements extended the versatility
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of the MSE concept towards other conspicuous applications. Interestingly, in the last decade,
such applications have been rather supported with state-of-the-art artificial intelligence
(AI) approaches. Those approaches have contributed to processing the countless real-time
drilling data in order to enhance drilling efficiency.

Traditional models of MSE have been developed using empirical studies on a limited
degree of drilling raw data. In better words, every MSE model has been developed on the
basis of drilling information related to one, or a few petroleum exploitation projects. The
non-linear nature of the drilling raw data and their relevant uncertainties were neglected to
some extent. This drawback could affect the predicted values of MSE and drilling efficiency.
AI techniques have been adopted to import such large amounts of data generated during
the real-time drilling operations [4]. AI techniques solve the MSE-related problems based
on mankind’s cognitive abilities. The most prevalent AI approaches have been the artificial
neural network (ANN), generic algorithms, (GA), support vector machine (SVM), etc. [5,6]
In the subsequent sections, the previous studies related to the application of AI approaches
in the domain of MSE and ROP optimization have been elaborated.

Earth aside, the planetary bodies have undergone an unprecedented exploration
executed by the national and private space agencies, such as NASA, the European Space
Agency (ESA), SpaceX, Blue Origin, etc. [7]. Some of the future space programs, such as
water extraction, mineral mining, and outpost construction, comprise drilling operations in
their layouts. Thus, the off-Earth drilling technology may be presumed as the most practical
application of geomechanics in future space missions. So far, several designs of lightweight
and small-scale rigs have been proposed for drilling on the lunar and Martian surfaces [8,9].
To evaluate the drilling efficiency of such rigs, the concepts of ROP and MSE have been
adopted by the researchers. Drilling in extraterrestrial environments encounters formidable
issues, such as microgravity, cryogenic temperature, low atmospheric pressure, surface
radiations, regolith abrasiveness, etc. [10]. The limitations pertinent to the applicability of
the power hydraulic systems in vacuum conditions is another pressing problem [10].

Drilling operations in the extraterrestrial environments must be optimized in terms of
the consumed specific energy of the drilling tools (robots). The reason for this is that on
the remote planets, the essential power for the drilling operations is supplied from solar or
nuclear resources since the common fossil fuels cannot be used in cryogenic temperature
and vacuum conditions. Hence, during the drilling process, the consumed specific energy
should be considered as a seminal output. On the Earth, generally, the specific energy of
the drilling rigs is evaluated through the MSE concept. Therefore, similarly, the concept of
MSE can be deployed in extraterrestrial drilling operations.

This research intends to integrate the previous and present applications of the MSE
concept in terrestrial and extraterrestrial drilling projects. The structure of the article has
been organized as follows. Firstly, the MSE models are presented in chronological order so
that the relevant assumptions, parameters, and mathematical formulas for every model are
elaborated. Secondly, the available models of ROP are also recounted since the parameter
of ROP is a key variable within the MSE models. All the presented equations use API
units. Afterward, the diverse applications of the MSE concept in the Earth-based drilling
operations are discussed. Such applications encompass drilling optimization, completion
optimization, estimation of the rock properties, determination of the location of energy
lost in the drill string, design of bit and cutter, estimation of formation pore pressure, and
control of salt creep. Finally, the last part of the paper concentrates on the most prospective
applications of MSE models in space drilling. Such extraterrestrial applications encompass
drilling optimization, bit and drill rig design, and the identification of ice content. We
envisage that this survey can effectively contribute to the development of the mechanical
specific energy concept in prospective terrestrial and extraterrestrial drilling applications.

2. Materials and Methods

To fulfill this research, at first, the available MSE models have been collated, analyzed,
and integrated. Those models have been explained through two categories: empirical
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and data-driven models. Furthermore, a comparison has been conducted to weigh up
the advantages and disadvantages of such models. Afterward, the focus is shifted to the
existing models of ROP, which is the contributing factor in MSE calculation. Similar to the
MSE models, the available ROP models have been presented in two groups, i.e., empirical
and data-driven models. Then, the diverse applications of the MSE concept in on-earth
petroleum engineering are elaborated. This section is then followed by concentrating on
the current MSE applications in off-Earth drilling operations. In the next step, an inclusive
assessment on the status of MSE models together with their pros and cons are discussed.
Eventually, the paper terminates with a conclusion depicting the key findings, results, and
propositions of the current research.

2.1. MSE Models
2.1.1. Available Empirical MSE Models

In petroleum engineering, to reduce the cost of drilling operations, it is very significant
to maximize the drilling efficiency through the minimization of energy consumption. For
this purpose, the models of mechanical specific energy (MSE) have been applied to a large
extent [11]. The MSE concept refers to the amount of energy needed to drill a unit volume
of the rock. This parameter is highly practicable to optimize the drilling process as it helps
to figure out where drilling is efficient or not [12]. A simple definition of the MSE can be
expressed as [13]

MSE = Input Energy/Volume o f Rock Cut (1)

Depending on the type of drilling, MSE models can be classified into three categories.
The first category, which is the basic model of the MSE, is mainly practical for vertical
drilling. The second one has been suggested for the horizontal and directional drilling, and
lastly, the third one is appropriate for the rotating drilling in which positive displacement
motors (PDMs) are applied. The first model of MSE was proposed by Teale in 1965, and is
mathematically expressed through the following equation

MSE =
WOB
Abit

+
120× π × N × T

Abit × ROP
(2)

where WOB represents the weight on the bit, Abit illustrates the bit surface area, N is the
rotational speed of the bit, T demonstrates the measured torque, and ROP indicates the
rate of penetration [7]. Rabia (1985) [14] introduced a simple model for bit selection based
on the specific energy as [11]

ES =
20×WOB× N

dbit × ROP
(3)

where ES is the specific energy and dbit is the bit diameter. Afterward, Pessier and Fear
(1992) [15] optimized the previous model by proposing a method to calculate the torque at
the bit when the reliable torque measurements are not available. Their model is expressed
as the following equation [12]

MSE = WOB×
(

1
Abit

+
13.33× µb × N

dbit × ROP

)
(4)

where µb is a dimensionless number indicating the bit-specific coefficient of sliding friction,
and is defined as

µb = 36
T

dbit ×WOB
(5)

In this model, the parameters are easy to obtain on the ground. Commonly, the value
of µb is presumed as 0.25 and 0.5 for tri-cone and PDC bits, respectively.
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Many researchers have related the values of MSE to the confined compressive strength
of rock (CCS) to evaluate the drilling efficiency. The empirical correlation between MSE
and CCS of the rock can be stated as [16]

Em =
CCS
MSE

× 100 (6)

where Em is the mechanical efficiency of drilling. Dupriest et al. (2005) [17] included
the parameter of Em in their model for calculation of MSE. They used the new term of
mechanical efficiency in Teale’s model, and assumed that this parameter is always in the
range of 30–40% [13]. Their model was as the following relationship

MSE = Em

(
WOB
Abit

+
120× π × N × T

Abit × ROP

)
(7)

where, as mentioned, Em is the mechanical efficiency of the drilling operation, and the rest
of the parameters are the same as in Teale’s model presented in Equation (2). Armenta
(2008) [18] remarked that the usage of the unconfined compressive strength (UCS) of the
rock is not an appropriate approach for the evaluation of the MSE or mechanical efficiency
of the drilling operations. He mentioned two main disadvantages of using UCS as a
comparative tool with MSE values for the prediction of drilling efficiency: Firstly, finding
a correlation between MSE and UCS is a tough task because MSE is mainly much larger
than UCS values. Secondly, based on the laboratory experiments, he added that the values
of MSE are significantly much greater than the CCS in the bottom hole while the drilling
operation was performed with high efficiency [11].

Hydraulic properties of the rocks play an integral part in their mechanical response to
the drilling operations [19,20]. Similarly, the coupling between the hydraulic properties
of the rocks and bit is of paramount importance in the magnitude of the mechanical
specific energy. Armenta (2008) [18] remarked that the impact of the bit hydraulics must
be considered for measuring the drilling specific energy (DSE). He stated that the field
observations demonstrate that a proper design of the bit hydraulics can dramatically
enhance the DSE. He defined the DSE as the necessary specific energy for fragmentation as
well as the removal of a unit volume of the drilled rock. He developed his DSE on the basis
of Teale’s model by adding a term containing the bit hydraulics effect on the DSE:

DSE =
WOB
Abit

+
120× π × N × T

Abit × ROP
−
(

1.98× 106 × λ

ROP
× HPb

Abit

)
(8)

where the third term includes the impact of the bit hydraulics on the DSE. Furthermore,
the number of 1.98× 106 indicates a convention factor, and λ is a dimensionless parameter
called bit-hydraulics factor, which is related to the bit diameter. The ratio of HPb

Abit
shows the

horsepower per square inch of the bit area (hp/in2).
Mohan and Adil (2009) [21] included the bit hydraulics in the specific energy and

introduced a new model on the basis of the Teale’s model. Despite Armenta (2008) [18],
they named the new model as hydro-mechanical specific energy (HMSE) rather than DSE.
They defined the HMSE as the hydraulic and mechanical specific energy for drilling and
removing the rocks under the bit surface. They remarked that their HMSE model includes
the torsional, axial, and hydraulic energy while the single MSE does not consider those
parameters. They introduced their new HMSE model as

HMSE =
WA + WB + WC

Volume o f Rock Drilled
(9)

where HMSE demonstrates the hydro-mechanical specific energy, WA represents the work
carried out by the WOB on the rock, WB represents the work carried out by the bit torsional
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movement on the rock, and WC is the work carried out by the fluid force escaping the jet on
the rock. The more expanded form of the Equation (9) is given as the following relationship

HMSE =
WOBe × ROP + (120π × N × T) + η1 × ∆Pb ×Q

Abit × ROP
(10)

where WOBe is the effective WOB, N is the number of revolutions of the bit, η1 represents
the dummy factor for the reduction of energy, and ∆Pb is pressure drop on the bit. The
parameter of WOBe is calculated by the following equation

WOBe = WOB− η1Fjet (11)

where Fjet is the impact force.
Minghui et al. in [15] included the pulsed-jet drilling in the magnitude of the MSE,

and developed the corresponding theories and applications. In their model, the hydraulic
term of the pulsed jet was incorporated in the MSE model. That model was capable to
estimate the MSE for jet-pulsed drilling, and more than this, could predict the abnormal
conditions too. Their proposed model was defined as

MSE =
WOB
Abit

+
120π × N × c1 ×WOB× dbit

AbitROP
+

120π × c2 ×WOB×
√

N × dbit

Abit
√

ROP
+

βHPb
AbitROP

(12)

where c1 and c2 are coefficients which decrease with the reduction of the confining pressure
according to the tests results of [22], and β is coefficient of hydraulic horsepower.

The direction of the drilling also has a great impact on the stresses acting on the
bit penetrating into the ground [23]. Another MSE model was developed by Chen et al.
(2018) for directional and horizontal drilling activities [11]. According to their model, two
important factors should be considered for this model, including WOB and torque. They
defined their MSE model as [1]

MSE = Em ×WOBb

(
1

Abit
+

13.33× µb × N
dbit × ROP

)
(13)

where
WOBb = WOB× e−µγb (14)

Tb =
µb ×WOB× e−µγb × dbit

3
(15)

where WOBb is WOB at the bottom hole for the directional and horizontal drilling, µ is
the viscosity of the mud, Tb is the bottom hole torque at the bit, and γb is the bottom hole
inclination. Chen et al. (2018) [11] also offered a new model for MSE which is applicable
for drilling with PDM by defining the mechanical work needed to break the rock, and to
perform the total mechanical work as

MSE = Em ×
(

WOB× e−µsγb
1

Abit
+

1155.2× η × ∆PmQ
Abit × ROP

)
(16)

where
MSE =

WV
V

(17)

WV = Wt × Em (18)

Wt = WOBb × ROP + 60× 2π × Ns × Ts + 60× 2π × Nm × Tm (19)

V = Abit × ROP (20)

where ∆Pm represents the dropped pressure across the PDM, η illustrates the efficiency of
PDM, Q is flow rate, µs is the coefficient of the friction of drill string, WV is the mechanical
work needed to break the rock per hour, V demonstrates the volume of the drilled rock per
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hour, Wt is the total mechanical work done by the bit during one hour, Ns represents the bit
rotary speed, which is supplied via the surface rotation, Ts defines the provided torque by
the surface rotation, Nm defines the rotary speed by the PDM output, and lastly, Tm is the
torque provided via the PDM.

2.1.2. Comparative Evaluation between the Available Empirical MSE Models

The aforesaid empirical models encompass the most preferred techniques to evaluate
the MSE values in the global petroleum exploitation industry. As it can be seen, those MSE
models have been enhanced during the recent decades. However, there seems to be some
gaps that have not been fulfilled yet. In this research, to detect those gaps, the available
MSE models are evaluated in terms of the domain of their parameters. Generally, the
parameters in the aforesaid MSE models are related to three sources: surface rig, the drill
bit, and the underlying rocks. In better words, the available MSE models have incorporated
different numbers of determining parameters related to each source. For instance, Teale’s
model and Rabia’s model mainly incorporated the parameters related to the surface rig in
their corresponding formulas. Furthermore, they only considered the effect of bit diameter
on the MSE values, and the effect of bit hydraulics parameters, such as nozzle diameter,
drilling fluid type, etc., were neglected. On a more negative note, both Teale’s model and
Rabia’s model did not include the parameters related to the drilled formations, thereby
leading to a considerable deficiency in their MSE calculation.

In the early 2000s, other researchers strived to further incorporate the effect of under-
lying formations on the MSE. An example was the MSE model proposed by Dupriest et al.,
which included the rock CCS in the concept of mechanical efficiency. Although this was
a conspicuous advancement in the MSE models, it seems to be very inadequate since the
CCS cannot perfectly represent the effect of rock on the MSE. In fact, rock drill-ability is
dependent on many parameters, such as type (igneous, sedimentary, and metamorphic),
hardness, abrasiveness, porosity, pore fluid type, pore fluid pressure, etc. The CCS is an
indicator for the rock hardness, and hence, it cannot directly involve the effect of other
influential characteristics on the MSE. The new MSE models also suffer from the adequate
rock-related parameters in their formulations. Hence, an imperative necessity has been
detected to consider more rock parameters in the future MSE models. Those parameters
especially can be related to the abrasiveness of the rocks, shear strength, and hydraulic
properties, such as porosity and permeability.

From the late 2000s towards now, researchers have focused on the incorporation of
parameters pertinent to the bit hydraulics on the MSE models. Those examples are the
models developed by Armenta in 2008 [18], Mohan and Adil in 2009 [21], and Minghui et al.
in 2016 [16]. Although those models have taken into account the bit hydraulics parameter,
the effect of rock parameters has not been included sufficiently. In fact, in all of them, only
the CCS or UCS represent the hardness nature of the rock.

Our comparative assessment demonstrates that the MSE model developed by Chen
et al. in 2018 had many advantages in comparison to the previous models. The first thing
is that this model has incorporated sufficient parameters related to the surface rig and
bit hydraulics. Furthermore, the effect of drilling direction, which even impacts the rock
characteristics, has been incorporated in the MSE formulation. Furthermore, it can be
applied for the PDMs, which represent an integral part of current petroleum exploitation
in the world. However, this model can be improved by incorporating more rock-related
parameters in its MSE formulation. A summary of the aforementioned models has been
expressed in Table 1.
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Table 1. Description of empirical MSE models.

Model Type Refrence Formation
Effect

Hydraulic
Impact

Type of
Application More Details

MSE model Teale (1965) No No Vertical well The first empirical model for MSE.

Specific
Energy model Rabia (1985) No No Vertical well Introduced a model for the bit selection based on

the specific energy.

MSE model Pessier and Fear (1992) No No Vertical well
This model introduced bit-specific coefficient of
sliding friction that helped to calculate the torque
at the bit.

MSE model Dupriest et al. (2005) Yes No Vertical well This model included new term of mechanical
efficiency on the Teale’s model.

DSE model Armenta (2008) No Yes Vertical well

Included impact of the bit hydraulics and defined
DSE (the necessary specific energy for
fragmentation and the removal of a unit volume of
the drilled rock) instead of MSE.

HMSE model Mohan and Adil (2009) Yes Vertical well

HMSE or Hydro-Mechanical Specific Energy is
defined as the hydraulic and mechanical specific
energy for drilling and removing the rocks. This
model included the torsional, axial, and hydraulic
energy while the single MSE does not consider
those parameters.

MSE model Minghui et al. (2016) No Yes Vertical well The pulsed-jet drilling is included in the model.

MSE model Chen et al. (2018) Yes Yes Directional and
HorizontalWell

They defined two new expressions for WOB and
Torque at the bottom hole for the directional and
horizontal drilling. They also considered bottom
hole inclination as a new factor in their model.

MSE model Chen et al. (2018) Yes Yse PDM Defined the mechanical work required to break the
rock, and to perform the total mechanical work.

Apart from the parameters related to the three aforementioned sources, i.e., surface
rig, the drill bit, and the underlying rocks, there seems to be other factors which can be
included in the MSE formulations. As the depth of drilling operations increases as a result
of exhaustion of the conventional oil and gas reservoirs, the need for the development of
such sophisticated MSE models is heightened. In the deep formations, some external factors,
such as temperature and in situ stress, state play more important roles than the near-surface
formations. While the in-situ stress state can be indirectly defined in the rock properties, the
effect of temperature must be taken into account independently. Furthermore, a proportion
of the consumed MSE is related to the heat created at the interface of the bit and the hosting
rocks. Hence, the heat transfer between the drilling tools and the rocks is dominated by
the rock temperature and the characteristics of the bit and drilling fluid. Excessive heat
due to the friction between the drill tools and the surrounding rocks can cause significant
impacts on the predicted MSE, as it can have various effects on the variables included in
MSE models. For instance, the geometry of tools [24], type of fluid [25], the capability
of cooling of fluid [26], the quality of uniform distribution of heat on tools [27], and the
influences of different physical parameters on the flow of fluid [28] must be considered to
obtain more reliable, accurate MSE models.

2.1.3. Data-Driven MSE Models

During the drilling operations, a vast amount of data related to different sources,
i.e., the surface rig, the bit, the drilling string, the surrounding rock, and the drilling
mud, are recorded in real-time. The classic mathematical or empirical methods are not
capable of discovering the concealed relations between such parameters. In this condition,
a data-driven MSE model can be effectively utilized to recognize such hidden correlations
between the different parameters. Nowadays, data-driven MSE models are increasingly
adopted due to their capability of incorporation of the vast drilling parameters in a time
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efficient manner. In this section, some of the intriguing examples of data-driven models
are presented.

In 2018, Anemangely et al. created a data-driven MSE model to predict the properties
of underlying rocks in an oil field located in the south part of Iran [29]. Such rock properties
included the Poisson ratio, internal friction angle, UCS, and CCS of the subsurface forma-
tion. For this purpose, they utilized MLP neural networks. Their findings confirmed the
high capability of the applied AI methods in the accurate prediction of the rock properties.
Furthermore, some other AI methods, such as MNLR methods, were deployed to weigh
up the accuracy and reliability of those techniques in the estimation of the rock properties.
They concluded that the nature of the type of input data can impact the results. In fact,
they observed that using AI techniques delivers accurate results when the target is the
prediction of the internal friction angle, UCS, and CCS. However, the prediction of Poisson
ratio was not as successful as other parameters.

Hegde and Gray in 2018 developed an MSE model using the random forest algo-
rithm [30]. They used the drilling real-time data, such as formation strain, WOB, mud
flow rate, and rotary speed, to establish their data-driven MSE model. In this way, their
model was capable of adjusting the optimal drilling parameters ahead of the drill bit. They
reported that through the new MSE model, they could increase the ROP up to 20% and
decrease the torque on the bit up to 7%. Therefore, they concluded that the data-driven
MSE model contributed to a further lifetime of the bit as well as a less non-productive
time. In a similar study, Ref. [31] used the MSE and torque to optimize the ROP. They
adopted such a data-driven model to see the variations of the drilling efficiency with other
drilling parameters.

In an innovative approach, Ref. [32] defined the term of ratio of the ROP to MSE for
describing the drilling efficiency status. To do this, they created seven ROP models based
on the ANN approach. The input data encompassed large field data obtained during the
real time measurements of rotation speed, WOP, ROP, torque, and mud flow rate. The ROP
models successfully anticipated the accurate values of ROP during the drilling operations.
Then, they combined the results of the obtained values of ROP with the computed values
of MSE to maximize the drilling efficiency. In this way, they defined the ROP/MSE ratio as
an indicator of the drilling efficiency.

In another investigation, Ref. [33] developed a novel data-driven MSE model for
forecasting the optimal values of rotary speed and WOB, so that a real-time optimization of
drilling efficiency could be achieved. The MSE model functioned as an advisory tool to en-
hance the rate of penetration as well as the lifetime of the drilling equipment. Furthermore,
it could predict the drilling dysfunctions and alert the drilling crew about the potential
undesired events.

Liang et al. in 2022 utilized the supervised machine learning method of SVM approach
to develop an MSE model for recognition of lithology ahead of the drilling bit [34]. They
generated several SVM models based on the different raw data types. From the results,
they deduced that the MSE concept can be effectively utilized for lithology recognition with
an accuracy higher than 90%. The main advantage of the SVM approach was the capability
of processing the enormous data with noises and outliers.

2.2. ROP Models

Apart from the mechanical specific energy, to reduce the cost of the wellbore drilling,
the rate of penetration (ROP) must be optimized as much as possible. Several factors affect
the ROP, including the formation type, formation abrasiveness, rock compressive strength,
weight on the bit, rotatory speed, bit hydraulics, bit size, bit wear, jet nozzles, etc. There are
several models to predict the ROP and to determine the effect of each parameter so that the
ultimate ROP can be enhanced. The first category of models includes empirical models,
and the second, data-driven ones.

The first category includes the empirical models based on the linear regression on
the field drilling data. In fact, such models were created on the basis of the empirical
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correlations between the ROP and parameters affecting it. The second categories are new
and use artificial intelligence (AI) methods to predict the ROP.

2.2.1. Empirical ROP Models

Empirical or linear regression-based models for the prediction of ROP are summarized
as below:

The first empirical model for ROP prediction was developed by Maurer in [2]. Rock
strength, WOB, N, and the size of the drill bit are the fundamental factors in this model.
The relation of these parameters with ROP was stated in the following equation

ROP =
K
S2

(
WOB

dbit
− WOB0

dbit

)2
N (21)

where K represents the constant of proportionality, S shows the rock compressive strength,
and WOB0 is the threshold WOB.

The second model was suggested by Galle and Woods in [35]. This model only
included the worn-down height of the bit, and not bit body wear. The mathematical form
was as

ROP ∝
(

1
0.928125 h2 + 6h + 1

)b7

(22)

where h is fractional bit tooth dullness and b7 is an exponent (suggested to choose as 0.5).
Another model to predict ROP was suggested by [36]. That model comprised the

rock strength in the Maurer’s model, [2], in the parameter K. The following relationship
represents the basis of such a model

ROP = K
(

WOB
dbit

)b5

N (23)

where b5 is the WOB exponent.
As a conspicuous proposition, Bourgoyne and Young in (1974) offered another model

for ROP [37]. This model is considered as one of the most applicable empirical models to
predict the ROP values. Equation (24) and the following functional relations define this
model of ROP:

ROP = f1 × f2 × f3 × f4 × f5 × f6 × f7 × f8 (24)

f1 = exp2.303×a1 (25)

f2 = exp2.303×a2×(10000−TVD) (26)

f3 = exp2.303×a3×TVD0.69×(gp−9.0) (27)

f4 = exp2.303×a4×TVD×(gp−ECD) (28)

f5 =


(

WOB
dbit

)
−
(

WOB
dbit

)
t

4−
(

WOB
dbit

)
t

a5

(29)

f6 =

(
N
60

)a6

(30)

f7 = exp−a7×h (31)

f8 =

(
FJet

1000

)a8

(32)

In Equations (25)–(32), a1 to a8 manifest constants that are estimated from the real
drilling data, TVD displays the true vertical depth, gp represents the pore pressure gradient,
ECD illustrates the equivalent circulating density, (WOB/dbit)t stands for the parameter
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of the threshold bit weight per inch of bit diameter when bit starts drilling (1000 lbf/in),
(W/dbit) represents the bit weight per inch of bit diameter, and FJet demonstrates the fluid
motion force beneath the bit.

It is also worth mentioning that this model was improved by Oslougi in (2007) to
include the hole cleaning for the directional and horizontal wellbores. This improved
model is applicable for both roller cone bits and PDC bits [38].

The subsequent two models belong to Warren who introduced his first model [39].
Later, Warren declared a modification of the previous model in [40]. The first one, which is
called the “Perfect-Cleaning Model”, included parameters, such as bit rotary speed, rock
strength, weight on the bit and bit diameter. Equation (33) describes this model:

ROP = 1/(
aS2d3

bit
NbWOB2 +

b
Ndbit

) (33)

In this equation, a and b are constants which are dimensionless, and S demonstrates
the rock strength. The applicability of this model appeared to be limited since it did not
include the process of cuttings removal in ROP calculation.

The second model offered by Warren is called the “Imperfect-Cleaning Model” and is
based on the previous model. However, this model includes the cuttings removal process,
which is dependent on the properties of mud (density and viscosity), and the effect of jet
impact force on ROP. This improvement rendered the new model superior to the former
one. Equation (34) represents this model as

ROP = 1/(
aS2d3

bit
NbWOB2 +

b
Ndbit

+
cdbitγ f µ

Fjet
) (34)

where c is a dimensionless constant, γ f stands for the fluid specific gravity, and µ indicates
the viscosity of the drilling fluid.

The last well-known empirical model was suggested by Osgouei [38]. This model was
established on the basis of the Bourgoyne and Young model. In his ROP model, Osgouei
included the effect of the hole cleaning factor on the ROP values via adding three factors, f9,
f10, and f11, representing the hole cleaning term in the horizontal and directional wellbores
as well as vertical wellbores for both roller cone and PDC bits. Osgouei’s ROP model is
stated as

ROP = f1 × f2 × f3 × f4 × f5 × f6 × f7 × f8 × f9 × f10 × f11 (35)

f1 = ea1 (36)

f2 = ea2×(8800−TVD) (37)

f3 = ea3×TVD0.69×(gp−9) (38)

f4 = ea4×TVD×(gp−ECD) (39)

f5 =

 WOB
dbit

WOB
dbit

∣∣∣
t

a5

(40)

f6 =

(
N
Nc

)a6

(41)

f7 = e−a7 h (42)

f8 =

(
FJet

FJc

)a8

(43)

f9 =

(
Abed/Awell

0.2

)a9

(44)
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f10 =

(
VActual
VCritical

)a10

(45)

f11 =

(
Cc

100

)a11

(46)

In the mentioned equations, a1 – a11 represent constants that are estimated from the
real drilling data, ECD is Equivalent circulating mud density at the hole bottom, Nc is
the critical rotary speed that should be estimated by considering the properties of drilling
string, bit type, and field data. Moreover, h shows the fractional tooth dullness, and the
parameter of FJc depends on the bit type, drilling mud property, and pump pressure.
The normalization value is assumed to be 1000 lb. The parameter of Abed illustrates
the area of the cuttings bed, Awell demonstrates the area of the wellbore, VActual is the
volume of cuttings, Vcritical represents the critical volume of cuttings removal, and Cc is the
concentration of cuttings constant.

To sum up, the empirical ROP models have undergone continuous modifications the
same as the empirical MSE models. In this research, it was found that the reliability of the
available ROP models can be judged through incorporation of five factors in their formu-
lations. Those five factors include the bit wear, pore pressure, drilling fluid, applicability,
and hole cleaning. Based on such factors, a comparison has been performed in Table 2.
As can be seen, the model proposed by Osgouei satisfies all of five parameters. Hence,
this model is an efficient tool which can be adopted together with the MSE models for
enhancement of the drilling efficiency. It is noteworthy that the impact of external factors
such as temperature can be included in all available ROP models.

Table 2. Description of Empirical ROP Models.

Refrence Hole Cleaning Bit Wear Drilling Fluid Pore Pressure Applicatin

Maurer (1962) No No No No Vertical well
Galle and Woods (1963) No Yes No No Vertical well

Bingham (1965) No No No No Vertical well
Bourgoyne and Young (1974) No Yes Yes Yes Directional and horizontal well

Warren (Perfect–Cleaning Model) (1981) No No No No Vertical well
Warren (Imperfect–Cleaning Model) (1984) Yes No Yes No Vertical well

Osgouei (2007) Yes Yes Yes Yes Directional and horizontal well

2.2.2. Data-Driven ROP Models

In recent decades, the conventional oil and gas reservoirs have been increasingly
exhausted. Thus, the need for drilling operations in the lower depths and the application
of more complicated methods, such as directional and horizontal drilling, call for more
precise models to predict ROP [23,41]. This is why artificial intelligence approaches have
been widely applied by a large number of petroleum engineers and researchers to predict
the ROP. In fact, in the petroleum industry, a large amount of data is daily being recorded
during the drilling operations. The best methods to analyse and find a mathematical
pattern between the different drilling parameters are AI approaches. Those methods can
solve diverse problems, which include a high complexity stemming from the numerous
parameters influencing the drilling operations [42].

Hegde et al. [43] compared the results of the empirical models of ROP to obtained
models by the data-driven methods. They concluded that the data-driven models provide
a better prediction of ROP than the empirical counterparts. They stated that the main
shortcomings of the empirical models include the usage of empirical coefficients (constants)
and weak accuracy in predicted ROP values. Moreover, a number of empirical models
do not consider the effects of bit hydraulics, bit properties, mud properties, etc. On the
opposite side, they recounted two main advantages for data-driven models. Firstly, there
is no need for empirical constants or bit properties, and secondly, the input data are real
recorded information on the ground surface (from drill rig).
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Arehart [44] used neural networks to determine the bit grade (state of the bit wear)
while drilling. He predicted the bit grade by using drilling input parameters, such as ROP,
hydraulic horsepower per square inch, WOB, rotary speed, and torque. He stated that the
results of the bit grade predicted by the neural network were acceptably accurate. However,
he pointed out that the input data were insufficient, and it was necessary to import more
data to extract a better fitted trend between the variables and grade of the bit wear.

Furthermore, Bilgesu et al. in [45] introduced a novel method for predicting ROP by
using the neural networks. They obtained 8000 measurements from a rig floor simulator.
Those data included rotary speed, torque, WOB, formation drill-ability, the rate of mud
pump circulating, bit type, bit tooth wear, bit bearing wear, and the rotation time of the bit.
Those parameters were given to the neural network model to anticipate the values of ROP.
Moreover, in his research, by using another data set, Bilgesu made a model to anticipate
the ROP values without using the bit bearing wear and bit tooth wear parameters. This
was because of the lack of underground data concerning the bits.

In addition, Amar and Ibrahim in 2012 used neural networks for predicting ROP by
applying seven parameters, including ECD, WOB, rotary speed, depth, tooth wear, pore
pressure gradient, and Reynolds number [46]. Similarly, Gidh et al. [47] applied neural
networks to anticipate the bit wear. Then, they used their findings to improve the values
of ROP.

Machine learning (ML) approaches have also been adopted in the modeling of ROP
to enhance the drilling operation [48–50]. Dunlop et al. in 2011 used the WOB and
rotary speed for the optimization of ROP during drilling activities. Furthermore, Ref. [51]
developed a data-driven ROP model for anticipation of probable stuck pipe problems using
ML techniques. Ref. [52] utilized the machine learning method to maximize the values of
ROP using parameters, such as rotary speed, WOB, and mud flow rate.

2.3. Applications of MSE Models in Terrestrial Drilling

The quantification of MSE has been applied in several fields of drilling operations. The
concept of MSE can be applied for planning and monitoring the whole drilling project as
well as for analyzing, predicting, and evaluating the rate of penetration (ROP). Furthermore,
other initiative applications, such as predicting pore pressure and rock characterization, are
also feasible [53]. In the following section, the diverse applications of MSE concept in the
drilling operations are elaborated:

2.3.1. Drilling Optimization

To enhance the specific energy consumed by the drilling rig, the concept of MSE has
been frequently adopted so far [54–57]. As a new example, Hamlawi et al. in 2021, utilized
a new MSE-based program for optimization of the drilling efficiency of a conventional
drilling rig [58]. They developed a new MSE drilling advisory program based on the
machine learning algorithms to determine the optimal values of the operational drilling
parameters such as the WOB and rotary speed. They deduced that the new AI-based MSE
program could remarkably decrease the tear and wear of the bits, fuel consumption, bit
replacement, non-product time (NPT), and the total working days.

Analysis of the mechanism of the rock fragmentation is based on the comprehension
of the relationship between the MSE and drilling parameters. Therefore, based on the MSE,
a systematic approach for the management of the vibration risk was established. Fei et al. in
2017 used Teale’s model to assign the bit torque for a special bit type to drill at a particular
ROP in a specified rock type [59]. They applied the following equation for this work:

T =

(
CCS
Em
− 4×WOB

π × d2
bit

)
×
(

d2
bit × ROP
480× N

)
(47)
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where CCS refers to the confined compressive strength of rock that is calculated for perme-
able rock to the bottom-hole condition as follows:

CCS = UCS + DP + 2DP× sin ϕ/(1− sin ϕ) (48)

where UCS demonstrates the unconfined compressive strength of the rock, ϕ represents
the rock friction internal angle, DP is equal to the ECD pressure minus the pore pressure.
To calculate the pore pressure for a vertical well drilled in an impermeable rock, they used
the Skempton pore pressure to calculate the compressive strength of the rock as

CCSS = UCS + DPS + 2DPS × sin ϕ/(1− sin ϕ) (49)

where CCSS is the CCS for impermeable rock obtained using the Skempton pore pressure,
and DPS is defined as the differential pressure between the ECD pressure and Skempton
pore pressure. Based on Equations (47)–(49), the modified MSE model was derived. This
approach was associated with identifying the vibration issue based on the MSE and mon-
itoring the environment of the down-hole in the real time to enable the drilling crew for
an immediate reaction by adjusting and changing the drilling parameters. This was an
effective approach to mitigate the effect of the stick-slip problems in drilling operations,
and positively, it improved the ROP about 20% [59].

2.3.2. Estimation of the Rock Properties

Understanding of the rock properties, chiefly rock strength, contributes to the estab-
lishment of a more efficient plan of drilling operations. Trivedi et al. in 2020 introduced an
updated MSE program to estimate the CCS of the subsurface formations [60]. Their MSE
model included drill-string dysfunctions, such as vibration, mud motor dynamics, and
frictional losses along the drill-strings. They found that a reliable correlation between the
actual MSE and CCS is developable. In their model, two new parameters were introduced.
The first parameter was the hydraulic specific energy (HSE) that estimates the function
of the hydraulic impact force at the formation rather than the bit bottom. The second
parameter was the vibration specific energy (VSE), which estimates the energy pertinent to
the vibrations and its influence on the translational weight on the bit, and the rotational
energy associated with the torque. The first parameter can be explained as follows

HSE = ∑
Ni

(
1− A−0.122

v

)
IFNi /Ab, Ni

(50)

where Ni is number of nozzles, Av shows the ratio of jet fluid velocity for returning the fluid
velocity, Ab, Ni

is the bit area per nozzle, and IFNi can be obtained as following relationship

IFNi = 0.01823× Cd × (Q/Ni)
√

MW × ∆pb (51)

where Cd represents the fluid discharge coefficient, Q is flow rate of the mud, and MW
demonstrates the mud weight.

The second introduced parameter can be explained as follows:

VSE = ∑ f (KE, PE, DE)/Areabit (52)

where the term of ∑(KE, PE, DE) describes the total kinetic, potential, and dissipation
energies related to the vibration amplitude. Furthermore, the term of f (KE, PE, DE)
illustrates the force required for the total energy of the system, including mass matrix. The
parameter of Areabit is the cross-sectional area of the bit.

Considering those two introduced parameters, their actual MSE model contributing
towards the cutting process can be shown as follows:
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MSEactual =

(
WOB
Ariabit

)
VSE

+
120× π × (Nbit)mud−motor × Tbit(mud−motor, f riction, VSE)

Ariabit × ROP
+ HSE (53)

where (Nbit)mud−motor and Tbit(mud−motor, f riction, VSE) can be calculated from the following
equations:

Tbit = Tbottom(VSE, f riction) +

(
Tmaxmud−motor

DPmaxmud−motor

)
× DPmud−motor ×

Nmaxmud−motor
Nmud−motor

(54)

Nbit = Ntop−drive +
[
Q× (RevV)mud−motor

]
(55)

where Tbottom is the torque at the bottom of each drill-string element, Tmaxmud−motor is the
maximum torque rating of the mud-motor, DPmaxmud−motor is the maximum differential
pressure of the mud-motor, DPmud−motor indicates the actual differential pressure across
the mud-motor, Nmaxmud−motor is the maximum rotation per minutes (N) rating of the
mud-motor, Ntop−drive is the rotation per minutes (N) at top-drive, and (RevV)mud−motor
represents the revolutions per mud volume of the mud-motor.

Calculating the MSE baselines and averaging them can be utilized to check the values
of the MSE in real-time. The obtained information of MSE baseline could also be adopted
to manifest the UCS of the formations, and therefore, may be applied to formulate a
trustworthy map of the hardness of the rock to improve the design of completion plan [61].
Gurtej et al. in [39] deployed the MSE baselines to create a multivariate physics-based
decision tree approach for automatically classification and identification of the different
dysfunction types. Some limitations in the technology, such as slow data rates, restricted
the adoption of the MSE as an efficient approach for evaluation of the formation. However,
this issue was solved by the modern coiled tubing drilling BHAs, which are designed
for the underbalanced drilling operations. Utilizing this method offers the acquisition
of information about the type of rock which is drilled in real time with an inch level
resolution [62].

Arnø et al. in [63] successfully developed a new deep learning method by using the
concept of MSE for real-time classification of the formation being drilled at the depth of bit
penetration. After training and validation of the model, its accuracy in classifying a varying
set of the different formations was examined. The tests were reported as very successful
since the model could immediately report the type of layers at the different borders. This
advantage can rapidly alert the operator about the class of the new formation which the
drill bit commences to penetrate through.

2.3.3. Completion Optimization

As it was already mentioned, the MSE values could be applied to predict the UCS
of the rock within each frac stage. This could be very beneficial to set the perforation
clusters in the borehole sections with similar UCS values to reduce the negative influences
of the rock heterogeneity [64,65]. The drilling experts can take advantage of the MSE by
recognizing the close relationship between it and the unconfined compressive strength
(UCS) for the completion operation. This close relation can be presented as follows:

MSE = UCS× De f f (56)

where De f f is the efficiency of transmitting the penetration power of the rig to the rock [66].
The corrected mechanical specific energy (CMSE) can be utilized where there is need

to compute and account the friction losses in the wellbore and drill string in real time.
The CMSE is applied for estimation of the geomechanical logs and creation of a live
geomechanical model being applied to steer the bit through the fracable rocks.

When the drilling is fulfilled, according to the CMSE outputs (including pore pressure,
stresses, and natural fracture index), the frac stage spacing and cluster density will be
adjusted [67]. The technology of using CMSE for predicting geomechanical logs is a
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considerable step to optimize the completion process. Moreover, the most significant
benefit of this technology is its versatility in any drilling operation without the need to use
additional surface sensors, gauges, or down-hole measurement tools, thereby reducing the
costs and risks related to the potential wellbore issues.

Furthermore, another significant benefit of this technology is that there will be no
need for on-site personnel or authorizations since it uses the real-time drilling data to
immediately steer in the rock. Furthermore, the instant design of the completion stage
becomes feasible exactly at the end of the drilling operations. This technology is utilized
to estimate the multiple factors that create the frictional losses in the real time. When
these losses are perfectly assessed, they can be applied to MSE correction. In fact, CMSE is
acquired from the surface drilling data that contain vital information which can be used for
designing the optimal cluster placement [68].

2.3.4. Determination of Energy Flow, Lost and Location

Chen et al. in [69] pointed out that the term of MSE cannot directly provide information
about the loss of energy in the components of the drilling system, such as drilling strings.
In better words, during the drilling operations, a proportion of the provided energy may
reside within the drill string in the forms of strain and kinetic energy. Furthermore, the root
cause of the energy loss also remains undetected. They proposed an initiative approach for
estimation of the drilling energy flow along the drilling string. In their method, the whole
drilling string was modeled from the top to the bit using a number of 3D beam elements.
The dynamic response history of the elements were solved by a numerical program of finite
element method.

MSE is a function incorporating the drilling parameters to determine the overall
drilling efficiency. However, it does not clearly distinguish the location of inefficiencies.
This issue can be addressed by the concept of mechanical specific energy ratio (MSER). The
location of the inefficiencies could be more easily identified by using the ratio of the MSE
surface values to the MSE values of the down-hole. MSER can be defined as a correlation
to optimize the drilling fulfillment in real time.

To find the ratio, firstly, it is necessary to calculate the MSE taken from the drillfloor
values. The original MSE equation is changed by substituting the area of rock destroyed
with the diameter (d) variable to account for only the volume of rock which is destroyed by
the under-reamer. The following equations describe how the mechanical specific energy
with drillfloor values and mechanical specific energy with MWD (Measuring while drilling)
values are obtained.

MSEDrill f loor =
WOBDF

Arock destroyed
+

480× NDF × TDF
Arock destroyed × ROP

(57)

Arock destroyed =
(
πr2

under−reamer diameter
)
−
(
πr2

bit diameter
)

(58)

MSEMWD =
4×WOBMWD

π × d2
bit

+
480× NMWD × TMWD

d2
bit × ROP

(59)

where MSEDrill f loor is mechanical specific energy from the drillfloor values, Arock destroyed is
the area of rock which is destroyed, WOBDF is WOB of drillfloor, NDF is N of drillfloor, TDF
is drillfloor torque, MSEMWD is mechanical specific energy from MWD tool, r is radius, and
WOBMWD, NMWD, TMWD are WOB, N, and T are obtained from the MWD tool respectively.
The use of this ratio is applied in under-reaming process of the deep-water wells [70].

As a very useful application of MSE, it can be applied in the operation of reaming
while drilling (RWD) that is limited to finer formations. A thermo-poroelastic model of MSE
can be utilized in order to apply the RWD for a particular formation and a recommendation
for reamer-pilot size ratio [71].
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2.3.5. Bit and Cutter Design

Through the trial-and-error attempts together with the novel numerical modelling
programs, the process of rock cutting and bit performance have been broadly investigated.
In such investigations, the focus has been to design a well-functioning bit or cutter so that
the minimum energy was required for the fragmentation of the rock. Those studies were
conducted mostly for PDC drill bits, and can be categorized into two subgroups: PDC
bit/rock interaction and PDC cutter/rock interaction [72]. One of the first pioneer PDC
cutter/rock models was developed by Miedema [73], and it was used as a constitutive
model for the subsequent investigations by the different researchers. The model was
appropriate for evaluation of the PDC cutter/rock interaction in formations, such as clay,
rock, and sand. The model could predict the cutting forces and the values of MSE on the
basis of the force equilibrium equations.

A three-dimensional PDC cutter model developed by [72] to determine the forces at
the cutter/rock interaction phase. The model used the poro-elasticity theory to compute
the drilling-induced stress regime within the rock while the rock cutting cycle. After the
calculation of stress state within the rock, the criterion of modified Lade was used to
anticipate the rock failure. Their model was verified with the probe of the impact of the
contributing factors on the process of rock cutting. Such factors included the depth of cut,
hydrostatic pressure, back rake angle, side-rake angle, and worn depth.

Chen et al. in [74] investigated the effect of two simultaneous PDC cutters on the rock
fragmentation. They witnessed that the rock is fragmented in front of and between the
two cutters. In this case, the cutting volume was remarkable, thereby leading to lower
magnitudes of MSE. They concluded that if double cutters are installed close to each other
so that the depth of cut would be large, the value of the MSE decreases by 5–25% in contrast
to a single cutter. They calculated the MSE for a single cutter (MSEs) according to the
following equation:

MSEs =
Rx

Ac cos α
(60)

where Rx is the cutting force, Ac is the contact area between the cutter and rock, and α
represents the angle that depends on the tooth bit direction towards the rock surface. To
calculate the MSE for the double cutters, they used another equation as follows:

MSEd =
RI

x + RI I
x

Acut
(61)

where MSEd is the mechanical specific energy for double cutters, Acut is the cutting area of
two cutters, RI

x and RI I
x are cutting forces by the two cutters. To facilitate the quantification

of the integrated influence of double cutters, they proposed a parameter, integrated index
ζ, being defined as follows:

ζ =
MSEs

MSEd
(62)

The MSE concept was applied to develop a methodology for optimization of the
design of polycrystalline diamond compact (PDC) bit for the entire hole section according
to the modelled MSE and UCS values [57].

2.3.6. Estimation of Formation Pore Pressure

The mechanical response of the natural porous rocks is a function of their minerals and
pore fluid pressure [75,76]. Pore pressure affects the drilling process through the concept of
effective stress law [77,78]. The more pore pressure, the less effective stress. In the drilling
field, it has been long accepted that the energy required to drill the formation not only is
dependent on the mud pressure but also on the formation pore pressure. Generally, it is
accepted as common sense that the formation requires less energy to drill if the fluid pore
pressure is higher. The cause is believed to be the weakening effect of the pore pressure.
The effective principal stresses on the rock matrix decline due to the pore pressure, and
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this leads to an easier failure of the rock as a frictional-cohesive material. It is also widely
observed that the extent of this effect can be significantly different from one rock type to
another [79].

The first attempts to leverage the MSE in determining pore pressure from the drilling-
mechanics data were not successful [80]. Akbari et al. [79] performed laboratory exper-
iments to probe the impact of the pore pressure on the forces of a single PDC cutter by
extracting the empirical correlations between the pore pressure and the MSE on a series
of sandstone specimens. To perform the tests and extract the relevant correlations, they
controlled the pore pressure and cell confining pressure, but the other conditions remained
constant. The tests were conducted at two pore fluid pressure states; one state was atmo-
spheric pore fluid pressure, and the second state pore fluid pressure was equalized to the
confining pressure (zero differential pressure). They used the performed experimental data
to produce well-fitting correlations between the MSE, the differential pressure, and the
confining pressure that had a logarithmic nature. Their proposed correlation for estimating
of the MSE based on the two parameters of pore pressure and confining pressure was
defined as:

MSE
(

Pcon f ining, Pdi f f

)
= UCS +

(
a′ + b

′
Pdi f f
Pcon f

)
ln
(Pcon f

Patm

)
(63)

where Pcon f ining is confining pressure, Patm is the atmospheric pressure, Pdi f f is differential
pressure, UCS is uniaxial compressive strength, and a′ and b′ are two constants that can
be determined for a certain type of rock. The extracted correlation demonstrated that the
impact of pore fluid on the MSE is similar to the impact of the confining pressure, but it
was weakened via a coefficient.

Since, the required energy to remove a unite volume of the rock relies on the in-situ
rock strength along with the differential pressure acting on the rock, Majidi et al. in [81]
developed a method to estimate the the values of pore fluid pressure from the subsurface
drilling mechanics parameters together with the in-situ rock data using terms of MSE and
drilling efficiency (DE). The equation of DEMSE method or pore fluid pressure estimation
method is defined as follows:

p = ECD− (DEtrend ×MSE−UCS)×
(

1− sin ϕ

1 + sin ϕ

)
(64)

where p represents the pore pressure and DEtrend illustrates the normal drilling-efficiency
trend line.

Through this approach, the concept of MSE for pore pressure estimation incorporated
both WOB and torque to compute the energy needed to drill the rock. They showed that
an MSE-based approach, as an independent source of information, can give results that are
compatible favorably with the conventional petro-physical pore pressure estimation methods.

By performing a series of laboratory experiments, Curry et al. in [82] investigated the
impact of borehole pressure on the ROP and MSE in salt formations. They concluded that
the borehole pressure does not have noticeable effect on the ROP and MSE in salt formations.
Consequently, in such formations, there would be a little penetration rate penalty if high
borehole pressure is needed for the wellbore stabilization. However, increasing the mud
weight causes considerable changes in the properties of the drilling fluid, except its density.

2.3.7. Control of Salt Creep

In the most oil/gas sites, salt formations function commonly as the low-permeability
cap rocks to seal the oil and gas reservoirs. Hence, those geological structures are strong
indicators of potential hydrocarbon reservoirs under them. However, salt rocks are con-
sidered as highly problematic formations in which the creep behavior can dramatically
heighten the stresses around the wellbore. Prior to the drilling, the potentially available salt
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formations in the site must be precisely studied to investigate their creep behavior affecting
the MSE and ROP during the drilling operations [83].

Recently, some researchers have concentrated on the studying of MSE while drilling
in salt formations where the high MSE values have brought severe drilling problems, such
as vibrations, stuck pipe, and torsional resonance [84,85]. Pinto et al. in [85] developed an
initiative MSE-Index concept to control the salt creep and to increase the rate of drilling
(penetration) in the Brazilian pre-salt formation.

For this purpose, they described the term of MSEi as the maximum limit of energy in
which the entire energy applied in the drilling system is used to cut the rock. MSEi can be
obtained through the following relationship:

MSEi = UCS + m× Pm (65)

where m is a dimensionless parameter that depends on the drill bit design, and Pm shows
the downhole pressure interpreted as the ECD. In fact, m is a coefficient that varies in the
range of 3–20 for particular cutter structures [86].

The outstanding point of their work was the usage of the MSE concept for deter-
mination of the proper lower bound of the equivalent circulating density (ECD) while
drilling [63]. For years, it has been generally accepted that the creep behavior relies re-
markably on the upper and lower limits of the operational ECD. Therefore, choosing a
proper mud weight is of paramount significance to prevent the wellbore from the potential
closure (convergence). The upper bound of the ECD can be determined through the leak-off
test (LOT), or alternatively, the formation integrity test (FIT). Hence, it is easy to estimate.
During their studies on the Brazilian pre-salt formations, [85] observed that there is a
strong relationship between the intensity of the creep behavior and MSE with depth. This
relationship was more precisely studied so that they could develop an MSE index term as a
function of drilling depth to predict the lower bound of the ECD [86]. This new concept
resulted in a reduction of the needed energy together with the delayed times of drilling in
the related projects.

2.4. Applications of MSE Models in Extraterrestrial Drilling

In recent decades, the idea of space colonization has received great attention from
the side of both national and international space agencies. While before the 2000s, only
the National Aeronautics and Space Administration (NASA) and Russian Federal Space
Agency (currently as Roscosmos) were exploring the remote planets, in recent decades other
space agencies from Europe, China, India, Japan, etc. have joined this discovery programs.
As well as the potentially habitable planets, such as the Moon and Mars, the discoveries
have also been stretched to comets and asteroids [87,88]. The exponential growth of the
technology has led to many improvements in the manufacturing, transportation, landing,
and long-duration stay of the multipurpose shuttles, landers, robots, and rovers in the
planetary environments.

As the aforementioned agencies plan to execute diverse exploratory programs on the
different spots of the solar system, a large proportion of them have focused on the habitable
planets, such as the Moon and Mars [7]. Their objective is to study the inner lithosphere
and outer atmosphere of such planets to colonize them as the second human civilization
in the Milky Way galaxy. So far, dozens of the exploratory programs have provided a
wealth of information about the surface characteristics of the Moon and Mars. However,
the subsurface has remain markedly undiscovered. To reveal the nature of the subsurface,
the drilling application on the planets is absolutely inevitable. Drilling applications on the
Moon and Mars surfaces provide large information about the extinct and extant life on
those planets, solar system evolution, feasibility of mining, water extraction, development
of permanent outposts, etc.

To do this, drilling is a pre-requisite for a wide range of different applications, in-
cluding the outpost construction, sample coring, space mining, anchoring and foundation,
water extraction, and potential underground tunneling on the planetary surfaces. For this
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purpose, a large number of diverse drilling techniques and apparatuses have been designed
and assembled [37–39].

2.4.1. Drilling Optimization

Nagaoka et al. in [89] introduced an extraterrestrial subsurface explorer being able to
burrow itself to bury a scientific tool such as a seismometer. They explained that the span
of traditional in situ measurements to lunar regolith is restricted as it cannot be extended
more than the limited areas around the sampling location. However, they examined the
efficiency of their suggested drill, and concluded that their method could address such
problems. They also introduced indexes for their experimental analyses to check the drilling
performance. In their study, the property of penetration in the chosen prototypes was
estimated by applying specific energy as a principal index.

Joshi et al. in [90] found that if they analyze the trends of MSE, RPM, and the torque,
they can detect different dysfunctions, such as inefficient cuttings transport, auger choking,
and drilling vibrations, that can be then utilized in optimization of the drilling proficiency.

2.4.2. Bit and Drill Rig Design

Bit design is considerably important in the drilling efficiency not only on Earth, but
also in space. In both Earth and space drilling, it is quite practical to compute the specific
energy needed for a certain bit to drill a special type of rock [91]. Hence, there have been
notable researches covering this subject to increase the efficiency of drilling performance,
and consequently, to reduce the cost of those expensive projects. For this purpose, one
of the significant parameters that can be considered to design the bit is MSE. To obtain
this goal, Ref. [89] proposed two drills, including contra-rotor screw drill (CSD) and single
screw drill (SSD). For comparison and evaluation of those drills, they used the concept
of MSE as it demonstrates the efficiency of the drilling system. Eventually, according to
their experimental analyses, based on specific energy (SE) and MSE, the proper driving
situations of the CSD were evaluated.

2.4.3. Identification of the Ice Content

In the planetary space, water has applications ranging from drinking to propellant
production. On the lunar poles, the presence of water–ice has been corroborated according
to recent findings. The water available on the planetary bodies can considerably reduce the
space exploration costs, and provides the invaluable hydrogen, oxygen, and propellant.
Joshi et al. in [92] used MSE, ROP, torque, and WOB to estimate the UCS of the water-
bearing specimens to establish a mathematical approach for pattern recognition. They
calculated the water content of the samples by using the UCS, which was estimated through
the pattern recognition algorithm. The results of their experiments illustrated that the values
of UCS is higher when the quantity of ice content in the rock is higher. In other words, the
specific energy increases significantly with ice content [90].

3. Results and Discussion

Drilling operations are commonly expensive, tough-to-do, and time-consuming. Fur-
thermore, due to the exhaustion of conventional hydrocarbon reservoirs, the depth of
drilling operations has increased dramatically in comparison to the past. In this situation,
every drilling company seeks the optimization of drilling operations conducted in the field.
To do this, MSE is considered as a prevalent concept to model, predict, and enhance the
drilling efficiency.

In this research, a comprehensive assessment has been performed to integrate and
evaluate the available MSE models together with their assumptions, limitations, applica-
tions, advantages, and disadvantages. Our close scrutiny has revealed that the empirical
MSE models require further modifications, especially from the perspective of drilled rock
properties. In reality, the amount of MSE consumed by drilling rig intensely relies on the
drill-ability of the subsurface formations. The drill-ability of a rock is a function of the
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hardness (strength), abrasiveness, poro-elastic parameters, etc. It was concluded that the
main shortcoming of the available, empirical MSE models is the insufficient incorporation
of the rock geomechanical characteristics in their formulations. The majority of them have
included only the CCS of the rock to involve the rock drill-ability effect on the MSE.

To incorporate the geomechanical properties of the rock in the empirical MSE models,
one drastic solution is the utilization of AI techniques. Through using such techniques,
a larger proportion of geo-mechanical parameters, recorded during the real-time drilling
operations, can be incorporated in such MSE models. Consequently, those modified MSE
models have more reliability than the traditional, empirical models, which are restricted
because of the inadequate or local input data. Amongst the available AI techniques,
machine learning approaches can be effectively adopted to train the data-driven MSE
models, and to test them. Using such ML approaches strongly reduces the uncertainties
related to the subsurface formations. In addition, the real time analyses of MSE values
helps to curtail probable issues, such as stuck drilling pipe, bit balling, lost circulation, etc.
Nevertheless, the different AI techniques may predict different values of MSE due to the
difference in their approaches [93]. Since, during the drilling operation, the rock layers
change, using a consistent AI technique for all rock strata may not be adequately efficient
and reliable. Providing different AI approaches for different subsurface lithology is a
sensible idea to tackle such issues. A good example of this application was provided by [94].

Furthermore, the effects of temperature and thermal properties of the surrounding
rocks, bits, drill string, drilling fluid, and pore fluid are proposed to be included in the
future empirical and data-driven MSE models. The reason for this is that the cooling perfor-
mance of the drilling fluid [95,96], together with the geometry of the drilling tools [97,98],
have a great impact on the friction generated on the rock/bit interface. Apparently, this
phenomenon affects the MSE and ROP of the drilling operation.

Empirical ROP models also require for incorporation of further geomechanical data in
their formulations. Such geomechanical parameters are rock shear strength, rock cuttings,
pore pressure, and in situ stress regime (direction of the drilling). Moreover, a simultaneous
combination of MSE and ROP models can strongly enhance the whole drilling efficiency.
Such a combination has been recently conducted by [32] through depicting the ratio of ROP
to MSE during the real time drilling operation.

On the Earth, some of the most practicable applications of MSE models include the
drilling optimization, estimation of rock properties, completion optimization, determina-
tion of energy flow and loss location, bit and cutter design, estimation of the formation
pore pressure, and control of the salt creep. On the planetary bodies, those applications
encompassed the drilling optimization, bit and drill rig design, and identification of ice
content in space. The applications of MSE models on the Earth are much broader than
space. This can be justified due to the sporadic extraterrestrial drilling operations due
mainly to the challenges on the planetary bodies. The effect of the different challenges
and their relevant roles in affecting the values of MSE can be assessed through potent
mathematical algorithms such as Monte Carlo simulation [99,100] as well as AI techniques.

While the current depth of the drilling operations conducted by the cutting-edge
extraterrestrial robots have not exceeded 305 cm [101], the prospective space exploration
programs tend to drill towards the much deeper formations. This objective necessitates
robust drilling systems that are highly efficient in terms of the consumed MSE. So far, no
specific MSE model has been developed for the remote habitable planets, such as the Moon
and Mars. Therefore, the development of such models represent an urgent demand for
the future space drilling programs. Obviously, since the challenges of energy supplement
in space are considerably higher than on Earth, it is imperative to further work on MSE
applications in space to reduce the unnecessary energy consumption and its loss during
the drilling operation.
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4. Conclusions

The empirical models of MSE and ROP require more parameters in their formulations
to predict reliable, accurate values. Such parameters are mostly pertinent to the geome-
chanical properties of the subsurface rocks. Rock abrasiveness, porosity, and pore pressure
are the main examples of such geomechanical characteristics. Furthermore, the effect of
thermal features of the hosting rocks, drilling fluid, and drilling tools can be included to
achieve more proper values of MSE.

The development of AI-based approaches and programs is also of significant impor-
tance for future MSE models. Through such data-driven models, more geomechanical
parameters can be deployed to enhance the drilling efficiency by the prevention of predicted
problems, reducing the non-productive time and cost. It should be noted that for different
formations, the accuracy of a particular AI technique can be affected as a consequence of
the nature of the input data. Therefore, it is a sensitive idea to predict the values of MSE
via several AI techniques. Then, the obtained results from those different AI techniques
can be compared with the real field data to select the most appropriate AI approach for the
development of a reliable MSE model.

For extraterrestrial drilling, energy supply is very expensive, and problematic. Hence,
further attempts must be made to develop some suitable MSE models for the design of
energy-efficient drilling tools in off-Earth drilling applications. In addition, the main
challenges, including the lack of atmospheric pressure, cryogenic temperature, nonuse
of drilling fluids, and abrasiveness of the lunar and Martian regolith, intensify the MSE
values in space drilling. Therefore, the future off-Earth MSE models must be established
with the consideration of such prohibitive challenges. Another limitation related to the
development of the off-Earth MSE models is that, due to the huge transportation cost from
space to the Earth, the terrestrial simulants are used instead of the extraterrestrial regolith
(or rocks) for the design of drilling tools. This leads to less accuracy of the predicted MSE
values in the laboratory settings in comparison to the real conditions in the remote space.

So far, in space drilling, the amount of consumed energy has been used for estimation
of the regolith’s ice contact, design of drill bits, and optimization of the whole drilling
efficiency. The concept of MSE can also be utilized to predict the undesirable dysfunctions
during the real time off-Earth drilling operations. Such potential dysfunctions encompass
the auger choking, inefficient cuttings transport, drilling vibrations, and stuck pipe issues.
Through this application, the values of MSE can be combined with accessible AI techniques
to prevent such operational problems.

To sum up, MSE models have provided an appreciable influence on the drilling
operations up to now. With the ongoing need to deploy more sophisticated drilling tools
in both on-Earth and off-Earth environments, the application of new methods to modify
the classic models can support a accurate evaluation and optimization of the drilling
operations. Such improvements will also extend the applications of MSE models for other
possible purposes.
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