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Abstract: To detect the aging of power cables in the TOKAMAK power supply systems, this paper
proposed a deep neural network diagnosis model and algorithm for power cable aging, based on
logistic regression according to the characteristics of different high-order harmonics generated by
different aging parts of the power cable. The experimental results showed that the model has high
diagnostic accuracy, and the average error is only 2.35%. The method proposed in this paper has
certain application potential in the CFETR power cable auxiliary monitoring system.
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1. Introduction

The CFETR is China’s implementation of major science and engineering. Its goal is
to build a tokamak fusion reactor that can realize self-maintained combustion, provide
engineering feasibility verification for thermonuclear fusion reaction, and lay a solid the-
oretical and experimental foundation for the commercialization of fusion reactors in the
future [1,2]. The tokamak is a toroidal vessel that uses magnetic confinement to achieve
controlled nuclear fusion. It was originally invented in the 1950s by Azimovich et al. at the
Kurchatov Institute in Moscow, Soviet Union.

There are many semiconductor switching devices in the tokamak power supply system,
which can produce many harmonics. The 110 kV XLPE cable, which is responsible for the
power supply of the tokamak device, will produce a large amount of loss and heat in the
harmonic environment for a long time, resulting in accelerated aging and affecting the
safety of electrical equipment related to the tokamak device.

Some progress has been made recently in cable aging mechanisms, and a large number
of scholars’ research results show that the aging of power cables is the result of the combined
action of multiple factors, such as electricity, heat, and the environment. Shaw M T analyzed
the generation principle of water trees in the insulation layer of power cables and studied
the existing forms of a series of cables [3]. Nikolayevich compared and analyzed several
groups of water tree experiments and the results revealed the influence process of water
trees on the power cable insulation layer from a multidimensional perspective [4]. Tanaka
studied the water tree development process of 3.3 kV and 6.6 kV power cables in Japan and
analyzed the influencing factors in detail [5]. Chen discussed the formation process of water
trees in detail from chemical potential, mechanical action, and partial discharge [6]. Based
on the experimental platform of a short cable electrode system established by Chongqing
University, Chen observed the shape of electric twigs, studied the influence of voltage,
temperature, voltage boost speed, and other different conditions on the development trend
of electric twigs, and analyzed its characteristics [7]. In reference [8], a comparative test
of ultralow frequency dielectric loss and microscopic physical and chemical properties
was conducted on the new and returned aging cables. The test found that the returned
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cable was in a serious aging state, and there were continuous sheet-like aging defects
inside the insulator on the shielding layer side of the cable conductor. With the help of an
isothermal surface potential decay (ISPD) test system, Rao studied the effect of the thermal
aging process at different temperatures on the surface trap parameters of XLPE cable
insulation [9]. Cao tested XLPE and EPR power cables aged by 5000 and 10,000 switching
impulses and showed degradation after the completion of the switching impulses [10].

Based on the above theory, cable insulation aging detection and diagnosis technology
have also made progress. Nagao, applied standard sine excitation voltage to standard
capacitors, and XLPE test products realized the test of the harmonic component of loss
current through the bridge circuit and realized the judgment of cable water tree aging
according to the amplitude and phase of the harmonic component [11–14]. However, the
above test method is susceptible to the effect of lightning arresters and voltage transformers.
To solve this problem, Tsujimoto proposed a new test circuit to suppress the adverse effect
of the lightning arrester and voltage transformer on the loss current by adding a current
transformer and achieved good results [15,16]. Liu built a 10 kV cable aging experimental
platform at Tianjin University. He added AC voltage (converting sinusoidal AC voltage into
ramp voltage) to the cable used in the test and predicted the insulation level of the cable by
measuring the value of residual charge after applying the voltage [17]. Zhao’s model at the
Wuhan University of Technology is very different from Liu’s in that he uses temperature to
determine the level of insulation. Following IEC standards, a unique thermal circuit cable
platform has been established to measure the transient temperature change of cables in the
working process and judge the aging state of cables [18].

All the above studies were completed in the laboratory and provided a theoretical
basis for cable insulation aging detection but did not realize cable insulation aging detection
of cables in operation. In response to this problem, this paper proposes a power cable aging
diagnosis model based on logistic regression deep neural network (L-R-DNN).

In recent years, deep learning neural networks have achieved some progress and
success in the field of fault diagnosis [19–21]. There are many deep learning neural network
models, but most of them are obtained by making corresponding changes based on convo-
lutional neural networks (CNN), recurrent neural networks (RNN), and fully connected
neural networks, according to specific problems. The CNN focuses on the relationship
between adjacent features in the input feature vector or feature matrix, and is mainly
applicable to the field of image processing [22]. The output of the RNN is determined
by the current input and the output of the previous moment, so it is suitable for time
series related problems such as text and speech processing [23]. A fully connected neural
network is a classical feedforward neural network that has been proven to fit functions
of arbitrary complexity with arbitrary precision [24]. The logistic regression model is a
multivariate analysis method to study the relationship between observations and their
influencing factors, and it has a strong regression ability [25]. Due to the different aging
parts of the power cable, the harmonic content in the current is different, so the aging part
can be diagnosed by analyzing the harmonic content in the power cable, and the logistic
regression model is very suitable to solve this problem.

The rest of this paper is organized as follows. Section 2 analyzes the mechanism of
higher harmonics caused by power cable aging. Section 3 builds a power cable aging
diagnosis model based on L-R-DNN. Section 4 trains, tests and validates the power cable
aging diagnosis model. The conclusions are presented in Section 5.

2. Theoretical Background
2.1. Analysis of Aging Mechanisms for Cables

When the cable is in normal operation, the current will flow through the cable conduc-
tor. At this point, the conductor will first be affected by the tension along the direction of the
electric field and the compression force perpendicular to the direction of the electric field,
and the tension and compression force, namely, the Maxwell scissors force, increase in a
quadratic relationship, so the cable will always be subjected to mechanical pressure during
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normal operation. Second, due to the interaction between atoms of different substances,
there will be a contact potential on the contact surface of the conductor and insulator, thus
forming a voltaic effect, which further generates voltage pressure. Third, insulators have
the property of storing energy in their interior, and this energy will produce an elastic effect
on the exterior, leading to the loss of voltage and pressure in the interior of the insulators,
namely, the phenomenon of heating. In addition, the complex external environment and
changeable internal factors will make the cable in operation subjected to the joint action
of electricity, heat, environment, external forces, and other factors. These factors interact,
restrict, and correlate with each other, together constituting the influencing reason of cable
aging [26].

When the cable is abnormal, the magnetic pole inside the conductor changes (magneti-
zation of the medium), leading to the rearrangement of the magnetic moment orientation
under the action of the current magnetic field of the cable core so that the abnormal state of
the cable will be reflected in the high-order harmonic components of the current.

A rotating current will be generated where the magnetic flux changes inside the
conductor, and this rotating current presents vortex flow in the body, as shown in Figure 1,
and is the main source of odd harmonics in the current flowing through the conductor.
When current I0 passes through the conductor, magnetic flux φa, φb, φc . . . φn will be
generated by the conductor. The change of magnetic flux produces eddy currents, Ia1, Ib1,
Ic1 . . . In1 and Ia2, Ib2, Ic2 . . . In2. In Figure 1, the current I0 is I = I0 + I1 + I2 + · · ·+ In
and represents the synthesis currently. Due to the symmetry of the electric field and the
external magnetic field, the eddy current I0 also becomes an asymmetric wave. Through its
increase and decrease, the synthetic current I0 becomes a synthetic current wave containing
only odd harmonics.
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other in the cable conductor. This situation will be reflected in the components of the high-
order harmonics of the cable, which can reflect the aging state of the cable conductor [26]. 

Figure 1. Schematic diagram of eddy current.

When the inside of the cable is uniform, the alternating currents in the conductor
produce the same magnetic flux, and the eddy currents generated can cancel each other
out. Figure 2 shows the the internal magnetic flux of the cable when the cable is uneven
inside, through such conditions as voids, foreign matter, insulation aging, etc., or if dust
and moisture are attached to the cable surface. The magnetic flux B and C are different
from the normal magnetic flux A, resulting in a vortex current that cannot cancel each other
in the cable conductor. This situation will be reflected in the components of the high-order
harmonics of the cable, which can reflect the aging state of the cable conductor [26].
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The vibration of the conductor caused by mechanical stress will produce eddy current,
which is the main source of current and even harmonics. The eddy current caused by
mechanical factors is shown in Figure 3. When the conductor is impacted by the impulse
pulse caused by mechanical factors, the conductor will make small movements in the
magnetic field, which will generate eddy currents A and B. The eddy current flows through
the conductor current I, but the impact pulse generated by mechanical factors is at right
angles to the magnetic flux f in the magnetic field, and the conductor moves in the direction
indicated by the arrow. At this point, the direction of the conductor’s motion, the direction
of the magnetic field, and the direction of the current accord with Fleming’s right-hand rule.
Therefore, the current flowing through the conductor is I = I0 + I1, where I1 is composed
of eddy current A and eddy current B. Since I1 contains even harmonics, the current P
flowing through the conductor includes even harmonics.
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When stress aging occurs in the cable, the magnetic flux in the conductor changes, and
the conductor vibrates, resulting in high-order harmonics. Stress aging mainly includes
thermal aging, voltage stress aging, environmental stress aging, and mechanical stress
aging [26–28].

Through the above analysis and summary of the relationship between cable aging
and higher-order harmonics, it can be concluded that the distribution of the magnetic field
and the internal current flowing during the operation of the defective cable is as shown
in Figure 4. Therefore, the cable aging status can be obtained by analyzing the current
harmonics of the cable.
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2.2. Harmonic Analysis of Power Cable

Because the measured harmonic current is composed of multiple periodic current
components with different frequencies, the analysis of harmonic content requires Fourier
decomposition of the measured harmonic current. The relation between the harmonic
current of the power cable and each harmonic is shown in Equation (1).

.
I =

∞

∑
n=1

In sin n(ωt + θn), (1)
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According to Equation (1), the effective value of the total harmonic current Ih is

Ih =
√

I2
2 + I2

3 + I2
4 + . . . + I2

n, (2)

The proportion H of each harmonic in the total harmonics is

H =
In

Ih
× 100%, (3)

The measured power cable harmonic current is decomposed according to Equation (1),
and then the proportion H of each harmonic is calculated according to Equation (3). The
relationship between the cable insulation aging state and current harmonic components
is statistically analyzed, and the historical data of power cable aging are established. The
relationship between the aging position of the cable and the harmonic content of the current
is shown in Table 1 [27,28]. The first row in Table 1 shows that when the cable is an early
aging type of insulation layer, the third harmonic content is about 41%, the fifth harmonic
content is about 41%, the fourth harmonic content is about 6%, and the second harmonic
content is about 6%, with a total content of about 94%.

Table 1. The relationship between cable aging position and higher harmonics.

Deterioration Part of Cable
High Harmonic and Its Content (%) Cumulative

Contribution RateThe First Major
Ingredient Other Main Ingredients

Body parts

insulators

Early deterioration type 3th 5th 4th 2th
94

41 41 6 6
Environmental aging type

(mechanical damage)
2th 4th 3th 5th

86
41 16 9 6

Environmental aging type
(electrical damage)

5th 3th 4th 2th
93

59 20 8 6

Natural aging type 5th 3th 4th 2th
93

52 28 7 6

shielding layer 3th 5th 2th 4th
90

25 24 23 18

Protective layer 2th 4th 3th 5th
85

39 29 10 7

junction cable joint

heating 7th 10th 9th 8th 6th
91

53 15 11 7 5

stained
8th 7th 9th 10th 6th

95
35 29 13 11 7

crack
9th 8th 7th 10th 6th

92
33 25 21 8 5

deformation
10th 7th 8th 9th 6th

91
30 23 17 15 6

3. Construction of Cable Aging Diagnosis Model Based on Deep Learning

The logistic regression model is a multivariate analysis method to study the relation-
ship between observation results and influencing factors [29]. In recent years, it has been
widely used in medicine, finance, and other similar dichotomies, with strong regression
ability [30]. Therefore, this paper chooses to construct a deep learning neural network based
on a regression model to realize the aging diagnosis of cables according to the proportion
H of each harmonic in the total harmonics and its cumulative contribution rate.

3.1. Logistic Regression Model

Y represents the observed value of the sample. A positive Y = 1 indicates the
proportion H of each harmonic in the total harmonics, and the contribution rate of each
harmonic accumulation reaches the aging threshold. A negative Y = 0 indicates the
proportion H of each harmonic accumulation in the total harmonics, and the contribution
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rate of each harmonic accumulation does not reach the aging threshold. Logistic regression
is a probabilistic nonlinear regression model. If X represents the characteristics of the
power cable harmonic current input sample, then the probability of power cable aging can
be expressed by the logistic regression model, as shown in Equation (4).

hθ(x) = P(y = 1|x) = 1
1 + e−g(θ,x)

, (4)

where: θ is the model parameter; G is the classification boundary, and its specific calculation
formula is determined by the function form to be fitted. Then the aging probability of the
corresponding parts of the cable is calculated as follows:

P(y = 0|x) = 1− hθ(x) =
1

1 + eg(θ,x)
, (5)

Given N samples, the observed values are y1, y2 . . . , yi . . . , yN , and the corresponding
sample features are vectors X1, X2 . . . , Xi . . . , XN . By combining Equations (4) and (5), the
probability of obtaining the observed value Yi is shown as follows:

P(yi|xi) = hθ(Xi)
yi [1− hθ(Xi)]

1−yi , (6)

If the samples are independent of each other, the maximum likelihood estimation is
used to adjust the model parameter θ, and then the likelihood function can be obtained
from Equation (6) as follows:

L(θ) =
N

∏
i=1

P(yi|xi) =
N

∏
i=1

hθ(Xi)
yi [1− hθ(Xi)]

1−yi , (7)

The logarithmic form is as follows:

ln L(θ) =
N

∑
i=1

(yi ln hθ(Xi) + (1− yi) ln[1− hθ(Xi)]), (8)

3.2. Construction of Deep Neural Network Based on Logistic Regression

In this paper, a deep learning neural network based on logistic regression (L-R-DNN)
is constructed to achieve the accurate fitting of the functional relationship between the
content of various harmonics of cables and the aging probability of various parts of power
cables. The input of the deep neural network (DNN) is the input X of the regression model,
and the output of DNN is the output of the regression model. The weight and bias between
the connected neurons are the parameters θ to be adjusted in the regression model. The
negative number of the logarithmic likelihood function in Equation (8) is the network loss
function E. Taking the minimization loss function E as the goal, the training, and learning of
the neural network, namely, the optimization and adjustment of parameter θ, were carried
out to establish the logistic regression model. Then the trained neural network is used to
diagnose the aging of the cable according to its harmonics. The structure of the logistic
regression deep neural network (L-R-DNN) is shown in Figure 5.

In Figure 5, the L0 layer is the input layer, and the number of neurons in this layer is
equal to the number of eigenvectors of the constructed sample. L0 − L3 is the hidden layer,
and L4 is the output layer. Each neuron in the Li layer is linked to each neuron in Li−1, and
its connection weight is wi,j. The activation function of L0 − L3 neurons in the hidden layer
is the ReLU function, as shown in Equation (9). The activation function of neurons in the
output layer is the logistic function, as shown in Equation (4). Its output a is the output of
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the L-R-DNN, which represents the probability of events corresponding to the sample. The
input of X4,1 is the weighted sum of X3,1, . . . , X3,n3, namely g(θ, x) in Equation (6).

Relu =

{
z z > 0
0 z ≤ 0

, (9)
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The minimization objective of L-R-DNN, namely the loss function E, can be calculated
as follows:

E = − 1
n

n

∑
i=1

[yi ln ai + (1− yi) ln(1− ai)], (10)

where: n is the number of samples, ai and yi represent the network output and sample label
respectively, corresponding to the ith sample.

3.3. Training Methods

The training process of the neural network is the updating and optimization process
of ownership weight and bias in the network. The parameter optimization method in this
paper is the RMSProp method [30]. If the parameter gradient of target E with respect to
all parameters θ (wi,j, bi,j) is expressed by ∂E

∂θ , the updating process for the tth parameter
correction is as follows:

Step 1: Calculate the current gradient
(

∂E
∂θ

)t
of all parameters according to the chain

rule of differentiation.
Step 2: Calculate the squared weighted sum ∆S of the current parameter gradient and

the previous parameter gradient.

∆S = β(
∂E
∂θ

)
t−1

+ (1− β)[(
∂E
∂θ

)
t
]

2

, (11)

where β is an adjustable parameter, and this paper takes 0.9.

θt = θt−1 − α√
∆S + ε

(
∂E
∂θ

)
t
, (12)

where: α is the adjustable parameter, 0.001 is taken in this paper; ε is the smoothing term,
which is used to avoid denominator 0, In this paper, we set it as 10−6.

4. Experimental

Based on the Anhui Power Grid Cable Harmonic Monitoring Project, this paper
calculates the high-order harmonic content rate of the 110 kV XLPE cable with an operating
life of less than 25 years by detecting the high-order harmonic current flowing through the
power cable. The deterioration degree of the power cable is evaluated, the relationship
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between the aging part and the higher harmonics is analyzed, and a sample database
corresponding to the aging part of the power cable and the higher harmonic content is
obtained. We use this database to train, validate and test the diagnostic model established
in this paper.

4.1. Selection of Structural Parameters of Network Model

For L-R-DNN parameters to be determined, namely, the number of hidden layers and
neurons in the network, within a certain value range, multiple sets of parameter values
are separated to establish L-R-DNN, and the obtained samples are trained to convergence
respectively. The parameter setting and test results are shown in Table 2, and the parameter
settings and test results are shown in Figure 6.

Table 2. Units and corresponding symbols.

Test No. Number of Neurons Test No. Number of Neurons

1 40 8 (120, 60)
2 80 9 (40, 20, 10)
3 120 10 (60, 30, 15)
4 160 11 (80, 40, 20)
5 200 12 (40, 20, 10, 5)
6 (40, 20) 13 (80, 40, 20, 10)
7 (80, 40) 14 (120, 60, 30, 15)
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The number of neurons in Table 2 represents the number of neurons in each hidden
layer of the network. For example, (60, 30, 15) indicates that the number of neurons in the
three hidden layers is 60, 30, and 15, respectively. The loss value represents the value of the
loss function on the test set, and the accuracy rate represents the corresponding test accuracy.
By comprehensive comparison, in this paper, the network with the highest accuracy (i.e.,
the number of neurons is (40, 20, 10)) was selected as the model for subsequent diagnostic
test experiments.

4.2. Test

The theoretical aging probability of the test samples can be calculated by Equation (13).

P(y = 1|x) = P(y = 1)P(x|y = 1)
[P(y = 0)P(x|y = 0) + P(y = 1)P(x|y = 1)]

, (13)

where P(y = 1) and P(y = 0) represent the prior probability of the aging sample set and
the non-aging sample set of power cables, respectively. The number of the aging samples
(N1) and non-aging samples (N0) set are both 2100, then
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{
P(y = 1) = N1

N1+N0
= 0.5

P(y = 0) = N0
N1+N0

= 0.5
, (14)

where P(x|y = 0) and P(x|y = 1) represent the probability of input in the sample under
aging and non-aging conditions, respectively, and the calculation formula is shown in
Equation (15). 

P(x|y = 1) =
11
∑

i=1

{
XiP(Xi = 1|y = 1)
+(1− Xi)[1− P(Xi = 1|y = 1)]

}
P(x|y = 0) =

11
∑

i=1

{
XiP(Xi = 1|y = 0)
+(1− Xi)[1− P(Xi = 1|y = 0)]

} , (15)

where Xi represents the ith feature bit in the input signal feature vector. A total of
120 training samples were used to test the ability of the model to acquire probabilistic
features. By substituting x into Equations (13)–(15), the theoretical probability P(y = 1|x|)
of power cable aging diagnosed when the feature vector is X can be obtained, which is
similar to the selection and calculation of other test samples.

The error between the model output probability and the theoretical probability is
defined as the absolute value of the difference between the model output probability and
the calculated probability. Four of the test samples were randomly selected, as shown in
Figure 7, and the theoretical aging probability and network output results are shown in
Table 3. The flow chart of cable aging detection is shown in Figure 7a.
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Table 3. The theoretical fault value and output value of the network.

The Sample No. Theoretical Probability Network Output Error Average Error

1 0.9995 0.9924 0.0071

0.0235
2 0.9985 0.9841 0.0144
3 0.9835 0.9532 0.0303
4 0.0272 0.0695 0.0423

4.3. Experimental Verification

To verify the correctness of the diagnosis results, we conducted several field harmonic
data tests on the 110 kV cable power supply line corresponding to the first sample and
the second sample. The field test is shown in Figure 8, and 20 sets of harmonic data are



Energies 2022, 15, 3127 10 of 12

tested on each line, as shown in Figure 9. According to the diagnosis results, the cable
aging position was found, as shown in Figure 10.
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5. Discussion

As seen from the Figure 6, as the number of network layers increases, the value of
the loss function gradually becomes smaller, which indicates that a proper deep network
structure can achieve better diagnostic performance than a shallow network with a single
hidden layer. However, when the number of hidden layers of the network is four, the value
of the loss function begins to increase, and overfitting occurs. When the number of hidden
layers of the network is three and the number of neurons in each hidden layer is (60, 30, 15),
the loss value is the smallest, and when the number of neurons is (40, 20, 10), the precision
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value is the largest. Therefore, when the number of neurons is (40, 20, 10), it is the best
choice of network structure for the diagnosis model.

The test results in Table 3 show that the network model is more accurate in predicting
the failure probability of the test samples, with an average error of only 2.35%, and the fail-
ure probability errors of the four samples are all less than 5%. Therefore, the network model
constructed in this paper has strong data feature extraction and diagnostic capabilities.

Figure 9a shows that in the harmonic data of cable line 1, the second harmonic content
always occupies the main component, and the fourth, third, and fifth harmonic contents are
higher among other major components. The components of the harmonic data are related
to the mechanical damage type in Table 2. The cable protective layer is verified on-site, and
the damage is shown in Figure 10a. Figure 9b shows that in the harmonic data of cable line
2, the fifth harmonic content always occupies the main component, and the second, third,
and fourth harmonic contents are higher among other major components. Harmonic data
components are related to the natural aging type in Table 2. The cable protection layer is
checked on site, and the damage is shown in Figure 10b. Experiments have verified that
the diagnostic results of the diagnostic model are consistent with the actual aging of the
cable, which proves the reliability of the model.

6. Conclusions

It can be seen from the test results that the network model is more accurate in predicting
the aging probability of test samples, and the average error is only 2.35%, and Table 3
shows that the probability error of four samples is less than 5%. Therefore, the deep neural
network based on logistic regression constructed in this paper has a strong capability of data
feature extraction and diagnosis, and can quickly and accurately obtain the probability of
power cable aging, and has certain potential to be applied in CFETR power cable auxiliary
monitoring system.
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Nomenclature

CFETR China Fusion Engineering Test Reactor
TOKAMAK Its name Tokamak comes from toroidal, kamera, magnet, kotushka
DNN Deep neural network
CNN Convolutional neural network
RNN Recurrent neural network
L-R-DNN Logistic regression deep neural network
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