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Abstract: Building system operation faces the challenge of reducing energy use and implementing
a demand response, which can be defined as a temporary modification in energy loads affecting
dynamic energy price and reliability information. The heating, ventilation, and air-conditioning
(HVAC) system in buildings provides an opportunity for implementing demand response strategies
due to the thermal inertia in building zones. However, an HVAC-based demand response is not a
prevalent strategy in actual facility management due to the lack of understanding among building
operators of their facilities and occupants. Herein, we focus on developing a better understanding of
the occupant side by obtaining a reliable prediction of occupants’ thermal satisfaction. We evaluate
the prediction performance of a probabilistic model provided in our previous paper using a case
study with a subset of the ASHRAE Global Thermal Comfort Database II. The influence of a better
prediction of thermal satisfaction on the implementation of the HVAC-based demand response
strategy is further discussed. The conventional method overestimates productivity deterioration due
to changes in the thermal environment, making it challenging to implement an HVAC-based demand
response strategy aggressively. A robust prediction model using a probabilistic approach can solve
this problem, allowing building operators to adopt an aggressive stance for implementing a demand
response. The results of this study offer fresh insight into the impact of a probabilistic model in the
prediction of thermal satisfaction for establishing an HVAC-based demand response strategy.

Keywords: thermal comfort; thermal satisfaction; demand response strategy; thermal sensation;
occupant performance; predicted mean vote

1. Introduction

The purpose of heating, ventilation, and air-conditioning (HVAC) systems is to main-
tain desired environmental conditions in a specific physical space. These conditions are
collectively referred to as the conditions for human thermal comfort, which is defined as a
mental state of satisfaction with the thermal environment [1]. The term satisfaction is often
synonymously used with acceptability [2]. A thermally comfortable environment ensures
that the conditions are satisfactory/acceptable to most occupants (i.e., more than 80%,
according to ASHRAE Standard 55 [3]) within a specific physical space. HVAC systems
are responsible for efficiently maintaining the desired service level in accordance with
ASHRAE Standard 55.

Recently, energy use in buildings has emerged as an important issue. Building op-
erators and facility managers face the challenge of reducing energy costs to temporarily
reduce the load in response to the spike in electricity prices [4,5], which is called a demand
response. HVAC systems, along with lighting, are most commonly adjusted to achieve
energy savings in demand response strategies in buildings. This is because HVAC systems
are well-suited to a demand response strategy that evenly distributes the burden across
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the facility, which is least likely to have negative effects on building occupants. Further-
more, large thermal inertia in an occupied space allows HVAC systems to be temporarily
unloaded without an immediate negative impact on the occupants. However, despite this
potential for energy saving, the HVAC-based demand response is not a prevalent strategy
in actual facility management. One reason is the lack of automated HVAC control systems
required during demand response events [6]. Because of a lack of hardware, simple strate-
gies are typically prioritized, such as the global temperature adjustments of spaces (e.g.,
turning the cooling thermostat up by 3 ◦C) [7]. However, applying the demand response
strategy also requires software that determines proper operating points. In this study, we
focused on a software approach to develop a successful HVAC-based demand response
strategy (e.g., a setpoint temperature adjustment), for example a predictive model capable
of accurately predicting occupants’ thermal satisfaction under varying thermal conditions.

In implementing HVAC-based demand response strategies, building operators and
facility managers should consider meeting energy saving targets while minimizing the neg-
ative impacts on occupants’ thermal comfort, because thermal discomfort due to reduced
service levels can harm occupants’ productivity, leading to economic losses [8–12]. In other
words, changes in thermal satisfaction due to setpoint temperature adjustments not within
acceptable boundaries can result in the further deterioration of the occupants’ well-being
and lead to an expected loss of productivity, which is the most significant concern for
building operators. To this end, a multi-objective optimizer for HVAC control is sometimes
installed and tested. Homod et al. [13] proposed a fuzzy forward control strategy to si-
multaneously balance energy saving and achieve occupant satisfaction. Schito et al. [14]
demonstrated the multi-objective optimization of the HVAC control in museums to achieve
visitors’ comfort and energy savings without compromising the integrity of the artwork.
Reena et al. [15] and Turley et al. [16] presented a framework for energy and comfort
management in buildings. Although these previous works are meaningful advances in this
field, there are limitations associated with simulation-based approaches and with using
the existing thermal comfort index, such as the predicted mean vote (PMV) and predicted
percentage of dissatisfied (PPD) proposed by Fanger [17]. In reality, even a simple strategy,
such as setpoint adjustment, is difficult to aggressively implement for achieving energy
saving goals because building operators and facility managers are generally afraid of not
meeting the desired service level and facing complaints from occupants as a result [18].
To successfully implement an HVAC control that meets both the thermal comfort and
energy saving requirements, a technique that can offer reliable data on occupants’ thermal
satisfaction should be developed.

For over 50 years, PMV and PPD have been widely employed to assess the indoor
climate and thermal satisfaction of occupants. As addressed by Benton et al. [19], several
studies have validated the relationship between indoor climate and occupants’ thermal
satisfaction provided by the PMV–PPD model. However, several studies, such as those by
Schiller [20] and Xavier and Lamberts [21], reported discrepancies between the PPD and
occupant dissatisfaction in practical scenarios. Recent advancements in data science have
facilitated overcoming this prediction failure. Katić et al. [22] and Ghahramani et al. [23]
focused on individuals’ thermal comfort responses and developed a personal comfort
prediction model by adopting machine learning algorithms such as support vector machines
and ensemble algorithms. Li et al. [24] proposed a high accuracy comfort prediction
method using an artificial neural network with three physiological input parameters.
Although the intrinsic objective of these studies and our study was to improve prediction
performance, we mainly focused on strategies to reflect the stochastic characteristics of
thermal satisfaction in the prediction model.

We believe that the reported failure in the prediction by Fanger’s model may be a
result of inherent limits in the deterministic approach used to provide a link between
environmental conditions and human sensations. Additionally, nonthermal factors (such as
race, age, gender, ethnicity, and region), which are not considered in typical deterministic
PMV models but make the prediction highly uncertain, may also cause a prediction failure.
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In the authors’ previous study [25], a stochastic model which is distinct from the
existing simple linear regression methods and can probabilistically reproduce dispersed
occupants’ response to thermal sensation, was developed. Compared with the determin-
istic method based on Fanger’s PMV–PPD model, our model adequately provides the
stochastic characteristics of dispersed thermal sensation votes across occupants and a
robust prediction of thermal satisfaction.

In this study, we present an argument that the reliable prediction of thermal satisfaction
can assist building operators and facility managers in aggressively implementing demand
response strategies, ever since determining that proper operating points can reduce energy
use while minimizing deterioration in productivity and thermal comfort. To support
this argument, we compared a conventional prediction model (i.e., Fanger’s PMV–PPD
model [17]) for thermal satisfaction with a data-driven probabilistic prediction model
proposed in our previous research [25]. In addition, we also discussed the influence of
the differences in prediction accuracy for the implementation of an HVAC-based demand
response strategy.

The remainder of this paper is structured as follows. In Section 2, the field survey
data used in the case study are briefly presented. Thereafter, in Sections 3 and 4, the
prediction performance is tested with publicly available data on occupants’ response
to thermal sensation (ASHRAE Global Thermal Comfort Database II [26]), emphasizing
thermal satisfaction, and compared with that of the conventional method. In addition,
the impact of the better prediction of occupants’ thermal satisfaction on the prediction
of occupants’ productivity is quantified. The significance of implementing HVAC-based
demand response strategies is also discussed. Finally, the limitations of this study and the
conclusions, along with directions for future studies, are presented in Sections 5 and 6,
respectively.

2. Data Description

A subset of ASHRAE Global Thermal Comfort Database II [26] was used to base
the discussion on thermal satisfaction and productivity on real-world data. Although
the database is a collection of field surveys performed under various conditions (climate,
building type, experimental range, etc.), we extracted and used only specific field survey
data collected from an air-conditioned office in the Midlands, UK (number of data: n = 4316;
monitoring data measured continuously for one week in summer), which was also used
by Oseland [27]. Table 1 lists the contents of the dataset used. Three additional indices
related to thermal comfort, i.e., the PMV, PPD, and operative temperature (OT), were then
calculated for each observed value by guidance in engineering references [1,3,28].

Table 1. Dataset contents.

Variable Description

Thermal sensation vote (TSV)
The seven-point scaled thermal sensation

−3: cold, −2: cool, −1: slightly cool, 0: neutral,
1: slightly warm, 2: warm, 3; hot

Thermal acceptability 0: unacceptable, 1: acceptable
Clothing insulation [clo] Intrinsic clothing ensemble insulation of the subject

Metabolic rate [met] Average activity level of the subject
Air temperature [◦C] Air temperature 1.1 m above the floor

Globe temperature [◦C] Globe temperature 1.1 m above the floor
Relative humidity [%] Relative humidity

Air velocity [m/s] Airspeed 1.1 m above the floor

3. Limitations of the Conventional TSV Model

A field survey is considered in which participants are requested to vote their ther-
mal sensation on a seven-point scale, and the measured OT value defines the indoor
thermal condition.
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In surveys, the measured PMV value often disagrees with the thermal sensation
perceived by the occupants because the psychological and behavioral factors influencing
the occupants’ perceptions are not fully considered in the PMV model. Consequently, the
actual TSVs are often biased towards the warm or cool sides compared with the measured
PMV. Figure 1 shows the OT–TSV and OT–PMV relationships obtained from the survey.
These relationships show a bias between TSV and PMV that often exceeds 1 scale unit.
Fortunately, a least-squares line can provide a good approximation of the mean TSV for
each OT level (r2 ≈ 0.94).
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Figure 1. OT−TSV and OT−PMV relationships. The mean TSV and mean PMV are plotted against
OTs binned in 0.5 ◦C increments. Least-squares lines are generated using weighted regression to
account for the number of votes in each OT bin.

A comfort zone [3] can be deduced as the OT range from 20.05 to 23.37 ◦C using a
least-squares line (the blue line in Figure 1). Table 2 lists the statistics of the TSVs made
in this range. Although this range should be equivalent to 90% satisfaction, the actual
percentage of thermally satisfied occupants in this range is approximately 76%. This is
attributed to the discrepancy in the deterministic estimation approach that solely produces
the mean vote and ignores its variation. This limitation is closely associated with the
conventional method of predicting thermal satisfaction.

Table 2. TSV statistics obtained at the comfort zone identified in the survey data.

Thermal Sensation Cold Cool Slightly Cool Neutral Slightly Warm Warm Hot

Counts 46 118 251 561 280 137 39
Share 3.2% 8.2% 17.5% 39.2% 19.6% 9.6% 2.7%

Generally, a simple linear regression model based on constant variance is used to de-
rive the dose–response relationship between a given thermal condition and the consequent
thermal sensation in occupants, presumably owing to its mathematical simplicity. However,
this is an optional method, and its results may not necessarily be linked to the prediction of
thermal satisfaction.
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Figure 2 shows the percentage of dissatisfied occupants as determined using the
field survey dataset, wherein the data points are organized in terms of OT. The following
components are listed in the legend:

(a) OPD: Observational thermal dissatisfaction (percentage of occupants voting for a
thermal sensation of cold, cool, warm, or hot for each data bin divided into 0.5 ◦C OT
intervals).

(b) PPD: Percentage of dissatisfied occupants calculated using Fanger’s PMV–PPD equa-
tion.

(c) mPPD: Percentage of dissatisfied occupants calculated using Fanger’s PMV–PPD
equation modified with the mean TSV (the blue line in Figure 1). Many studies on
the modification of the thermal comfort model based on field surveys have used this
approach [29–32].
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Figure 2. Relationship between the operative temperature and the percentage of dissatisfied occupants.

The following discussion is only concerned with the results between the OTs of 20 and
30 ◦C because the data from the other ranges were insufficient.

In Figure 2, the observed thermal satisfaction was the highest (i.e., the lowest OPD)
at an OT of ~22 ◦C. The mPPD captured the OT range wherein the lowest thermal dis-
satisfaction was observed. However, the PPD did not reflect this observation, as it was
biased to the higher OT side. Furthermore, both the PPD and mPPD predicted an extremely
low dissatisfaction rate (approximately 5%) in the thoroughly conditioned environment.
However, in a field survey, more than 20% of the occupants remained thermally dissatisfied
even within the OT range, where the lowest thermal dissatisfaction appeared.

4. Results

This section aims to emphasize the performance of our model in predicting thermal
sensation and thermal satisfaction and discuss its importance in implementing HVAC-
based demand response strategies. First, the predicted results of applying the probabilistic
model proposed in our previous study [25] are presented; this is based on a case study with
the data presented in Section 3. The used model was validated by k-fold cross-validation
(k = 5) to prevent overfitting to the specific training data. Then, the influence of a better
prediction of thermal satisfaction by using the probabilistic prediction approach for the
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implementation of an HVAC-based demand response strategy is discussed. Although
the essence of the prediction method is briefly described below, the details of the predic-
tion method are omitted here to avoid obscuring the focus of this paper (for details, see
Lim et al. [25]).

The prediction model comprises a statistical framework for estimating model pa-
rameters and a regression method for considering the impact of the measured (thermal)
and non-measured (nonthermal) factors on thermal sensation. Our model, including the
variance parameter defined as a thermal-condition-dependent variable, provides a reli-
able prediction of the distribution of thermal sensations in a given indoor climate. This
consideration can generate reliable information on the thermal satisfaction of occupants.

4.1. Model-Predicted Thermal Sensation

Figure 3 shows the observed probability of occupants responding to each category of
the seven-point scale TSV in given OT conditions. Figure 4 presents the prediction results
obtained from the conventional and proposed models in given thermal conditions. The
predictions shown in Figure 4a were deterministically established as 0 or 1 according to
the pseudocode listed in Algorithm 1. Figure 4b shows the probability distribution of the
occupant response in each TSV category. A comparison of Figures 3 and 4 indicates that
the proposed model reflects the observations better compared to the prediction by a simple
linear regression. Therefore, the proposed model can provide a thermal sensation profile
reflecting the inherent stochastic characteristics of the actual TSV.

Algorithm 1. Pseudocode for deterministically establishing the response probability for each TSV
category.

mean TSV = −6.5368 + 0.3011 × OT (based on the blue line in Figure 1).
If mean TSV < −2.5 then “thermal sensation of cold”

elseif mean TSV < −1.5 then “thermal sensation of cool”
elseif mean TSV < −0.5 then “thermal sensation of slightly cool”
elseif mean TSV < 0.5 then “thermal sensation of neutral”
elseif mean TSV < 1.5 then “thermal sensation of slightly warm”
elseif mean TSV < 2.5 then “thermal sensation of warm”
elseif “thermal sensation of hot”

end
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Figure 3. Observational percentage of occupants responding to each TSV category from the
(a) training and (b) validation datasets. Each stacked bar was drawn using bin width of 0.5 ◦C.
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4.2. Model-Predicted Thermal Dissatisfaction

In Figure 5, the model-predicted thermal dissatisfaction (MPD) data are superimposed
on the observed data, and the data predicted using the conventional methods plotted in
Figure 3. The MPD, the percentage of dissatisfied occupants, was predicted using our
model proposed in [33], which was generated with points estimated from the MAP and a
99% credible interval (CI). In our model, the MPD predicted thermal satisfaction (i.e., the
percentage of thermally satisfied occupants) more accurately (without overestimation) and
captured the thermal conditions that yielded the highest thermal satisfaction. In addition,
the probabilistic prediction results using the 99% CI of the estimated model parameters
showed good agreement with the observations compared to other prediction results.
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4.3. Impact on the Implementation of the HVAC-Based Demand Response Strategy

As indicated by the scenario mentioned in Section 1, HVAC engineers must determine
a demand response strategy that temporarily decreases energy use. For example, HVAC
engineers must tune the indoor climate such that a suboptimal environment is obtained.
The advantages (the financial incentives earned by limiting and/or shifting power de-
mands) and disadvantages (the economic losses due to the deterioration of the occupants’
performance resulting from a sub-optimal indoor environment) of this choice must be
balanced. In this section, the implications of a better prediction of thermal satisfaction
while achieving this balance are discussed.

Such discussions can be ineffective because of the variation in the occupants’ per-
formance with the quality of the indoor environment, which often depends on indirect
evidence [1]. In such cases, measurement results such as [9,10,34,35] serve as references.
Herein, the discussion presented is based on a meaningful relationship between the rela-
tive occupant performance (RP) and TSV, which was reported by Jensen et al. [9] and is
expressed as follows:

RP = −0.0069 × TSV2 − 0.0123 × TSV + 0.9945 (1)

It is concluded that the initial approximation of the prediction of practical office work
performance and the generated OT–RP relationship shown in Figure 6 is based on Equa-
tion (1). When deterministically approaching the TSV, the RP is calculated by applying
the TSV–OT relationship based on the blue line shown in Figure 1. When probabilisti-
cally approaching the TSV using the proposed model, the RP at a given OT is calculated
as follows:

RP =


P(TSV = −3)
P(TSV = −2)

...
P(TSV = 2)
P(TSV = 3)



T

×


−0.0069 × (−3)2 − 0.0123 × (−3) + 0.9945
−0.0069 × (−2)2 − 0.0123 × (−2) + 0.9945

...
−0.0069 × (2)2 − 0.0123 × (2) + 0.9945
−0.0069 × (3)2 − 0.0123 × (3) + 0.9945

 (2)

where each element in the left vector is the probability of the TSV being −3, . . . , 3, which
can be obtained from Figure 4b.

As shown in Figure 6, the deterministic approach overestimates the occupant per-
formance around the comfort zone. The overestimation level decreases with increasing
OT and eventually proceeds to an underestimation after a certain OT point. Further in-
vestigation is required to quantitatively prove the gap between the two curves shown in
Figure 6 because Equation (1) is one of the numerous indicators of occupants’ performance
over a wide range of tasks in indoor environments, for which there are different scientific
arguments. It is noteworthy that, despite the lack of quantitative agreement, it is agreed
that lowering indoor environmental quality decreases productivity [1], which indicates
the wider implications of the proposed model. The proposed method predicts that occu-
pant performance would more smoothly decrease with increasing OT than the occupant
performance predicted using the conventional method. In addition, the proposed method
provides more accurate predictions. This allows HVAC engineers to aggressively tune
the indoor climate to meet energy-saving goals. Using such temporary demand response
strategies, HVAC engineers and building operators can permanently improve the energy
efficiency of HVAC systems while maintaining acceptable levels of occupant productivity.
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Figure 6. Relationship between the operative temperature and the relative performance of occupants
carrying out regular office work.

5. Discussion

The results suggest that building operators and facility managers can more actively
utilize demand response strategies if the prediction accuracy of thermal sensation and
thermal satisfaction is improved by using a data-driven probabilistic approach. Therefore,
the probabilistic prediction method proposed in this study can not only improve the
understanding of thermal comfort exhibited by occupants in a specific space but also be
used as an HVAC control technology considering the trade-off relationship between the
energy use of building facilities and the service level.

Despite our attempt to provide a comprehensive description of the impact of thermal
satisfaction prediction on implementing an HVAC-based demand response strategy, this
study should be regarded as a case study using in situ experimental data. The results of this
study (Figure 6) reveal an apparent change in the productivity level due to environmental
variations. However, further research is required to determine how well the relative
difference value represents the actual differences. Herein, we adopted the claims of the
existing research (i.e., Equation (1)) to quantify relative occupant performance; however,
quantitative evidence on productivity deterioration due to the changes in the thermal
environment by demand response control is scarce.

The probabilistic prediction method for thermal satisfaction proposed in this study
was verified using subset data of the ASHRAE Global Thermal Comfort Database II. To
generalize the prediction performance of this model, validations using various field survey
data on changes in thermal comfort and occupant performance should be accompanied in
the future.

6. Conclusions

Thermal satisfaction contributes to productivity in daily life. Therefore, it is an impor-
tant criterion that designers and engineers in charge of building projects must consider.
Recently, as energy use in buildings has emerged as a significant issue, the real challenge is
balancing thermal satisfaction with energy use for HVAC systems. HVAC-based demand
response control is an important technology for reducing energy use while minimizing
the negative impacts on occupants’ thermal satisfaction, and this can be achieved using
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both hardware and software development. As it is costly to replace the control hardware of
existing buildings, improvement using software will attract attention in the future.

This study provides new insights into the important issue faced by building operators
and facility managers, which is achieving energy savings targets while maintaining the
desired level of service. An improved thermal satisfaction prediction, a type of software
improvement, allows building operators and facility managers to operate their systems
more flexibly, which helps to aggressively implement HVAC-based demand response
strategies, such as a setpoint temperature adjustment. In addition, the results of this study
will be helpful for studies that require a deep understanding of thermal comfort, such as
PMV-based HVAC controls, and future research on effective strategies for implementing
HVAC-based demand responses.
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