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Abstract: Entropy generation is always a matter of concern in a heat transfer system. It denotes the
amount of energy lost as a result of irreversibility. As a result, it must be reduced. The present work
considers an investigation on the turbulent forced convective heat transfer and entropy generation of
Al2O3-Ethylene glycol (EG) nanofluid inside a circular tube subjected to constant wall temperature.
The study is focused on the development of an analytical framework by using mathematical models
to simulate the characteristics of nanofluids in the as-mentioned thermal system. The simulated
result is validated using published data. Further, Genetic algorithm (GA) and DIRECT algorithm
are implemented to determine the optimal condition which yields minimum entropy generation.
According to the findings, heat transfer increases at a direct proportion to the mass flow, Reynolds
number (Re), and volume concentration of nanoparticles. Furthermore, as Re increases, particle
concentration should be decreased in order to reduce total entropy generation (TEG) and to improve
heat transfer rate of any given particle size. A minimal concentration of nanoparticles is required
to reduce TEG when Re is maintained constant. The highest increase in TEG with nanofluids was
2.93 times that of basefluid. The optimum condition for minimum entropy generation is Re = 4000,
nanoparticle size = 65 nm, volume concentration = 0.2% and mass flow rate = 0.54 kg/s.

Keywords: nanofluid; entropy generation; optimization; genetic algorithm; DIRECT algorithm

1. Introduction

Methods for heat transfer augmentation are actively utilized in a wide range of
industrial and home applications. This can be quite advantageous in many applications
for several reasons. For instance, improving the rate of heat transfer would result in a
reduction in the size of heat exchangers, as well as lowering material, operating costs,
and environmental impacts. One method to enhance heat transfer is to use nanoparticles
dispersed in the basefluid (nanofluid) [1–3]. It has been proven by many researchers that the
use of highly conductive nano-sized particles will augment the heat transfer properties and
improve the thermal performance of heat transfer systems [4]. Heat transfer improvements
have been reported in several cases to increase proportionally with the concentration of
the nanoparticles [5,6]. However, it has been shown by many studies that considerable
pressure drops and formation of entropy are common side effects of using nanofluids [7–11].
As a result, it is critical to take into consideration the other characteristics of a thermal
system along with the heat transfer parameters to provide a more complete picture of
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thermal performance. Entropy generation analysis is a highly effective technique for
characterizing the performance of thermal systems and system irreversibility [12,13]. There
have been numerous studies on entropy generation in thermal systems to establish optimal
operating parameters.

Sahin [14] outlined entropy generation and pumping power analysis of turbulent
flow through a smooth circular duct with constant wall temperature boundary conditions.
The author included the influence of the dependency of viscosity on temperature during
heating and found that the entropy generation decreased initially and then increased along
the length of the duct. Moreover, it was found that entropy generation increased, and
pumping power decreased with the increase in the dimensionless temperature difference
between the wall surface and fluid inlet.

Bianco et al. [15] proposed an entropy generation analysis of a turbulent Al2O3-water
nanofluid flow with a varying particle diameter of 20–60 nm and concentration of 0–6%
inside a circular tube having 1 m length and 0.01 m diameter exposed to 50 kW/m2 of
constant wall heat flux. The authors imposed three different inlet conditions, an Re value
in the range of 20,000–100,000, a constant mass flow in a range of 0.3–0.5 kg/s and a fixed
in-flow velocity in a range of 4–8.5 m/s. The authors found a decrement in thermal entropy
generation and an increment in frictional entropy generation with an increase in the Re,
mass flow and velocity. Finally, the authors indicated to the conditions for reduced energy
loss due to entropy generation.

In another study, Bianco et al. [16] applied constant wall temperature boundary con-
dition to an internal convective in-tube flow of Al2O3-water nanofluid with 19 and 38 nm
particle diameter and 0–6% volume percentage under turbulence condition. They numeri-
cally analysed heat transfer, entropy generation and pumping power loss in the aforemen-
tioned thermodynamic domain. The statement of the authors reveals that enhancement in
nanofluid concentration basically promotes entropy generation and pumping power loss,
which basically penalizes the benefit of Nu number enhancement by particle addition in
the basefluid.

Bianco et al. [17] executed a numerical analysis of heat transfer and entropy genera-
tion in a uniformly heated square tube having a convective flow of Al2O3 (38 nm)-water
nanofluid under turbulent condition. The main focus of their study was to find out the
optimum Re value for minimum entropy generation. The investigators reported that the
inclusion of nanoparticles aided in convective heat transfer enhancement. In addition, the
optimum Re values required to achieve minimum entropy generation decreased with in-
creasing concentration. For Al2O3 concentrations of 1%, 4% and 6% the optimum Re values
were found to be approximately of 90,000, 70,000 and 60,000, respectively.

Leong t al. [18] studied entropy generation phenomena for water-based Al2O3 (30 nm)
and TiO2 (40 nm) flow through a circular tube with constant wall temperature both in
laminar and turbulent zone. The investigators analysed the problem imparting variations
in working conditions, such as tube geometry, bulk flow temperature, nanoparticle volume
fraction, mass flow and dimensionless wall-fluid temperature profile, to the selected system.
It was reported that addition of 4% TiO2 nanoparticles reduces total dimensionless entropy
generation by 9.7% as compared to 6.4% reduction observed when using Al2O3.

Pati et al. [19] minimized the entropy generation and peak temperature for laminar-
forced convective flow with a high Prandtl number by using a circular pipe with uniform,
non-uniform and linearly changing heat flux conditions at the wall. It was suggested that
periodic heat flux condition with 100 cycles or more of sinusoidal waves is the best strategy
to minimize entropy generation and peak temperature.

Kadivar et al. [20] analytically studied heat transfer performance, flow characteristics,
and entropy generation of turbulent water-based TiO2 (21 nm) nanofluid flow through
a spiral coil tube considering various input parameters with various ranges, such as
nanoparticle concentration (0.01–0.05%), flow rate (1.33–3.33 L/m), fluid inlet temperature
(15–27 ◦C) and curvature ratio (0.03–0.06). The researchers concluded that an augmentation
in nanoparticle volume fraction reduces entropy generation, whereas a low Re and a



Energies 2022, 15, 3073 3 of 24

reduction in curvature ratio decrease the total entropy generation. Finally, an optimum
Reynolds number range of 9000–12,000 was proposed.

Li et al. [21] numerically optimized the configuration of a rectangular microchannel
heat sink with porous medium for entropy generation minimization. An aspect ratio of a
heat sink (HS) cell and the length–width ratio of a heat sink were optimized using a numer-
ical simulation method for entropy generation minimization (EGM). The research group
stated a decline of 33.10% in the dimensionless entropy generation rate at an optimized
aspect ratio.

Manay et al. [22] presented an experimental investigation on the effect of applying
TiO2 (25 nm)-water nanofluid with different volume percentages from 0.25–2% in micro
channel cooling using laminar steady and constant heat flux boundary conditions. The Re
value varied from 200–800. The Nu, friction factor and entropy generation were measured
by varying the micro channel height from 200–500 µm. The authors observed that an
increase in particle volume concentration leads to an increase in the Nu. The frictional
and total entropy generation increased by 3.3–21.6% and 2–20%, respectively. However,
nanoparticle addition resulted in a 1.8–32.4% decrease in thermal entropy generation. The
authors also added that thermal entropy generation in microchannel flows can be neglected
due to inconsiderable contribution in total entropy generation. Higher channel heights
resulted in a 30–52% increase in thermal entropy generation, while shorter channel heights
resulted in a 66–98% increase in frictional entropy formation. Different algorithms and
computer-based intelligent optimization techniques have been implemented to minimize
entropy generation in various thermal systems.

Han et al. [23] utilized the multi-objective genetic algorithm (MOGA) optimization
technique to optimize the design of a helically coiled tube and found that the minimum
entropy generation rate method alone cannot provide satisfactory results. However, if it
combines with flow resistance and heat transfer coefficient as the objective functions, the
best thermal performance can be obtained.

Moghadam et al. [24] analysed the entropy generation minimization in a turbulent
flow of Al2O3-water + EG (60:40) nanofluid at various bulk temperatures in the range of
290–360 K with varying particle sizes of 20–90 nm and increasing particle concentration
from 0–0.1% applied in a parabolic trough solar collector using the quadratic optimization
algorithm and an artificial neural network (ANN). The researchers observed that the rate
of entropy generation decreases by increasing the flow temperature, nanoparticle diameter
and by decreasing the volume fraction of nanoparticles. Finally, the authors suggested an
optimum condition at Re, bulk flow temperature and nanoparticle diameter of 4000, 360 K,
and 90 nm, respectively.

Gharyehsafa et al. [25] optimized flow parameters in a turbulent flow of metallic
Al2O3, CuO and non-metallic SiO2 in EG-water (60:40) nanofluids through a circular tube
at different heat flux conditions on the top and bottom walls of the tube by means of the
entropy generation method. The minimization of the rate of the entropy generation is
carried out by optimizing nanofluid volume fraction, the diameter of nanoparticles, Re and
average flow temperature by applying the quadratic optimization method. The authors
confirmed that total entropy generation is reduced by decreasing Re and increasing flow
temperature, nanoparticle diameter, and volume fraction of nanoparticles. The dispersing
metallic nanoparticles produced less entropy than the non-metallic particles in basefluids.
Finally, it was concluded that the optimal values of Re, average flow temperature, and
particle diameter were 4000, 363 K, and 100 nm, respectively.

Safarzadeh et al. [26] experimentally studied entropy generation of Fe3O4-DI (de-
ionized) water nanofluid flow through a helically coiled pipe under a constant magnetic
field. They predicted entropy generation using an adaptive neuro-fuzzy inference system
(ANFIS) model. The investigators concluded that to maximize the efficiency of the system,
the entropy generation number must be minimized. They also reported that from an exergy
viewpoint, the coils with diameters of 90 and 135 mm are the best among the other coils for
distilled water and nanofluid, respectively, at a fixed pitch.
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Mohamadi et al. [27] used a CFD analysis of heat transfer and entropy generation in
internal flows of Al2O3 and SiO2 in HFE7000 nanorefrigerants subjected to slip condition at
the wall. They selected four volumetric concentrations of 0%, 1%, 4% and 6% and four Re
values of 400, 800, 1200 and 1600. They revealed that the total entropy generation decreased
by both slip lengths and volume concentration. The slip boundary condition at the wall
reduced the mean pressure drop by around 25%. Furthermore, they added that compared
to pure HFE7000 flowing in a no-slip pipe with a slip length of 100 m and a 6% volume
concentration of Al2O3 dispersed in HFE7000, total entropy generation was reduced by
about 20% when using a slipping wall pipe with a slip length of 100 m and a 6% volume
concentration of Al2O3. Other important studies on entropy generation can be found in the
literature [28–34].

As per the above discussions, the entropy generation minimization (EGM) approach
has been used by several researchers in a variety of heat transfer applications. Convection
in pipe flow is the most common example of heat transfer in the thermal engineering
sector. However, the EGM approach for flow inside tubes is less addressed by the research
community as per the authors’ knowledge. Few examples are present in references [15–17].
However, EGM studies in pipe flow under constant wall temperature condition remain
neglected. Moreover, EGM studies in convective nanofluid flow inside tubes with pure
EG-nanofluids have not been addressed properly in recent years as per the authors’ knowl-
edge. Hence, this an existence or research gap in this particular domain. As a result, the
authors hope their work will fill the research gap.

This paper presents a methodology to minimize the entropy generation in a tube
flow subjected to constant temperature boundary conditions in order to develop optimal
conditions when the working medium is an EG-based Al2O3 nanofluid with varying
concentrations (0.02–0.1 vol.%) and varying particle sizes (25–65 nm) under turbulent
conditions having a variation in Re from 4000–20,000. The GA and DIRECT algorithms
have been employed to find the minimum values of entropy generation in the flow, and the
corresponding values of Re, particle volume fraction and particle size are presented. Overall,
the optimized conditions can be implemented in nanofluid-aided heat transfer applications.

2. Methodology
2.1. Problem Statement

The problem described here consists of entropy generation analysis of a flowing
nanofluid inside a tube. The system geometry is presented Figure 1. The length (L) of the
tube is 1 m, and it has a 0.01 m diameter (D). Isothermal condition is imposed to the tube
wall. The fluid inlet temperature is maintained (Ti) at 298 K.
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Figure 1. Schematic of the tube under present investigation. Figure 1. Schematic of the tube under present investigation.

An incompressible viscous flow of Al2O3-EG nanofluid is considered here under
turbulent condition. The particle size is varied in the range of 25–65 nm at 10 nm difference.
The particle volume fraction is increased from 0–1% at a 0.2% increment. The Re is varied
from 4000–20,000. The analysis is performed by changing two parameters at a time while
the other parameter is kept constant. The length and diameter of the pipe remain constant
throughout the study.
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The thermo-physical properties of nanofluids are evaluated on the basis of the bulk
flow temperature of the nanofluid and are presented in Table 1. The thermophysical
properties of nanofluids are measured at different particle sizes (25–65 nm) and particle
concentrations (0–1 vol.%).

Table 1. Thermo-physical properties of Al2O3 and ethylene glycol.

Properties Al2O3 Ethylene Glycol

Thermal conductivity 40 W/mK 0.252 W/mK

Density 3970 kg/m3 1111.4 kg/m3

Dynamic viscosity - 16.1 × 10−3

Specific heat 765 kgK 2415 J/kgK

2.2. Nanofluid Thermophysical Properties

The nanofluid thermophysical properties are measured using the prevailing mathe-
matical models. The nanofluid thermal conductivity is measured as a function of Brownian
motion, size, thermal conductivity of nanoparticle and basefluid and particle volume
concentration using the following correlation proposed by Corcione [35].

λn f

λb f
= 1 + 4.4 Re0.40

np Pr0.66
b f

(
T

Tf r

)10(
λnp

λb f

)0.03

φ0.66 (1)

where λ, φ, T, Renp, and Pr stand for thermal conductivity, volume concentration, tem-
perature, Reynolds number, and Prandlt number, respectively. The Re of a nanoparticle is
defined in the following way:

Renp =
ρb f vBdnp

µb f
(2)

where ρb f , vB, dnp and µb f are density of basefluid, Brownian velocity of nanoparticle,
nanoparticle diameter and dynamic viscosity of basefluid. The Brownian velocity is
defined as:

vB = 2
KBT

πµb f d2
np

(3)

where KB is the Boltzmann Constant whose value is = 1.38066× 10−23 J/K.
The dynamic viscosity of the nanofluid measured as a function of particle size and

volume concentration [36]:

µn f =
1

1− 34.87
(

dnp
db f

)−0.3
φ1.03

(4)

db f =

[
6MW

NAπρb f

]( 1
3 )

(5)

where MW is the molecular weight of the basefluid, and NA is the Avogadro number = 6.023× 1023.
The density and specific heat of the nanofluid is measured by applying the mixture

rule as presented below [37]:

ρn f = ρnpφ + ρb f (1− φ) (6)

Cpn f =
Cpnp ρnp φ + Cpb f ρb f (1− φ)

ρn f
(7)
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2.3. Formulation for Heat Transfer

The heat transfer rate to the nanofluid flow inside the control volume is

δQ =
.

mCpdT = πhD
(
Tw − Tavg

)
dx (8)

where
.

m is the mass flow rate. Cp is the specific heat of the working fluid, and Tw and Tavg
are the wall temperature and average temperature of the flow, respectively. h and D denote
the heat transfer coefficient and tube diameter, respectively.

.
m =

π

4
D2ρv (9)

Re is the Reynolds number, which is defined as:

Re =
ρvDh

µ
(10)

where Dh denotes the hydraulic diameter. In case of tube flow, the hydraulic diameter is
equal to the pipe diameter.

Comparing Equations (9) and (10),
.

m can be rewritten as:

.
m =

π

4
µDRe (11)

Integrating Equation (8), the average bulk temperature of the flow along the length
can be presented as [14]:

Tavg = Tw − (Tw − Ti)e
(− πhDL.

mCp
)

(12)

Now, Equation (12) can be rewritten as below:

Tavg − Tw

Ti − Tw
= e(−4StAr) (13)

Ar is the aspect ratio of the tube.

Ar =
L
D

(14)

St is the Stanton number, which is defined as:

St =
Nu

RePr
(15)

where Nu and Pr are the Nusselt number and Prandlt number, respectively, defined as:

Nu =
hD
λ

(16)

Pr =
µCp

λ
(17)

The Nu for nanofluid flow under turbulent condition for different volume concentra-
tions can be presented as a function of particle size, thermal dispersion, micro-convection
and micro-diffusion of nanoparticles [38].

Nun f = 0.0059
(

1 + 7.6286φ0.6886Pe0.001
n f

)
Re0.9238

n f Pr0.4
n f (18)
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Penf is the Peclet number, defined as:

Pen f =
vdnp

αn f
(19)

αn f is the thermal diffusivity, which is defined as below:

αn f =
λn f

Cpn f ρn f
(20)

The friction factor in nanofluid flow is evaluated based on the following equation [39]:

fn f =
1(

0.79 ln Ren f − 1.64
)2 (21)

2.4. Formulation for Entropy Generation

As previously stated, entropy generation inside a tube is investigated. Hence, the
necessary equations are introduced in this study.

The total entropy generation (Sgen,Total) in a flow system is considered as the collective
result of entropy generation by heat transfer (Sgen,T) and fluid friction (Sgen,F) [40]:

Sgen,Total = Sgen,T + Sgen,F (22)

The total entropy generation per length of the circular test section is given by [15]:

Sgen,Total(x) =
Q′∆T(x)

T2 +

.
m
ρT

(
−dp

dx

)
(23)

Equation (23) represents total local entropy generation in the test section. The first part
represents the local entropy generation due to heat transfer, and the second represents the
local entropy generation due to fluid friction. Q′ is the heat transfer rate per unit length.

Integrating both sides of Equation (23):

∫
Sgen,Total(x) =

∫ Q′∆T(x)
T2 +

∫ .
m
ρT

(
−dp

dx

)
(24)

Sgen,Total =

.
Q

2
πD3Ar

NuλTavg
+ 32

.
m3 f Ar

ρ2Tavgπ2D4 (25)

Now, comparing Equations (22) with (25), Sgen,T and Sgen,F have the following forms:

Sgen,T =

.
Q

2
πD3Ar

NuλTavg
(26)

Sgen,F = 32
.

m3 f Ar

ρ2Tavgπ2D4 (27)

where
.

Q is the heat transfer per unit area or heat flux to the flow.
All the mathematical equations are modelled and simulated in engineering equation

solver software (EES), and the result is optimized by genetic algorithm (GA) and quadratic
approximation methods. The optimized values from these two are then compared. Details
on GA and DIRECT algorithm are discussed briefly in the next section.
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2.5. Genetic and DIRECT Algorithm

Genetic algorithm (GA) is widely used and is the most popular stochastic optimization
technique that is often used to settle many large-scale complex optimization problems in
different fields. GA begins with a set of random solutions termed as the population. Each
individual solution is known as a chromosome which evolved due to successive iterations.
These iterations are also known as generations, and during each iteration, the chromosomes
are measured with some fitness value. The next generation of chromosomes, known as
offspring, can be formed by merging two current generations with a crossover operator or
by modifying it with a mutation operator. A new generation is created by either selecting
certain parents and offspring based on their fitness values or by rejecting some of them in
order to keep the population number constant. The method eventually converges on the
best chromosome, which reflects the optimized value, after a few generations. The process
of GA optimization is described by a flow chart as presented in Figure 2.
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The genetic method used in EES is based on the Pikaia [41] optimization tool, which
is freely available in the public domain. In EES, the number of individuals varies from
16–128. The number of generations ranges from 16–2048 with a maximum mutation rate
from 0.0875 to 0.7 with linear variations. The GA has other parameters (e.g., the minimum
mutation rate, the number of significant figures to encode) which have been set to the
Pikaia program’s default values and cannot be changed within EES. In the present analysis,
all the parameters are set to their default values during optimization.

A tweak to Lipschitzian optimization inspired the DIRECT [42] optimization technique.
It was designed to explain complex global optimization problems with bound constraints
and a real-valued objective function. The DIRECT algorithm is a sampling algorithm which
does not necessitate any prior knowledge about the gradient of the objective function.
Instead, the algorithm samples locations in the domain and then decides where to search
next based on the information it has gathered. When the objective function is a “black
box” function or simulation, a global search algorithm such as DIRECT can be useful. The
DIRECT algorithm will converge globally to the minimum objective function. The name



Energies 2022, 15, 3073 9 of 24

“DIRECT” originates from the shortening of the phrase “Dividing Rectangles”, which
describes how the algorithm moves to the optimum.

The DIRECT approach has proven to be quite competitive in comparison to other
algorithms in its class. DIRECT’s merits include the balanced effort it devotes to local and
global searches, as well as the minimal parameters it requires to run.

The EES includes the original DIRECT algorithm developed by Jones et al. [42,43]
Similar to GA, the DIRECT algorithm is intended to find a global optimum when local
optima occur in the search region. The DIRECT algorithm has the advantage of finding a
global optimum with significantly fewer function evaluations than the genetic method. The
number of times EES will solve the equations while searching for the optimum is limited by
the maximum number of function calls. Gablonsky’s relative conv. tolerance is a stopping
criterion known as volper. The smaller this value is, the more precise the optimum will
be, and the more function evaluations will be required to obtain it. If a better estimate of
the optimum is not found in (Max. function calls/5) function evaluations, EES will stop
looking for it. Figure 3 presents a flow chart of DIRECT algorithm processes. In the present
analysis, the conv. tolerance is fixed at 10−5. The cell function is kept at 200.
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2.6. Validation

The EES coding was validated by comparing the present result with available data
in [15,44].

Al2O3 nanofluid with concentrations of 0.9, 1.8, and 3.6 was used to compare findings
at a fixed flow velocity of 2 m/s. The distributed nanoparticles have an average diameter of
46 nm. The simulated EG result is compared to the one shown in Figure 4. A deviation of
around 12% is produced as a result of the study’s differences in thermophysical properties
and specification, flow parameters, and boundary conditions. Furthermore, the correlations
used to determine the thermophysical parameters of nanofluids are highly variable in
comparison to experimental data. However, the pattern of rising entropy generation is
consistent with the validation literature.
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Figure 4. Comparison of present analysis with previous papers.

3. Results and Analysis
3.1. Temperature Profile of Flow

The dimensionless outlet temperature profile (θO) and dimensionless average temper-
ature profile (θ) of nanofluids are presented in Figure 5a–c at different Re, concentration
and particle sizes. The temperature profiles are defined as:

θO =
Tw − T0

Tw
(28)

θ =
Tavg − Ti

Tw − Ti
(29)

The temperature profiles show opposite behaviours, and the θO profile in Figure 5a
shows incensement with increasing Re, mass flow rate and concentration of nanofluids,
while the particle size remains constant. As the Re value increases, the working fluid
has less time to absorb heat. As a result, the outlet temperature of the flow decreases
production of a net incensement in θO when Tw remains constant. Conversely, average
bulk temperature profile or θ decreases with an increase in Re and mass flowrate. The
inclusion of nanoparticles reduces the average temperature as the increasing concentration
of nanofluids generates higher dynamic viscosity and lower heat capacity compared to
pure EG.

Figure 5b shows that similar trends in the changes occur in θO and θ at different
nanoparticle sizes when the Re and mass flowrate increase, keeping the volume concentra-
tion constant at 0.6%. The heat transfer in nanofluids is inversely proportional to particle
size. The smaller the particle size, the higher the heat absorption rate of the nanofluids. The
outlet temperature of the nanofluid flow rises due to high absorption capacity at smaller
particle size, resulting in θO decrement.
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θ decreases with an increase in Re, mass flowrate and decrease in particle size at a con-
stant volume fraction of 6%. The decrease in heat absorbance due to Re and mass flow rate
increment results in a drop in average fluid temperature. Hence, θ decreases. At a constant
volume concentration, when the particle size decreases, the frictional resistance to the flow
increases, which in turn reduces the heat convection in the nanofluids. Consequently, the
average temperature decreases.

In Figure 5c, the temperature profiles are highly non-linear in nature with various
particle sizes when the concentration of the nanofluid increased at a constant Re = 16,000
and m = 2.596 kg/s. θO decreases up to φ = 0.4% and then starts increasing up to φ = 1%.
Such a change in θO is interesting. When the mass flow rate is fixed, the density of the
nanofluid increases with the increase in particle inclusion. Now, to make the flowrate fixed,
the velocity of the flow needs to be decreased due to inertia. The increase in density of the
nanofluid is low up to (φ = 0.4%); however, it increases significantly with particle loading
beyond 0.4%. Therefore, the flow velocity first slightly changes up to φ = 0.4%), and then an
abrupt reduction in the flow velocity happens at a higher concentration. When the change
in flow velocity is limited, the flow volume enhances due to inclusion of nanoparticles, and
it obtains insufficient heating to raise the temperature of the flow. As a result, the outlet
temperature drops. However, at higher concentration (φ > 0.4%), when the flow velocity is
low, the flow has ample time to be heated, leading to a net increase in outlet temperature.
Hence, θO again increases.

θ shows an opposite trend to θO, i.e., θ first increased to 0.4% and then decreased to
1%. The average flow temperature depends on the inlet and outlet temperatures of the
flow. In the analysis, the inlet temperature is fixed at 298 K. The outlet temperature shows
changes throughout the present concentration range. Therefore, in order to allow such
changes in the flow field, the average temperature of the working fluid initially increased
to (φ = 0.4%) and then decreased to (φ = 1%).
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3.2. Convective Heat Transfer Rate

The heat transfer with nanofluids at different flow rates, sizes and concentrations
is presented in Figure 6a–c. In Figure 6a, the rate of heat transfer is plotted against the
different Re and mass flow with a 25 nm nanoparticle size. The heat transfer increased
linearly with the increase in Re values (mass flow rate) at an average of 4.45 times its
initial magnitudes for all fluids. The heat transfer rate also increased with the increase
in particle volume concentration from 0–1%. Maximum enhancement was 2.558 times as
compared to water when Re = 20,000 and φ = 1%. The increase in thermal conductivity
due to nanoparticle inclusion plays an important role in heat transfer enhancement in
nanofluids [2]. The nanoparticle migration due to Brownian motion and thermo-diffusion
also influences the convective heat transfer in nanofluids [4].

The heat transfer rate is plotted in Figure 6b against the increasing Re and mass flowrate
at different nanoparticle sizes by keeping volume concentration constant at φ = 0.6%. This
figure evidently describes that a decrease in particle size is beneficial for heat transfer
in nanofluids by keeping the particle concentration constant. The decreased size of the
nanoparticles has enhanced mobility due to low inertia. Hence, smaller particles move
faster and enhance the heat transfer rate better than the same with bigger particles under
the same temperature difference.

The effect of particle size and concentration on the convective heat transfer rate at
a fixed Re = 16,000 (m = 2.596 kg/s) is presented in Figure 6c. The result describes that
the heat transfer rate increased with the increasing concentration and decreasing particle
size. Unlike in Figure 6a,b, the curves in Figure 6c show non-linearity. This is due to
the improvement in micro-scale phenomena with concentration rise and faster particle
movement with reduction in particle size.
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3.3. Thermal and Frictional Entropy Generation Rate

The variations of entropy generation rate due to heat transfer and fluid friction are
presented in Figure 7a–c. In Figure 7a, the entropy generations are presented as a function
of mass flow rate and Re at a constant dp = 25 nm. With the increase in mass flow rate and
Re, the thermal entropy generation rate (Sgen,T) increased linearly, but the frictional entropy
generation rate (Sgen,F) showed an exponential trend. It is evident from Figure 7a that Sgen,T
dominates Sgen,F but at a higher concentration, i.e., at φ = 0.8 and 1%, Sgen,F dominates. This
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phenomenon can be explained by the fact that with the increase in particle concentration,
the enhancement in viscous dissipation tries to surpass the thermal entropy generation. An
Re value around = 12,000 is suitable since Sgen,F increases abruptly after that value.
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In Figure 7b, at a constant φ = 0.6%, SgenT and Sgen,F have been presented with increas-
ing Re and mass flow rate. Sgen,T decreased with a decrease in particle size since the heat
transfer enhancement is more with reduced particle size. Sgen,F manifests an opposite trend.
The viscosity is inversely proportional to the nanoparticle diameter [45]. Hence, viscous
dissipation is more in the nanofluids with smaller particle size. Since the concentration
remains constant, Sgen,T remains dominant over Sgen,F.

The variation of Sgen,T and Sgen,F with nanoparticle volume concentration at a fixed
Re =16,000 and m = 2.596 kg/m is presented in Figure 7c. The entropy generation augments
with increasing the concentration of nanofluid. Unlike in previous operating conditions,
Sgen,T is to some extent nonlinear in nature. This can be regarded as the effect of microscale
phenomena which become more prominent at a higher concentration. Sgen,T dominates
Sgen,F. However, the trend is opposite at a higher concentration (φ = 1%). To maintain Re
constant, the velocity of the flow needs to be increased, causing an increase in frictional
loss [15]. Sgen,F maintains a nonlinear trend with increasing concentration.

3.4. Total Entropy Generation Rate

The entropy generation rate (Sgen,Total) at varied Re, mass flow rate, concentration
and particle size are described in Figure 8a–c. Sgen,Total increased with the increase in Re
and mass flow rate at different concentrations at fixed dp = 25 nm, as shown in Figure 8a.
However, as per Figure 8b, the effect of nanoparticle size is not effective in Sgen,Total. Further-
more, decreasing the particle size increases Sgen,Total with a constant volume fraction. As
previously shown in Figure 7b, the contribution of Sgen,T dominates that of Sgen,F, resulting
in an increase in Sgen,Total in the order of decreasing particle size. Figure 8c presents the
development of Sgen,Total with increasing concentration and varying particle diameter when
the flow is kept constant at Re = 16,000 and m = 2.596 kg/s. The TEG enhancement becomes
more prominent with increasing concentration. The internal shear stress increases due
to enhanced particle-to-particle interaction with nanoparticle inclusion in the basefluid.
Moreover, when the flow rate is fixed, the micro-nanoscale heat transfer enhancement
contributes to Sgen,Total of the nanofluid. As a result, Sgen,Total shows an upward trend with
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nanoparticle inclusion in the basefluid. Sgen,Total of the nanofluid shows a maximum of
2.93 times enhancement versus EG when the particle size remains fixed and the Re and
mass flowrate are varied.
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3.5. Irreversibility Distribution Ratio

The irreversibility distribution ratio ψ is defined as the ration between Sgen,F and Sgen,T:

ψ =
Sgen,F

Sgen,T
(30)

The variation of ψ is presented in Figure 9a–c. The figures display that ψ increases with
increasing Re and mass flow rate and decreasing particle size. By comparing the graphs,
the increase in frictional resistance, with increasing concentration and Re and decreasing
particle size, enhances Sgen,F. Consequently, ψ increases. The ψ values are all <1 which
indicates that Sgen,T preponderates over Sgen,F in all circumstances.

3.6. Optimization Results

GA and DIRECT algorithms are applied to find out the optimized condition for the
present analysis. The minimization of entropy generation is performed by optimizing
the values of Re, m, φ, and dp. The operating conditions of the input parameters are
considered within the ranges 4000 ≤ Re ≤ 16,000, 0.5 kg/s ≤ m ≤ 3.5 kg/s, 0% ≤ φ ≤ 1%
and 25 nm ≤ dp ≤ 65 nm. The optimized values for input parameters such as Re, m, φ and
dp are presented in Table 2a, and the corresponding optimum values for Q, Sgen,T, Sgen,F,
Sgen,Total and ψ are presented in Table 2b.
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Table 2. (a). Optimized results for input parameters. (b). Optimized results using genetic and
DIRECT algorithms.

(a)

Input Parameters Genetic Algorithm DIRECT Algorithm

Re 4000 4000

M (kg/s) 0.54464 0.54453

φ (%) 0.2003 0.200

dp (nm) 64.55924 65

(b)

Output Parameters Genetic Algorithm DIRECT Algorithm

Q (W) 1027.23858 1027.09394

Sgen,T (W/K) 41.32541 41.319501

Sgen,F (W/K) 0.582172 0.581821

Sgen,Total (W/K) 41.907589 41.901322

ψ 0.014088 0.014081

4. Conclusions

In the present investigation, an effort has been made to optimize a flow of Al2O3-EG
nanofluid inside a circular tube exposed to constant wall temperature. The EGM ap-
proach was applied to optimize the three effective parameters such as Re, volume frac-
tion and nanoparticle diameter using GA and DIRECT algorithms. The key findings are
presented below:
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(a) The heat transfer enhancement is achieved by increasing nanoparticle concentra-
tion, Re and mass flow rate. Moreover, a decrease in particle size aides in heat
transfer enhancement.

(b) By increasing Re, entropy generation increased. The optimal condition for minimum
entropy generation is 4000. The corresponding m values are 0.54464 and 0.54453 kg/s
with GA and DIRECT algorithms. As a result, Re should be kept as low as feasible in
order to reduce entropy generation.

(c) The increase in nanoparticle addition increases entropy generation. Therefore, a better
thermodynamic system can be obtained by reducing particle volume fraction. The
minimum value for entropy generation is obtained at φ = 0.2003% and 0.200% using
the GA and DIRECT algorithms.

(d) Entropy generation can be minimized by using bigger particles. Minimum entropy
generation is possible with dp~65 nm according to the GA and DIRECT algorithms.

(e) Sgen,T plays a dominating role over Sgen,F. However, at higher concentrations, i.e., at
0.8 and 1 vol.%, Sgen,F competes with Sgen,T.

(f) The TEG values show a sharp increment from 0.8–1 vol.%. The enhancement indicates
that the addition of nanoparticles increases the entropy generation in the flow.

(g) ψ increases with increasing Re or mass flowrate, dp and vol. concentration. This indi-
cates enhancements in friction entropy generation with these parameters. ψ remains < 1
as Sgen,T dominates Sgen,F throughout the analysis.

(h) The nanofluid developed a maximum of 2.93-fold enhancement in TEG as compared
to basefluid. Therefore, nanoparticles should be added to the basefluid carefully.
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Nomenclature

EG Ethylene glycol (-)
GA Genetic algorithm (-)
Re Reynold number (-)
TEG Total entropy generation
Al2O3 Aluminium oxide
TiO2 Titanium oxide
EGM Entropy generation minimization
D Diameter (m)
DI Deionized
d Diameter of nanoparticle (nm)
f Friction factor (-)
L Length (m)
T Average temperature (K)
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v Average velocity (m/s)
Pr Prandlt number
KB Boltzmann constant (J/K)
MW Molecular weight (g/mol)
NA Avogadro number (particles/mol)
Cp Specific heat capacity (J/KgK)
.

m Mass flow rate (kg/s)
h Heat transfer coefficient(W/m2K)
Q Heat transfer rate (Watt)
Q′ Heat transfer rate per unit length (Watt/m)
.

Q Heat flux (W/m2)
Ar Aspect ratio of the tube
St Stanton number (-)
Pr Prandlt number (-)
Pe Peclet number (-)
Sgen Entropy generation (W/K)
Greek Symbols
λ Thermal conductivity (W/mK)
φ Volume concentration (%)
µ Dynamic viscosity (Pa.s)
α Thermal diffusivity(m2/s)
ρ Density (kg/m3)
Ψ Irreversibility distribution ratio (-)
Subscripts
i Inlet
o outlet
np Nanoparticles
bf Basefluid
b Brownian
w Wall
avg Average
T Thermal
F Frictional
Total Gross
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