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Figure S1. J-V curves of a FQIBC PSC for the front-side illumination and different light
intensities.
Experimental Details
Standard drift-diffusion model, employing the Shockley-Read-Hall (SRH) recombination

rate is used to simulate behavior and performance of back-contact perovskite solar cells (BC-PSCs)



with flexible quasi-interdigitated electrodes. To calculate the J-V curves of devices, the following
system of equations [1] was solved for given device architecture, geometry, and physical
parameters of the device functional layers:

1. Poisson Equation:

V- (—&&VV)=p(x,y,2), (Equation S1)

where p(X,y,2)= q( p(X,y,z) —n(x,y,z) + Ny (X, ¥,2) = N_ (X, Y, z)) with
corresponding boundary  conditions  specific to  the  device  architecture,
pP(X,Y,2),n(x,Y,2),N;y(X,Y,2),N, (X,y,z) are local concentrations of charge carriers,

acceptors, and donors, respectively.
Values of the equilibrium concentration of charge carriers are obtained from the following

equations:

2 a : (Equation S2)

p:—% N+ - 1\/ Ny — ; +4ni2
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Here,

E , Equation S3
nl _ /NCONVO eXp(_ ZkQTJ ( quation )
B

is the intrinsic concentration of charge carriersand N_,, N, are the effective density of states in

the conduction and valence bands. For the determination of local concentrations at given device

geometry, the profiles of the concentrations at the junctions needs to be chosen accurately.
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2. Charge carrier currents for electrons and holes:
vV-J,=0Vv-J =0
J, =aqnu, E, + 1.k, TVN (Equation S4)
J,=anu,E, + 1,k TVp

where, E, =-V(V + 4,),E, = —V(V + %+ Ego). E, is band gap, z, - electron affinity,

9,0

44, - mobility of electrons, and y7n mobility of holes.

3. Continuity equations:

@an -R, +1V-Jn
o 9 , (Equation S5)
%sz -R, —&V-Jp

here, G, , GlfJ - unit volume generation rate for electrons and holes, R, R, recombination rates
(Shockley-Read-Hall). The Shockley-Read-Hall recombination rate [2,3] is detrained as
following:

_n?
R, = Lol -R

n

r,(n+n)+z,(p+p) ° (Equation S6)

V-J,+=0R,,V-J +=R,
where T, and , are lifetimes for holes and electrons.

Spatial and wavelength dependent carrier generation rate is obtained by the following
relationship:

gx,y,z,A) = alx,y,z, \)p(D)P.(x,y,2,1) (Equation S7)

Here, a(x,y,z,A) is the absorption coefficient and ¢(1) is the solar incident photon flux

(AM1.5G), and P,(x,y,z,A) is the power flow. P,(x,y,z A) is calculated by the following

relations:

P(x,y,2,1) = JIPox(x, y,z,A)|? + |Poy(x, Y, 2, /1)|2 +|P,,(x,y,2z,1)|>  (Equation S8)
where,
P.(x,v,2,1) = %Re(EyH; — E,H}) (Equation S9a)

Poy(x,,2,4) = 5 Re(E,H; — EH;) (Equation S9b)
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Po(x,9,2,4) = > Re(EyH; — E, H) (Equation S9c)
Here, E and H represent the spatially and frequency dependent electric and magnetic fields yielded
by incident light. The symbols “Re” and “x” are the operators for taking the real part and the
complex conjugation, respectively. The carrier generation rate is calculated by the following

relationship:
G(x,y,2) = f,{llz 9(x,y,2,1)dA (Equation S10)

Here, 4, is set to 300 nm and 4, is set to 800 nm.
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Table S1. Physical parameters used for simulation experiments [4-11].

Parameters and units ZnO (ETL) MAPDI;3 (Perovskite)
Ideal | Adjusted Ideal Adjusted
Dielectric constant 9 9 30 6.5
Band gap (eV) 34 3.4 1.55 1.55
Electron affinity (eV) 4.4 4 3.9 3.9
Electron mobility (cm?/V s) 10 10 50 1.4
Hole mobility (cm?/V s) 2.5 2.5 50 0.6
Electron lifetime (5) 0.34 0.34 1 0.3
Hole lifetime (1s) 0.34 0.34 1 0.3
Acceptor concentration (cm3) 0 0 0 0
Donor concentration (cm™) 1x<10%8 | 1x108 1x10%° 1x<10%
Effective conduction band density (cm™) | 2.2x10%8 | 2.2x10%8 | 4.42x10%" | 1x10®
Effective valence band density (cm=) 1.8x<10%° | 1.8x10% | 8.72x10'® | 1x10®
Radiative recombination coefficient (cm®/s) / 3x10°13 1x<10°°
Auger recombination coefficient (cm®/s) / 2x10% 1x10-2°
Surface recombination velocity (cm/s) / 1 1, 10, 10?,
103, 104,
10°
Electron diffusion length (um) / 11.2 1.9
Hole diffusion length (um) 1.7
Circuit series resistance (€2/cm) 0 10
Circuit shunt resistance PSK (kQ/cm) Infinity 29.6
Circuit shunt resistance PET (k/cm) Infinity 22
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Figure S2. Sketch of the cross-section view (shown in xz-plane) of the sunlight fall on FQIBC

PSCs from the fron- (perovskite-side) (a) and the rear-side (PET-side) (b). The areas enclosed with

dashed white rectangles indicate the base unit areas used in simulation experiments.
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Figure S3. Comparison of the simulated J-V curves of FQIBC PSC for the front-side (dash red

line) and the rear-side (solid black line) illumination.
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Table S2. The calculated photovoltaic parameters of FQIBC PSCs under AM1.5G solar

irradiation.

Shp, CM/s Illumination option Voc, V Jse, MA/cm? FF PCE, %

1 Front-side 0.69 9.7 0.39 2.6

1 Rear-side 0.69 9.5 0.4 2.1
10 Front-side 0.69 9.7 0.39 2.6
10 Rear-side 0.69 9.5 0.4 2.1
10? Front-side 0.69 8.3 0.39 2.26
10? Rear-side 0.69 6.6 0.46 2.1
10° Front-side 0.69 7.38 0.39 2.01
103 Rear-side 0.69 5.85 0.46 1.86
10 Front-side 0.65 3.48 0.37 0.85
10* Rear-side 0.68 4.21 0.42 1.2
10° Front-side 0.67 1.49 0.38 0.36
10° Rear-side 0.67 2.15 0.42 0.6
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