
Citation: Falabretti, D.; Gulotta, F. A

Nature-Inspired Algorithm to Enable

the E-Mobility Participation in the

Ancillary Service Market. Energies

2022, 15, 3023. https://doi.org/

10.3390/en15093023

Academic Editor: Sangheon Pack

Received: 21 March 2022

Accepted: 15 April 2022

Published: 20 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Nature-Inspired Algorithm to Enable the E-Mobility
Participation in the Ancillary Service Market
Davide Falabretti * and Francesco Gulotta

Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan, Italy; francesco.gulotta@polimi.it
* Correspondence: davide.falabretti@polimi.it

Abstract: In the present paper, a tool is proposed to optimally schedule the charging requests of
a fleet of carsharing Electric Vehicles (EVs) in an urban area, to enable their participation in the
Ancillary Service Market. The centralized scheduler minimizes the imbalance of an EV fleet with
respect to the power commitment declared in the Day-Ahead Market, providing also tertiary reserve
and power balance control to the grid. The regulation is carried out by optimizing the initial charging
time of each vehicle, according to a deadline set by the carsharing operator. To this purpose, a nature-
inspired optimization is adopted, implementing innovative hybridizations of the Artificial Bee Colony
algorithm. The e-mobility usage is simulated through a topology-aware stochastic model based on
carsharing usage in Milan (Italy) and the Ancillary Services requests are modeled by real data from
the Italian electricity market. The numerical simulations performed confirmed the effectiveness of
the approach in identifying a suitable schedule for the charging requests of a large EV fleet (up to
3200 units), with acceptable computational effort. The benefits on the economic sustainability of
the E-carsharing fleet given by the participation in the electricity market are also confirmed by an
extensive sensitivity analysis.

Keywords: Electric Vehicle; aggregation; Ancillary Services; Artificial Bee Colony; scheduling

1. Introduction

Environmental and technical factors are driving the transition toward a low-carbon
energy scenario. Electricity and road transport, underpinned by environmental policies, are
among the sectors facing the greatest transformations. As a consequence of the spreading
of renewable energy sources, electric power systems are subject to an increasing variability
and unpredictability of power injections and to a gradual replacement of conventional
generators, historically in charge to supply Ancillary Services (ASs) to the grid, with non-
dispatchable generation. To improve the power system’s reliability, recently, some countries
around the world envisaged the opening of their Ancillary Service Markets (ASMs) to new
subjects, such as distributed energy resources, renewable power plants, controllable loads,
energy storage systems and also e-mobility [1–3], with the goal of increasing the number
of suppliers of the ASs needed for grid operation. In this scenario, electric networks can
take advantage of synergies with the transport sector, given the deep changes the latter
is facing to reduce local pollutants and increase the efficiency of urban space usage [4].
In this regard, the promotion of electric carsharing could strongly favor the shift toward
a sustainable transport sector [5]. Moreover, Electric Vehicles (EVs) are a very promising
flexibility resource, even though their charging requests need to be properly coordinated to
avoid detrimental effects on the grid [6].

In the outlined framework, the present paper proposes a novel optimization procedure
based on a hybridization of the Artificial Bee Colony algorithm aimed to schedule the
charging requests of an EV carsharing fleet [7]. The initial charging time of each vehicle is
coordinated by adopting a Centralized Control Architecture (CCA). To preserve batteries’
lifespan, only the starting time of the charging is managed, while no preemption nor
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Bidirectional Vehicle to Grid (V2G) are considered. The strategy enables the aggregated
participation of e-mobility in the ASM, the supply of ASs to the grid (tertiary reserve and
power balance control) and the reduction of power imbalances with respect to the market
commitment defined in the Day-Ahead Market (DAM).

In the following, after a literature review in Section 2, the scenario of application and its
modeling are depicted in Section 3. The description of the dynamic optimization problem
studied is presented in Section 4. Section 5 introduces the enhancements proposed to adapt
the Artificial Bee Colony to this large-scale optimization problem. Finally, Sections 6 and 7
present the case study and the numerical analyses carried out to assess the effectiveness of
the proposed solution, while in Section 8, the techno-economic profitability of the CCA is
analyzed in different case studies as well as performing a sensitivity analysis.

2. Related Works

In recent years, the exploitation of the flexibility of EVs to supply services to the power
grid has shown an increasing interest in the scientific community. Regulation capabilities,
scheduler architecture and optimization strategies to approach the scheduling problem are
all topics widely debated today.

The capability of EVs to manage unidirectional or bidirectional power flows deeply
affects the performance during the service provision to the power system. In unidirectional
grid-to-vehicle (hereinafter V1G), EVs can be considered as a flexible load, since the power
can flow only from the grid to the vehicle [8], whilst the bidirectional grid to vehicle (V2G)
enables EVs both to absorb or inject electric power from/into the grid. As concluded in [9],
the bidirectional configuration has higher performances than V1G, but battery degradation,
charging infrastructure and control logics are still crucial problems [10].

From the point of view of the scheduler architecture, in the centralized control, the
operator managing the regulation of EVs and offering their flexibility services on the market
(in the following, also called Aggregator) collects all the information about the connected
EVs, determines the optimal charging scheduling and coordinates the fleet’s power exchanges
with the grid to obtain the services settled on the market. The opposite of this approach is the
decentralized control logic, where each EV is capable to determine its charging parameters.
Most of the literature focuses on the centralized logic [11,12], since it allows usually reaching
better coordination and provides a higher amount of services to the power system. However,
the centralized approach could show severe scalability limits [13], since the EV scheduling is a
dynamic optimization problem [14], therefore, the solution shall be available in a few seconds
to start the EV charging and reiterate the procedure for the next time steps. It is not surprising
that to face this issue, in most of the works adopting a centralized architecture, the size of EVs’
fleet is very limited [15]. To address the scalability issues of centralized architectures, recently,
Meta-Heuristic optimization techniques have met an increasing interest. Genetic Algorithms,
Particle Swarm Optimization and Artificial Bee Colony (ABC) have been extensively applied
to solve EV charging scheduling problems [16–18].

In this work, an innovative hybridization of the ABC algorithm is provided to dynam-
ically schedule the charging requests of a large carsharing fleet, modeling stochastically
the EVs’ behavior and the ASM. Actually, ABC is suitable for challenging optimization
problems since it systematically incorporates exploration and exploitation mechanisms [19].
Nevertheless, in literature, it is a common practice to overcome the disadvantages of ABC
by hybridization techniques [20]: most of the works proposing changes to the ABC algo-
rithm focus on the procedure for setting the initial populations [16] or on the local research
process [21]. Starting from these considerations, the proposed approach (h-ABC) aims to
efficiently solve the scheduling problem, by improving both the population initialization
and the local research process compared to the standard ABC.

In this regard, in studies [7,22], the authors presented a preliminary architecture to
enable the e-mobility participation in the market for the AS provision, focusing also on
the undesirable effects caused to the distribution grid. However, neither the details of
the implemented optimization algorithm nor the approach adopted to simulate EV usage
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have been reported. These aspects are described in detail in this work, also proving the
effectiveness of the proposed method by comprehensive techno-economic analyses.

3. System Model

In the present paper, Ancillary Services (ASs) are supplied to the power system by
scheduling the charging requests of a fleet of EVs managed by a carsharing operator, who
is assumed to act also as Balancing Service Provider (BSP) [23], aggregating the regulation
capacity of the fleet and offering it on the electricity market. To this purpose, the CCA
optimizes the charging scheduling and communicates with the Charging Stations (CSs)
enabling the recharge of car batteries. The purpose of the envisaged architecture is to enable
a carsharing operator to participate in the Ancillary Service Market (ASM), thus increasing
his profits, but also taking care to avoid detrimental effects on the quality of carsharing
service provided to customers.

In this scenario, schematically represented in Figure 1, at day D-1, the carsharing
operator (operating as an Aggregator) submits requests on the DAM to buy the energy
requested the next day (D) to charge the EVs. As a result, a binding day-ahead schedule
(hereinafter Power Baseline Schedule) is defined. During the relevant ASM sessions (for
instance, according to the scenario in place in Italy, 4 h before the real-time), the Aggregator
submits bids for up/downward reserve, which are selected by the Transmission System Op-
erator (TSO) through a pay-as-bid approach and, if accepted, are notified to the Aggregator
shortly before the real-time (i.e., 15 min in advance). The combination of DAM and ASM
schedules is defined as Power Request Schedule, which represents a commitment toward
the market that the Aggregator must respect; otherwise, it is penalized by imbalance fees.
In the real-time, EVs are used by carsharing customers. Each user at the end of the rent
could connect the car to one of the CSs over the city, or park it in a public spot without a CS.
When the EV is plugged into a CS, the CCA optimizes the initial charging time to meet the
market commitments, while preserving the final battery’s State of Charge (SoC) according
to a deadline defined by the carsharing operator.
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Figure 1. Scenario of application of the proposed scheduler.

To assess the performances of the proposed scheduler, in this work, suitable numerical
tools have been developed to model the participation of the carsharing operator in the
electricity markets (i.e., DAM and ASM) and to simulate cars’ usage by users. An in-depth
description of these tools is provided in the following subsections.

3.1. Electricity Market Participation

In the DAM, the Aggregator purchases the Power Baseline Schedule, which defines for
every hour of the day D the amount of power P0(t) that should be absorbed to charge the
EVs’ fleet. An accurate forecast of energy requirements for the next day is essential since a
mismatch between the power actually absorbed in real-time and the scheduled one implies
an economic penalty (i.e., imbalance fee). The development of forecasting algorithms is
out of the scope of this work; thus, a simplistic approach is adopted to estimate future
power withdrawals from the grid, based on the persistence model [24]. In the session of the
DAM on the day D-1, the Power Baseline Schedule is forecasted, assuming as a reference
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the profile of charging requests registered on the previous day (D-2). In particular, the
Power Baseline Schedule (P0) is defined, assuming all the charging requests at day D-2 are
satisfied as soon as the EVs were connected to the CS:

P0(t) =
ND−2

req (t)

∑
i=1

Pi,D−2
chg (t) ∀t ∈

→
TD (1)

where
→
TD is the vector of all time steps in day D, while ND−2

req (t) and Pi,D−2
chg (t) are, respectively,

the number of EVs charging at time t and the power absorbed by the i-th EV.
Then, during the ASM sessions, the Aggregator submits bids for upward and down-

ward reserve. In case of acceptance, AS requests (PAS) are notified 15 min before the
real-time as power variations with respect to the Power Baseline Schedule, as defined in
Equation (2), where a load sign convention is adopted:

Preq(t) = P0(t) + PAS(t) (2)

Hence, in the real-time, the CCA will adjust the power absorption of the EVs by schedul-
ing their charging, in order to meet the corresponding Power Request Schedule (i.e., Preq).

3.2. Vehicle Model

The performance of the proposed CCA is evaluated by a carsharing usage model, realis-
tically reproducing the common behavior of customers. A fleet composed by Ntot

f leet EVs is
simulated, adopting a stochastic approach aware of the city topology, as in [25]. The approach,
schematically presented in Algorithm 1, simulates each vehicle of the fleet, denoted by id
(∀id ∈ Nfleet = [1, Ntot

f leet]), in an arbitrary number of days (∀d ∈ Nday =
[
1, Ntot

days

]
).

For each EV, firstly, the total number of daily rent requests (nid,d
rent ) is extracted from a

normal integer distribution, with a mean value equal to 4. Then, the EV usage in each rent
(∀r ∈ [1, nid,d

rent]) is defined by extracting the initial time (tr,id
in ), the duration of the rent (∆tr,id

rent)
and the distance covered (∆dr,id

rent). All these data are obtained from statistics based on the
actual carsharing usage in Italy, as described in Section 5. Incoherent rents are discarded
(line 9 of Algorithm 1). At the end of the rent, the customer can choose to plug the EV
into one of the CSs dispersed in the city or to park it in a public car park without a CS. To
model this decision, a biased Boolean extraction is performed, assuming that one out of
four customers will plug the EV into the CS, so that each EV is charged, on average, once
per day. If the user opts to connect the EV to a CS, from the set of all CSs distributed in
the city, denoted by CS, only the ones far from the initial position (dcs−int) less than the
distance covered during the rent (i.e., dcs−int < ∆dr,id

rent) are considered. Finally, one of these
admissible CSs (CSid

adm) is randomly selected:

CSid
adm ∈

{
CS ∪ (dcsint < ∆dr,id

rent)
}

(3)

This way, the motion of each EV in the fleet is simulated, tracking its path in the city
and updating the relevant SoC:

SoCr,id
CS,con = SoCr,id

int − ∆dr,id
rente

id
cons/Cid

brt (4)

where SoCr,id
int is the SoC of the EV before the rent, eid

cons and Cid
btr are, respectively, the

average energy consumption per kilometer and the battery capacity for the id-th EV. Once
the EV is plugged in, the CS collects the relevant SoC (SoCr,id

CS,con), charging power (Pid
chg)

and charging deadline time (Did,r
time). Coherently with the market dynamics rules, a quarter

of hour resolution has been adopted (τ = 0.25 h) for simulating the car behavior: therefore,
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every 15 min, data of new EVs connected to the CSs are collected and sent to the CCA,
which sets the initial charging time by solving the optimization process.

Algorithm 1. Fleet Modeling

1: for d = 1: Ntot
days do

2: for id = 1: Ntot
f leet do

3 : nid,d
rent ← number of rents

4: for r = 1 : nid,d
rent do

5: tr,id
in ← starting rent time

6: ∆tr,id
rent ← rent duration

7: ∆dr,id
rent ← distance covered

8: vr,id = ∆dr,id
rent/∆tr,id

rent ←mean speed during rent
9: if vr,id > vMAX or tr+1,id

in > Did,r
time

10: go to line 5
11: end if
12: rndCS ← Boolean extraction (if TRUE, an EV is connected to a CS)
13: if rndCS = TRUE
14 : select the arrival CS from the set of CSid

adm
15: end if
16: end for
17: end for
18: end for

4. Optimization Problem

The CCA deals with a dynamic scheduling optimization problem, because the EVs’
charging requests and the relevant characteristics at the arrival are not known in advance.

Therefore, at each time step (∀t ∈
→
t tot =

[
1, Ntot

days·
24
τ

]
), the CCA shall perform an optimiza-

tion based on its best knowledge of the problem. In this work, to improve the capability of
the CCA to find the optimal scheduling, a forecast is implemented to predict the charging

requests in the upcoming time steps (
→
T f) and to plan consequently the EVs’ charging in the

next future. The optimal solution found in the current time step (t0) depends also on the
forecasted future events (i.e., charging requests). Hence, during each optimization process,
performed at the time t0, a moving time window is considered, including the present time

and the time steps in the next hour (
→
T f):

→
t opt = [t0,

→
T f] = {t0, t0 + τ, . . . , t0 + 4τ} (5)

The number of EVs expected connecting in upcoming time steps (Nexp(t f ) ∀t f ∈
→
T f)

and the relevant characteristics (SoC, rated power, etc.) are predicted based on historical
data, while the same information for EVs already connected at the time t0 is known. Finally,

in each time step t (∀t ∈
→
t tot), the instance Pt is defined, including the set of all EVs

(predicted or already connected) whose charging time should be optimized.

The optimization problem aims at minimizing, in each time step (∀t ∈
→
t opt), the costs

for the Aggregator:
Fobj(t) = Costimb(t) + Costdln(t) (6)

The first term, Costimb(t), models the imbalance fees applied to the Aggregator in the

considered time window (
→
t opt) in case of mismatches between the actual power absorbed
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from the network and the power schedule resulting from the participation in DAM and
ASM sessions:

Costimb(t) =
∀topt∈

→
t opt

∑
topt

cimb
a(topt)

τ

∣∣Pabs
(
topt
)
− Preq

(
topt
)∣∣ (7)

Imbalance costs are assumed proportional to the amount of energy imbalance, there-

fore, cimb is a unitary imbalance fee (EUR/MWh) and the function a(
→
t opt) is a hyper-

parameter that weighs the foreseen imbalances with respect to the current one, having

a(to) = 1 and a
(
topt
)

< 1 for topt > t0 ∀topt ∈
→
t opt. Finally, Preq is the Power Request Schedule

defined in Equation (2) and Pabs is the power absorbed by the CSs, calculated using:

Pabs
(
topt
)
=

Nchg(topt)

∑
ev=1

Pev
chg ∀topt ∈

→
t opt (8)

where Pev
chg is the power absorbed by the ev-th vehicle and Nchg

(
topt
)

is the total number of
EVs scheduled to charge in time step topt. For the sake of simplicity, a constant charging
power is assumed (hypothesis usually true for the slow charging strategy commonly
adopted for low-cost carsharing EVs).

The second term of the objective function (Equation (6)) is addressed to preserve the quality
of the carsharing service. It assumes that the carsharing operator’s loss of profit is proportional
to the reduction of the EVs’ range autonomy caused by an incomplete battery charging:

Costdln(t) = cdln

∀ev∈Pt

∑
ev

Errev
dln (9)

with {
Errev

dln = 0 i f stev + ∆tev
chg ≤ Dev

time
Errev

dln = stev − tev
in i f stev + ∆tev

chg > Dev
time

(10)

∆tev
chg =

(
SoCFin − SoCev

CS,con
)
·

Cev
btr

Pev
chg

(11)

where cdln is the cost associated with a unitary (15 min) postponement of the charging,
which results in a reduction of the SoC at the CS disconnection. Errev

dln is a parameter
different from zero if the proposed initial charging time (stev) does not allow reaching the
maximum SoC expected before the disconnection in the time step Dev

time. The charging
duration (∆tev

chg) is calculated with Equation (11), where Cev
btr is the battery capacity and

SoCFin and SoCev
CS,con are, respectively, the SoC to achieve during the charging (i.e., assumed

equal to 1) and the battery SoC when the vehicle is plugged into the CS, obtained by means
of the carsharing model described in Section 3.

It is worth noting that the adoption of the moving time windows technique in the optimiza-
tion process allows obtaining a solution (optimal EVs’ charging schedule) which is a function of
the future events (i.e., power variations due to AS requests in the imminent future).

The optimization problem, formulated as follows, should be solved in all time steps

(∀t ∈
→
t tot), updating at each step the EVs’ data and the Power Request Schedule:

Min Fobj(t) ∀t ∈
→
t tot

stev ∀ev ∈ Pt (12)

subject to
tev
in ≤ stev ≤ Dev

time ∀ev ∈ Pt (13)
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Pabs
(
topt
)
=

Nchg(topt)

∑
ev=1

Errev
dln ∀topt ∈

→
t opt (14)

Preq(t0) = P0(to) + PAS(t0) (15)

Preq

(
t f

)
= P0

(
t f

)
∀t f ∈

→
T f (16)

0 < SoCFin ≤ 1 ∀ev ∈ Pt (17)

The objective function in Equation (12) should be minimized by optimizing the ini-
tial charging time (stev) of each EV in the considered instance

(
∀ev ∈ Pt). Constraint in

Equation (13) specifies the lower and upper bounds of the charging time for each EV,
while constraint in Equation (14) defines the power absorbed by the Aggregator during the

considered time window (
→
t opt). Equations (15) and (16) determine, respectively, the Power

Request Schedule in the current time step (t0) and in the upcoming ones (
→
T f). Finally, the

constraint in Equation (17) models the physical limits of the EV’s battery.
To solve the described optimization problem, in this paper, a hybridization of the ABC

algorithm (h-ABC), is proposed.

5. The h-ABC Approach

The Artificial Bee Colony is a population-based Meta-Heuristic algorithm inspired
by the foraging behavior of bees. It is a swarm-based optimization method, so the NFS
different solutions are simultaneously evaluated and improved, thanks to the iteration
of three phases: employed, onlooker and scout ones [26]. ABC is based on a random
scattering of the initial solutions and then the reiteration of a searching process, which is
designed without considering the nature of the problem (pseudo-random research). This
can negatively affect the computational effort to find the optimal solution, a key parameter
in large-scale dynamic problems. Therefore, in this work, the ABC is improved by deeply
revising two phases: (1) the definition of the initial solutions; (2) the research process during
the employed bee phase.

5.1. Initial Population

The standard ABC algorithm initializes each candidate solution (∀p ∈ [1; NFS]) by
randomly arranging them in the allowed domain (i.e., meeting the constraints).

In the h-ABC approach, two phases are implemented to define the initial solutions:
firstly, the charging order of EVs is defined in each initial solution by dispatching rules, and
then, a tournament selection mechanism is applied. Indeed, Meta-Heuristic algorithms,
such as ABC, have been found to be more effective if the initial population is selected by
sub-optimal scheduling rules (i.e., first-in first-served approach, etc.) [27]. The dispatching
rules adopted are:

1. Due to Time (DtT) in which the charge priority is computed considering the difference
between Dev

time and ∆tev
chg.

2. Arrival Time (AT) in which the EV charge priority is determined considering a first-in
first-served approach.

The charging order vector for each initial solution (vp ∀p) is defined by the following
procedure: firstly, the EVs not yet added to the initial solution are sorted using a dispatching
rule (i.e., DtT or AT), then a tournament selection is applied to select h individuals from
the sorted vector, adding to the charging order vp the best of these h individuals. One-half
of the initial solutions are initialized by each dispatching rule and, to further increase the
population diversification, the tournament size is decreased after the definition of each
charging order.
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5.2. Employed Bee

After the initial population definition, both in ABC and h-ABC, an iterative process
starts. The first step (employed bee) performs local research around each solution p
(∀p ∈ [1; NFS]). In the ABC, the local research process initializes a new candidate solution

(
→
e p) in the neighbor of the current one (

→
st

p
), adopting Equation (18) [28]:

eev,p = stev,p + Φ ·
(

stev,p − stev,k
)

(18)

where ev and k are randomly chosen indexes with ev ∈ Pt and k ∈ [1; NFS] and k 6= p.
Φ is a random number between −1 and +1, extracted from a uniform distribution. Then,
between the new candidate solution and the old one, a greedy selection process is carried
out and, in case of objective function’s improvement, the old solution is replaced with the
new one.

The research process adopted in h-ABC relies on a more advanced heuristic research.
The approach (Algorithm 2) can be subdivided into two phases. In the first phase, each term
of Equation (7) is inspected and the one with the highest contribution is selected as the critical
one (tcrit). Then, in the second phase, the algorithm evaluates if, in tcrit, a surplus or a lack
of power absorbed with respect to the requested one occurs. If the power absorbed exceeds
the requested one (Pabs(tcrit) > Preq(tcrit)), the EV having the minimum tardiness, defined in
Equation (19), among all the ones scheduled to charge in tcrit, is selected. Then, its recharge is
postponed in a time step tpost, with tpost > tcrit, having a non-negative imbalance. In absence of
a time step tpost satisfying both tpost > tcrit and the imbalance sign constraint, the selected EV

is simply postponed in tcrit + 1. Indeed, a(
→
T f) is a decreasing function, therefore, by shifting

forward in the future the imbalance, the objective function in the current time step is reduced.
This approach is justified considering that in upcoming time steps, the new connected EVs
and possible changes in the Power Request Schedule could eliminate foreseen imbalances.
In the opposite case, if Pabs(tcrit) < Preq(tcrit), the tardiness of the EVs whose charging is

scheduled in topt > tcrit ∀topt ∈
→
t opt is evaluated; the EV with the maximum tardiness is

selected and its charging time is set to tcrit. Obviously, during the EV selection, the constraints
defined in Equation (17) shall be respected.

tardev = Max
(

0; stev + ∆tev
chg − Dev

time

)
∀ev ∈ Pt (19)

Algorithm 2. Heuristic research

1: for p = 1: NFS do
2: tcrit ← time step with the highest Costp

imb
3: if Pp

abs(tcrit) > Preq(tcrit)

4: find ev such that stev,p = tcrit and select the one with Max(tardev)

5 : tcrit ← Pp
abs
(
tpost

)
< Preq

(
tpost

)
and tpost > tcrit

6: stev,p= tpost
7: else
8: find ev such that stev,p = tcrit and select the one with Min(tardev), so stev,p = tcrit
9: end if
10: end for

5.3. Onlooker Bee

The onlooker bee phase is designed to further explore promising regions of the domain
by the sharing of information between different solutions. This phase is implemented in
the same way in ABC and h-ABC. Firstly, a fitness function is calculated for each solution
( f itp ∀p) as the inverse of the corresponding objective function. Then, the probability
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distribution function shown in Equation (20) is used to perform a roulette wheel selection,
which associates each onlooker bee (∀o ∈ [1; NFS]) to different solutions (∀p ∈ [1; NFS]):

Prbp =
f itp

∑p f itp
∀p ∈ [1, NFS] (20)

To initialize a new solution (
→
v

o
chg) around the corresponding solution p extracted in

the roulette wheel process, Equation (18) is once again applied. Finally, the new solution
and the old one are compared through a greedy selection process, keeping the best one.
To better control the exploitation of the domain, the parameter Limp is introduced: it is
initialized to zero for all the solutions and each time an onlooker bee does not improve the
current solution (p), Limp is increased by one.

5.4. Scout Bee

The last phase in both ABC and h-ABC is the scout bee: it is activated when the
parameter Limp reaches a fixed upper bound (LimMAX). If this occurs, the algorithm
considers the area of the domain around the solution p fully exploited, discards it and the
solution is replaced with a new one, randomly generated.

5.5. Convergence Criteria

In the ABC, the three phases are iteratively repeated until a maximum number of
iterations (Nmain); then, the solution with the lowest value of the objective function is selected
as the optimal one. In h-ABC, a more advanced stopping criterion is introduced in addition to
the one just described: after a fixed number of iterations (Ncyl,min), the objective function trend
is analyzed. If the populations do not improve their objective function for a given number
of iterations (empirically set to 5 in the numerical analyses that follow), the iterative process
stops, avoiding the unnecessary computation of cycles not improving the solutions.

When the convergence criterion is reached, the EVs’ charging schedule with the lowest
objective function value is adopted: EVs with stev = t0 will immediately start the charging,
whilst the charging of the remaining ones (stev > t0) will be rescheduled in the optimization
performed in the next time steps by considering possible updates to the connected EVs and
to the Power Request Schedule.

6. Case Study

In this work, the participation of a carsharing operator, acting as an Aggregator by
selling the EVs’ flexibility on the Ancillary Service Market, has been reproduced through
the historical data collected on the Italian ASM in 2018. To this purpose, all the bids
submitted to the ASM by three conventional Power Units for balancing and tertiary reserve
have been considered in terms of offered and awarded power and prices. Data have been
processed to remove periods without offers (maintenance stops, etc.) and scaled to match
the EVs aggregate’s rated power. Finally, to generalize the market requests delivered to the
Aggregator, the pool of AS requests has been extended by sampling the historical market
data in groups of 7 consecutive days and randomly combining them together.

For the evaluation of the economic flows deriving from the market participation, the
following scheme is adopted. In the case of imbalances between the Power Request Sched-
ule and actual absorbed power (Pabs), an imbalance penalty is applied to the Aggregator.
If Pabs > Preq, the power surplus (not declared in the DAM) is paid by the Aggregator
pDAM + cimb, where pDAM is the price cleared in the DAM and cimb is the imbalance fee.
Vice versa, if Pabs < Preq, the power not absorbed by EVs is refunded to the Aggregator
at price pDAM − cimb. Therefore, in each time step in which the power schedule (Preq) is
not fully respected, the Aggregator is subject to an imbalance cost (Cimb) calculated as
Cimb = cimb

∣∣Pabs − Preq
∣∣. For the sake of simplicity, pDAM and cimb are taken constant and

respectively equal to 50 EUR/MWh and 80% of pDAM (cimb = 40 EUR/MWh).
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Concerning the AS provision, in the case of upward regulation (i.e., reduction of the
power absorbed), the Aggregator is paid pDAM + pAS, to refund the energy purchased
in the DAM not absorbed and to remunerate the AS supplied (pAS). For downward reg-
ulations (i.e., load increase), the Aggregator pays pDAM − pAS, the difference between
the cost related to the energy absorbed but not declared in the DAM (pDAM) and the AS
remuneration (pAS). Hence, the net revenues for the Aggregator from the AS provision
(RAS) are calculated as a product between energy awarded in the ASM and its unitary
reward (pAS). Assuming the economic neutrality of the TSO, the AS remuneration (pAS)
has been set equal to cimb, since, as general principle, the imbalance fees applied to users
should reflect the costs covered by the system to purchase on the market the ASs required
to correct the mismatches between expected and actual power exchanges [29].

The usage of each EV in the carsharing fleet is simulated considering the stochastic
model described in Section 3. The statistical parameters adopted are based on the real data
of carsharing usage in Milan collected during the weekdays of 2018, shown in Figure 2 and
Table 1. EVs involved in the fleet are assumed to having Pid

chg, Cid
btr and eid

cons respectively
equal to 7 kW, 40 kWh and 0.2 kWh/km [25]. These hypotheses are coherent with the
scenario under analysis: a carsharing fleet composed, for technical and economic reasons,
by low-cost EVs having similar characteristics.
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Table 1. Statistics adopted to simulate the carsharing usage.

Variable Modeled Distribution and Parameters Adopted

Rent duration (∆trent ) (min) Gamma distribution
k = 2.98 θ = 5.51

Rent turnover (nrent ) (rents/day) Integer normal distribution
µ= 4 σ = 1

Distance covered (∆dev ) (km) Log-logistic
µ = 1.49 θ = 0.43

The profitability of the CCA is evaluated by a holistic approach, taking into account
also the possible detrimental effects on the carsharing service’s quality. According to data
collected about the real carsharing usage in Milan, the distance covered between two
charging stops is, in 99% of cases, lower than 100 km (rngmin). To ensure this autonomy,
considering the technical characteristics previously presented, the EVs shall leave the CSs
with a SoC ≥ 0.5. Assuming that the carsharing operator revenues are proportional to
the distance traveled by each EV, it is possible to conclude that each time an EV with an
autonomy (rngv) lower than the minimum autonomy (rngmin) is rented, the Aggregator
has a loss of profit clost(rngmin − rngv), where clost is the operator’s net profit per kilometer
covered by the customer. This fee is estimated by subtracting from the carsharing tariff crent,
set equal to 0.28 EUR/min [30], the operator’s costs (i.e., electric bill, taxes, maintenance
costs, etc.). As gross estimate, clost is set equal to 0.3·crent. A similar approach has been
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applied to define cdln in Equation (9). In Section 8, a sensitivity analysis on crent and cimb is
presented to evaluate the impact of these parameters on the Aggregator’s profits.

7. ABC/h-ABC Comparison

The ABC and h-ABC algorithms require a preliminary tuning to set the value of the
optimization’s parameters (i.e., NFS, Nmain, LimMAX), considering the trade-off between
quality of the solution reached and time required to find it [27]. To this purpose, an upper
limit of 60 s has been adopted for the computational time, since in real-life when an EV
is connected to a CS, its charging can start only after that the optimal schedule has been
identified by the CCA. The optimal parameters for the two algorithms, obtained in output
to the tuning process, are shown in Table 2.

Table 2. Optimal hyper-parameters found for the two algorithms.

Algorithm Parameter
Optimal Value Found

ABC h-ABC

N◦ main algorithm iteration (Nmain ) 200 260
N◦ candidate solution (NFS ) 30 22

Scout bee limit (Limmax ) 150 100

To test the effectiveness of the hybridizations proposed in the h-ABC, a comparison
with the standard ABC approach is performed. To this purpose, the participation in the
ASM of a carsharing fleet, composed of 1600 EVs, is simulated over a 3-month period.
During the test, the performance of the two algorithms in finding the optimum is evalu-
ated on almost 9000 optimization runs, using the parameters shown previously. For the
comparison, in each time step, the value assumed by the objective function Equation (6)
has been normalized with respect to the value obtained in the same time step at the end
of the optimization process by the best performing algorithm (ABC or h-ABC). Finally,
the average value of the objective function evaluated on all the populations for the two
algorithms in each time interval has been calculated.

According to Figure 3, despite the lower number of initial populations (NFS), the
h-ABC algorithm is capable to initialize solutions having objective function, on average,
98% lower than ABC method, thanks to the dispatching rules and the tournament selec-
tion procedure implemented. Additionally, regarding the value reached by the objective
function for the optimal solution, the h-ABC outperforms the standard ABC, since the
former is able to approach the optimal value much faster than the latter and, on average,
the best value found by h-ABC is almost 50 times lower than with ABC. The effectiveness of
h-ABC approach is also proved through a statistical analysis of the minimum value of the
objective function reached in each instance by the two algorithms. Firstly, a Shapiro–Wilk
test is performed to confirm the non-normality of the data, then, a paired Wilcoxon signed
rank test is applied to evaluate whether the proposed approach performs better than the
standard ABC. Adopting a Wilcoxon test with a confidence level of 1%, the resulting p-value
is lower than 1 × 10−30. Hence, it is possible to conclude, with high statistical confidence,
that the proposed methodology outperforms the standard ABC.

In order to better appreciate the complexity of the proposed charging scheduling and
the number of variables involved during each optimization process, an example of charging
profile optimized by h-ABC is shown in Figure 4. Each rectangle represents an EV in charge:
therefore, the power absorbed in each time step is the total height of the rectangles, while the
Power Request Schedule is the black dotted line. As one can observe, the power requested
is almost always overlapped with the absorbed one, therefore, the imbalances experienced
are nearly negligible. The black rectangles represent EVs not reaching the maximum SoC
within the deadline set by the carsharing operator. It is important to point out that, even if
these EVs are not fully charged, the SoC achieved is usually enough to cover the distance
required by carsharing users. A further investigation on the performances obtainable by
the h-ABC is provided in the next section.
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8. Numerical Results

Once having proved the better performance of h-ABC approach compared to ABC,
in this section, the techno-economic feasibility of the proposed scheduler is evaluated
by simulating the behavior of a carsharing fleet with 1600 EVs over a 30-day period.
Simulations are repeated 18 times, randomly changing the EVs’ usage and AS requests,
therefore obtaining a total of 540 simulated days and 51.840 optimization runs. The scenario
with the CCA (in the following, Sch scenario) is compared to the scenario currently in place
for the e-mobility (No Sch scenario), in which EVs are charged as soon as they reach the
CS, without neither charging scheduling nor provision of ASs to the grid. To make the No
Sch and Sch scenarios fully comparable, the same EVs’ behavior is applied in both cases.
Thus, the average energy absorbed is the same and equal to 7.94 MWh. The comparison
is performed according to three aspects: (i) imbalances; (ii) AS supplied; (iii) carsharing
service quality.

Concerning the first quantity, Figure 5 presents the distribution of the normalized
daily imbalance, Imb%(D), defined in the two scenarios using Equation (21):

Imb%(D) =
TD

∑
t

∣∣Pabs(t)− Preq(t)
∣∣

Eabs(D)
(21)
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The numerator of Equation (21) represents the total imbalance in the day D, while the
denominator, Eabs(D), is the total daily energy absorbed by the aggregate. As shown in
Figure 5, the CCA allows drastically cutting down the imbalance, obtaining Imb%(D) < 1%
in the 64% of simulated days and reducing the average imbalance from 17.3 to 1.3% (see
dotted vertical lines in Figure 5). Figure 6 shows the comparison between the Power
Schedule and the powers absorbed in the Sch and No Sch scenarios. The data refer to
2 days in August. Despite the uncertainties that characterize the EV’s charging requests,
the proposed architecture is capable of avoiding power imbalances, exchanging with the
grid the power declared in the DAM (Power Request Schedule).
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The statistical distributions of simulated AS requests are presented in Figures 7 and 8.
On average, ASs are requested to the Aggregator in 40.6% of time steps and in 79.2% of
cases these are downward requests. Figure 7 reports the PDF of the ratio between the
requested power variation due to the AS and the average power absorbed (Pabs) by the
aggregate (0.33 MW), while Figure 8 shows the PDF of the duration of dispatching orders
(in hours). The ASs activated by the TSO during 3 days in August are depicted in Figure 9.
It is possible to notice long upward activations (up to 8 consecutive hours) and large power
variations (up to 26% of Pabs).
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To prove the capability of the proposed CCA to supply ASs, the amount of imbalance
that occurred in time steps when the Aggregator is selected for AS provision (tAS) has been
also analyzed. On average, in 85.4% of cases, a zero imbalance is registered during the
AS provision (median value equal to 94%) and, for the remaining time, the imbalance is
higher than 5% of the corresponding AS requests (Imb(tAS) > 0.05 ·PAS(tAS)) only in 10%
of cases, with a median value equal to 6%. This result has been achieved thanks to the
implementation of the approach based on Equation (7), which allows to schedule the EVs’
charging also according to the AS requests expected in the upcoming time steps.

The effects of EVs’ scheduling on the quality of the carsharing service must be also
evaluated, because an excessive postponement of the recharge could cause that the vehicles
are rented before a full SoC is achieved, resulting in a lower autonomy. Table 3 reports
the percentage of vehicles leaving the CS fully charged or with SoC (SoCout) lower than
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a given threshold. It can be noticed that the CCA affects almost negligibly the quality of
the carsharing service offered, since the probability to rent a vehicle with SoC < 0.5 (corre-
sponding to the minimum autonomy threshold presented in Section 5) is only marginally
increased by the scheduling.

Table 3. Cumulated PDF of EVs’ SoC when disconnected from a CS.

Scenario P (SoCout = 1) P (SoCout < 0.9) P (SoCout < 0.8) P (SoCout < 0.7) P (SoCout < 0.6) P (SoCout < 0.5) P (SoCout < 0.4)

No Sch 90.1% 5.4% 2.4% 1.1% 0.5% 0% 0%
Sch 85.0% 6.5% 2.9% 1.3% 0.6% 0.04% 0.02%

The loss of profit on day D for the carsharing operator can be calculated by Equation (22),

where
⇀

SD collects the EVs scheduled in the day D:

Crent(D) = clost ·
v∈
→
SD

∑
v

max(0; rngmin − rngv) (22)

Finally, it is possible to calculate the daily electricity bill (CBill) as the product between
the total energy absorbed by the EVs (Eabs) and the energy price (pDAM). Concerning the
imbalance cost (Cimb) and the revenues from the AS provision (RAS), they are computed as
presented in Section 6.

Table 4 reports the economic outcomes for the two scenarios, normalized with respect to the
mean daily total cost for the Aggregator obtained without the CCA (CNo−sch

tot = CBill + Cimb),
on average equal to 454.5 EUR/day. In the No Sch scenario, the loss of profit due to the decrease
in EV autonomy (Crent) and the AS remuneration are equal to zero. In the Sch scenario, the
proposed architecture allows reducing the total daily cost by about 14.3%, thanks to the reduction
of imbalance cost (56.1 EUR/day in the No Sch scenario and 4.14 EUR/day in the Sch one) and
the AS revenues, roughly equal to 15 EUR/day (on average, −3.3% of CNo−sch

tot ). Moreover,
analyzing the impact of the CCA on the carsharing service, it is possible to conclude that it is
negligibly affected, because the corresponding costs (Crent) are increased only by 0.4%.

Table 4. Economic results of the No Sch and Sch scenarios (in % w.r.t. the total cost of the No Sch
scenario; negative values are actually incomes).

CBill,% Cimb,% RAS,% Crent,% ∆Cost%

No Sch mean (%)
(Max; std)

87.7%
(98.5; 14.0)

12.3%
(55.7; 7.3) - 0%

(0; 0) 100%

Sch Mean (%)
(Max; std)

87.7%
(97.5; 10.1)

0.9%
(7.6; 1.3)

−3.3%
(11.5; 2.8)

0.4%
(4.0; 0.6) 85.7%

The tests are then repeated in two other case studies, characterized by different sizes
of the carsharing fleet, respectively equal to 800 and 3200 EVs. The simulations were run on
a computer equipped with an Intel Core i7-8700, 16 GiB of RAM, a Windows 10 operating
system and MATLAB R2020a. The techno-economic profitability of h-ABC is once again
evaluated, assuming as a strict requirement reaching the optimal scheduling in less than
60 s. On average, the h-ABC process took, respectively, in the two scenarios, 22.88 and
44.83 s to find the optimal schedule.

The objective function evaluation and the heuristic research (described in Algorithm 2)
are the most impacting procedures in terms of both number of operations to be performed
and computational times required. In the proposed h-ABC, similarly to other swarm-based
optimization methods, the number of objective function evaluations tends to be high: on
average 11,500 for each time step. However, this value does not grow considerably with the
increase of the fleet size (10,020 in 800 EVs case study and 14,030 in 3200 EVs case study),
while the heuristic research procedure is executed, on average, 3200 times for each time
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step, regardless of the case study analyzed. These results motivate the limited increment in
computational times observed in the case studies analyzed in this paper, where the fleet
size is increased by a factor of 4 (from 800 to 3200 EVs).

In the case characterized by a fleet of 3200 EVs, the higher number of optimization
variables (on average 250 in each run) caused reaching the upper limit for the computational
time (60 s) in 14.6% of the runs. In these runs, even if the convergence is not achieved by
the h-ABC algorithm, the solution found can be considered very near to the optimal one: as
highlighted by results reported in the next paragraph, obtained by considering also these
suboptimal runs, the h-ABC performance in the 3200 EVs case study is still very promising.

In the No Sch scenario, the average normalized daily imbalance (Imb%) amounts,
respectively, to 22.6% and 11.8% of the total absorbed energy, while with the CCA, they
are reduced to 1.4% in both cases. Comparing the quality of the carsharing service offered
to the users, it does not significantly change; the mean percentage of vehicles that leave
the CSs with SoC < 0.5 is equal, in both cases, only to 0.17%. The economic outcomes are
reported in Table 5, normalized with respect to the average daily cost obtained without the
scheduler (237.2 EUR/day in the 800 EVs case study and 883.3 EUR/day in the 3200 EVs
case study). The provision of AS allows saving, respectively, 3.1% and 3.6% of CNo−sch

tot .
Additionally, imbalance costs, which respectively account for 16.0% and 9.7% of total costs
in the scenario without CCA, are reduced to 0.5% and 1% by the scheduling. Despite
a slight increase of the loss of profit (Crent,%) in both the scenarios equal to +0.3%, the
scheduler permits a reduction of the total costs incurred by the carsharing operator of about
17.7% and 12.1% (i.e., 42.0 and 106.8 EUR/day).

Table 5. Economic profitability of the proposed CCA as a function of EV fleet size.

800 EVs 3200 EVs

No Sch Sch ∆ No Sch Sch ∆

CBill,% (%) 84.0 83.9 −0.1 90.3 90.1 −0.2
Cimb,% (%) 16.0 0.9 −15.1 9.7 1.1 −8.6
RAS,% (%) - −3.1 −3.1 - −3.6 −3.6
Crent,% (%) 0 0.6 +0.6 0 0.3 +0.3

∆Cost% (%) 100 82.3 −17.7 100 87.9 −12.1

Finally, in order to evaluate the profitability of the e-mobility scheduling under differ-
ent economic conditions, a sensitivity analysis of the coefficients of the objective function is
performed. In particular, both the values of crent and cimb used in the objective function and
in Equations (7) and (9) are varied in a range of ±25% with respect to the reference value
previously applied (i.e., crent = 0.28 EUR/min and cimb = 40 EUR/MWh). In particular,
the following steps are considered: [−25%; −15%; 0%; +15%; +25%], therefore obtaining
a total of 16 different combinations. For the sake of the sensitivity analysis, a fleet com-
posed of 1600 EVs is simulated over 200 days. The simulated days have been obtained by
changing randomly the AS market requests and carsharing users’ behavior. Subsequently,
an economic assessment is performed according to the procedure presented in Section 6,
comparing the total costs for the carsharing operator in the Sch and No Sch scenarios: to
this purpose, the quantity ∆Cost% is calculated as the difference between the costs in the
scheduling scenario and the base case, given by the electricity bill (CBill), the imbalances
fee (Cimb), the loss of profit related to the worsening of carsharing service quality (Crent),
minus the revenues from the ASM participation (RAS).

Figure 10 shows that the proposed h-ABC scheduling, in all the case studies, is able
to effectively reduce the costs compared to the No Sch scenario, allowing for savings
between 8.5% and 16% of the costs without the scheduler. It is worth noting that these
results marginally depend on the cost of the carsharing rent (crent); actually, as one can
observe in Figure 10, assuming a given imbalance cost, the economic profitability of the
h-ABC scheduler reduces only by about 2%, even when assuming a rent’s unitary cost
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increase of 50% (e.g., with cimb equal to 40 EUR/MWh, by increasing the rent cost from
0.22 EUR/min to 0.34 EUR/min, the cost reduction changes from 13% to 11.2%). Another
interesting result is related to the dependence of the economic profitability (i.e., ∆Cost%)
on the unitary imbalance cost: an increase of cimb allows the proposed CCA to be more
profitable, even if the rent cost is kept unchanged. This fact, combined with the capability
of the proposed algorithm to manage a large EV fleet, highlights how the h-ABC scheduling
method could provide even more interesting results in the future, when the penetration
of non-controllable renewable energy sources is expected to increase and, consequently,
an increase of AS remuneration and imbalance costs is also expected, pushed by greater
requests of the Ancillary Services needed to guarantee the power balance on the grid [31].
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9. Conclusions

In the present paper, a hybridization of the ABC algorithm (h-ABC) has been presented
to optimize the scheduling of the charging requests of an electric carsharing fleet. The
centralized architecture, in perspective, will enable a carsharing operator to participate
in the Ancillary Service Market by exploiting the flexibility of the EVs’ charging. This
way the economic sustainability and competitiveness of the electric carsharing service
will improve, without detrimental impacts on the quality of service provided to users.
The numerical analyses performed highlighted that the h-ABC architecture is effective
in reducing the power imbalance with respect to the commitments to the market, also
enabling a reliable provision of Ancillary Services to the grid. Additionally, considering
binding requirements for the computational time (a time limit of 60 s has been assumed), a
cost reduction (electricity bill + imbalances) between 12.1% and 17.7% has been achieved,
depending on the size of the EVs’ fleet and the forecasting error committed in estimating
the DAM power schedule. A pivotal result is also the effectiveness shown by the method
to preserve the quality of the carsharing service: a loss of profit, related to an unwanted
decrease in the EVs’ autonomy caused by the scheduling, lower than or equal to 0.6%, has
been estimated in the analyzed scenarios; therefore, it has been largely compensated by
the benefits of the approach in terms of reduction of the amount of imbalance fee and the
revenues from the AS provision.

Author Contributions: Conceptualization, D.F. and F.G.; methodology, D.F. and F.G.; software, F.G.;
validation, D.F. and F.G.; resources, D.F.; data curation, F.G.; writing—original draft preparation,
D.F. and F.G.; writing—review and editing, D.F. and F.G.; visualization, D.F. and F.G.; supervision,
D.F.; project administration, D.F.; funding acquisition, D.F. All authors have read and agreed to the
published version of the manuscript.



Energies 2022, 15, 3023 18 of 20

Funding: F. Gulotta’s position is partially funded by RSE S.p.A. within the National Research Fund
for Electric Systems in compliance with the Decree of the Italian Minister of Economic Development
on 16 April 2018.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Acronyms:
ABC Artificial Bee Colony
AS Ancillary Service
ASM Ancillary Services Market
AT Arrival Time
BSP Balancing Service Provider
CCA Centralized Control Architecture
CS Charging Station
DAM Day-Ahead Market
DtT Due to Time
EV Electric Vehicle
h-ABC Hybrid-Artificial Bee Colony
HP Hydro Power
SoC State of Charge
TSO Transmission System Operator
V1G Unidirectional Grid to Vehicle
V2G Bidirectional Vehicle to Grid
Parameters and Variables:
Cbtr Vehicle’s battery capacity
CBill Daily electricity bill cost
Cimb Daily imbalance cost
Crent Daily cost of non-fulfillment of the charging
CS Matrix containing the topology data of Charging Stations
cimb Imbalance fee
clost Fee in case of non-fulfillment of the charging
crent Carsharing tariff for the users
Did

time Charging deadline for the id-th vehicle
Eabs Total daily energy absorbed
econs Mean energy consumption of the EV
f itp Fitness function of the p-th solution
Imb% Normalized daily imbalance
Limp Exploitation value of the p-th solution
LimMAX Maximum exploitation limit
Ntot

days Number of simulated days
Nexp Number of expected EV connections in the following time steps
Ntot

f leet Number of EVs in the fleet
NFS Number of solutions simultaneously evaluated by the optimization algorithm
Nmain Maximum number of optimization iterations
nid,d

rent Number of rents during the d-th day for the id-th EV
Pt Matrix containing the connected EVs’ information
P0 Power Baseline Schedule
PAS Power accepted in the ASM
Pabs Power absorbed by the carsharing operator
Pi

chg Charging power of the i-th vehicle
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Preq Power Request Schedule
pAS Remuneration for the AS provision
pDAM DAM price
RAS Daily remuneration from the AS provision
rngmin Minimum range required by the carsharing operator
SoCr,id

int /SoCr,id
CS,con State of Charge before/after the rent

stid Initial charging time for the id-th EV (optimization variable)
→
TD Vector containing the time steps in day D
→
T f Upcoming time steps considered during the optimization process performed in t0
t Generic time step
tAS Time steps with an AS request
tin Rent starting time
t0 Current time step
→
t tot Vector containing all the simulated time steps
tard Tardiness function
∆Cost Cost variation w.r.t. the benchmark scenario
∆tr

rent Duration of the r-th rent
∆dr

rent Distance covered during r-th rent
∆tid

chg Charging time of the id-th EV
τ Time step resolution adopted
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