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Abstract: To improve the reliability and accuracy of a transformer fault diagnosis model based on
a backpropagation (BP) neural network, this study proposed an enhanced distributed parallel firefly
algorithm based on the Taguchi method (EDPFA). First, a distributed parallel firefly algorithm (DPFA)
was implemented and then the Taguchi method was used to enhance the original communication
strategies in the DPFA. Second, to verify the performance of the EDPFA, this study compared the
EDPFA with the firefly algorithm (FA) and DPFA under the test suite of Congress on Evolutionary
Computation 2013 (CEC2013). Finally, the proposed EDPFA was applied to a transformer fault
diagnosis model by training the initial parameters of the BP neural network. The experimental results
showed that: (1) The Taguchi method effectively enhanced the performance of EDPFA. Compared
with FA and DPFA, the proposed EDPFA had a faster convergence speed and better solution quality.
(2) The proposed EDPFA improved the accuracy of transformer fault diagnosis based on the BP
neural network (up to 11.11%).

Keywords: firefly algorithm; the Taguchi method; communication strategy; transformer fault
diagnosis; BP neural network

1. Introduction

Since swarm intelligence optimization algorithms were proposed, they have been
accepted by more and more non-computer researchers due to their efficient optimization
performance, especially because they do not need special information about the problems to
be optimized [1]. Their application fields have rapidly expanded to scientific computing [2],
workshop scheduling optimization [3], transportation configuration [4], combination prob-
lems [5], digital image processing [6], engineering optimization design [7] and other fields.
They have become an indispensable part of artificial intelligence and computer science.
However, compared with traditional optimization algorithms, the development history
of swarm intelligence optimization algorithms is still relatively short and there are many
imperfections. In particular, the foundation of mathematics has always been a hindrance in
its development [8]. Therefore, there are still too many problems to be explored and solved
in this field.

The Taguchi method is a robust industrial design method that is used to evaluate and
implement improvements in products, processes and equipment [9]. It is an experimental
design method that focuses on minimizing process variability or making products less
sensitive to environmental variability [10]. GA is a famous optimization algorithm [11].
The genetic algorithm has good global search ability and can quickly search out all the
solutions in the solution space, but the local search ability of the genetic algorithm is
poor and the search efficiency is low in the late evolution [12]. Chou and his associates
used the Taguchi method with the genetic algorithm (GA), which improved the quality of
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solutions [13]. Furthermore, Tsai also applied the Taguchi method to parallel cat swarm
optimization (PCSO) [14], which reduced the computational time. GA is a famous optimiza-
tion algorithm [15]. In 2011, P. Subbaraj combined the self-adaptive real-coded GA with
the Taguchi method, which exploited the potential offspring [16]. To sum up, it is a good
idea to introduce the Taguchi method into swarm intelligence optimization algorithms.
However, so far, no researcher has applied the Taguchi method to the parallel technology
or to improve the performance of FA.

The firefly algorithm (FA) was proposed by professor Xin-she Yang and simulates
the behavioral characteristics of fireflies [17]. A firefly indicates a solution to the objective
problem, and these fireflies consider light intensity and attractiveness to constantly update
their position to find potentially better solutions. The advantage of FA is that it has fewer
control parameters and is easier to implement than other algorithms [18]. Studies [17,18]
have shown that FA has excellent global optimization ability. However, it still has some
defects in concrete engineering problems, such as slow convergence speed and low solution
accuracy [19]. Therefore, many changes and improvements have been made to the original
FA algorithm to produce, for example, the Gaussian firefly algorithm (GD-FF) [20], firefly
algorithm with chaos (chaotic FA) [21], binary firefly algorithm (BFA) [22], parallel firefly
algorithm (PFA) [23], distributed parallel firefly algorithm (DPFA) [24] and so on. Among
them, DPFA was proposed by Pan in 2021. Compared with the standard FA, its solution ac-
curacy is better and its convergence speed is faster. However, the communication strategies
in DPFA are too simple, and the advantage of collaboration between groups of distributed
parallel strategies is not fully utilized. Therefore, in this study, the Taguchi method is intro-
duced into the communication strategies of DPFA, and an enhanced distributed parallel
firefly algorithm (EDPFA) was proposed. The proposed EDPFA can further improve the
convergence speed and solution accuracy of DPFA and FA, which was successfully used
for transformer fault diagnosis based on a BP neural network.

The firefly algorithm has been used to solve many multiple optimization problems,
such as the economic emission load dispatch problem [25], the mobile robot navigation [26],
the optimal overcurrent relay coordination [27] and the aeration modeling on spillways [28].
However, there are few related studies on the application of the FA to transformer fault diag-
nosis. Therefore, this study aimed to use EDPFA to investigate transformer fault diagnosis.

Power transformers are the key equipment in a power system [29,30]. In actual pro-
duction, whether the existing or latent transformer faults can be diagnosed or predicted
quickly and accurately is closely relevant to the safety and stability of a power system [31].
In the field of transformers, dissolved gas analysis (DGA) is an important transformer
fault diagnosis technique that establishes a mathematical relationship between a fault type
and fault gas [32,33]. In recent years, many algorithms and theories have been proposed
and utilized in the field of transformer fault diagnosis, including the fuzzy algorithm [34],
support vector machines [35], clustering algorithm [36] and neural networks [37]. These
methods have achieved some research results, but they more or less have some limitations,
such as easily falling into the local optimal, slow convergence and only supporting a small
amount of sample data. Therefore, this study constructed a transformer fault diagnosis
model using a BP neural network. A BP network is a mathematical model that can ap-
proximate any complex nonlinear relationship to the maximum extent and automatically
correct the parameters. However, the unreasonable initial weights and thresholds limit the
performance of a BP neural network [7]. In this study, the proposed EDPFA was used to
modify the network parameters, which had the benefits of a high diagnostic accuracy and
fast convergence.

This study applied the Taguchi method to implement the distributed parallel fire-
fly algorithm (DPFA) and proposed an enhanced distributed parallel firefly algorithm
(EDPFA). Then, this study aimed to use the proposed EDPFA in transformer fault diagnosis.
Compared with other research, the main work of this study was as follows:
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1. The distributed parallel firefly algorithm (DPFA) was implemented and then a new
enhanced distributed parallel firefly algorithm (EDPFA) based on the Taguchi method
was proposed.

2. The Taguchi method selected the better dimensions of different solutions to obtain a
new solution, which was used as a new communication strategy for EDPFA.

3. The proposed EDPFA was tested by using the CEC2013 suite and had better perfor-
mance than the standard FA and DPFA.

4. The proposed EDPFA was used to train the parameters of the BP neural network
and improve the accuracy of the transformer fault diagnosis model based on the BP
neural network.

The rest of the paper is structured as follows. Section 2 describes the original DPFA
and the Taguchi method. Section 3 introduces the Taguchi method into the original DPFA
and analyses the details of algorithm improvements. Section 4 focuses on testing the
proposed EDPFA under the CEC2013 suite and compares it with other algorithms. Section 5
implements the proposed EDPFA in the field of transformer fault diagnosis. Section 6 sums
up this paper.

2. Distributed Parallel Firefly Algorithm and Taguchi Method

This section provides a brief introduction to the original DPFA and Taguchi method.

2.1. Distributed Parallel Firefly Algorithm

The distributed parallel firefly algorithm (DPFA) was proposed by Pan and his asso-
ciates in 2021 [24]. The DPFA is an updated version of the firefly algorithm (FA) proposed
in 2007 [15]. The core idea of the DPFA is that the initial solutions are divided into some
subgroups and share the information based on different communication strategies among
subgroups after some fixed number of iterations.

2.1.1. The Mathematical Form of the DPFA

The search process of FA relates to two significant concepts: attractiveness and bright-
ness. The attractiveness exists between two fireflies and indicates the position movement
relationship between fireflies. The brightness is an individual characteristic of fireflies and
is proportional to the fitness function. The standard FA satisfies the following three charac-
teristics [15]: (1) Suppose that all fireflies can attract each other. (2) Fireflies’ attractiveness
is only related to distance and brightness. A firefly with a strong brightness will attract a
firefly with a weak brightness. (3) The fitness function determines the brightness.

The mathematical form of the DPFA is as follows:

β(r) = β0e−γ r2
ij (1)

rij =
∣∣∣∣∣xi,g − xj,g

∣∣∣∣∣ =
√√√√ d

∑
k=1

(
xi,g,k − xj,g,k

)2
(2)

xi,g(t + 1) = xi,g(t) + β
(

xj,g(t)− xi,g(t)
)
+ α
(
rand− 1

2
)

(3)

In Formula (1), β(r) represents the attractiveness of two fireflies. β0 represents the
maximum degree of attractiveness (r = 0). Because the brightness will gradually weaken
with the increase of distance and the absorption of the medium, the brightness absorption
coefficient (γ) can be set as a constant to reflect the above characteristics.

In Formula (2), rij is the Cartesian distance between two fireflies. xi,g is the i th firefly
in the g group. xi,g,k is the k th component of the spatial coordinate of firefly xi,g.

In formula (3), the value of xi,g represents the brightness of firefly xi,g. t represents the
current iteration. i = 1, 2, 3, . . . , Ng; j = 1, 2, 3, . . . , Ng. Ng represents the number of fireflies
in group g.
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2.1.2. Communication Strategies

In the DPFA, when t = nR (n = 1, 2, 3, . . .), these subgroups trigger communication
strategies. t and R represent the current iteration and the fixed communication iteration,
respectively. The DPFA has four communication strategies, namely, the maximum of the
same subgroup, the average of the same subgroup, the maximum of different subgroups
and the average of different subgroups. The core ideal of communication strategies is
to select some better solutions to replace the poorer ones in the subgroups. Different
communication strategies have different ways of selecting better solutions. Take the
maximum of the same subgroup as an example:

In strategy 1, when t = nR iterations (n = 1, 2, 3, . . .), the brightest firefly xmax,g(t)
in the same group will replace the darkest k fireflies in the same group. Figure 1 shows
strategy 1.

xmax,g(t) = Max
{

x1,g(t), x2,g(t), . . . , xn,g(t)
}

(4)

where x1,g(t), x2,g(t), . . . , xn,g(t) represent all fireflies’ positions in the gth group.
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The other three communication strategies are as follows. More details of the DPFA are
described in the literature [24].

Strategy 2: The average of the same subgroup:

xavg,g(t) =
x1,g(t) + x2,g(t) + x3,g(t) + ... + xk,g(t)

k
(5)

where x1,g(t), x2,g(t), x3,g(t), ..., xk,g(t) represent the k brightest fireflies’ positions in the
gth group.

Strategy 3: The maximum of different subgroups:

xmax(t) = Max{x1(t), x2(t), . . . , xN(t)} (6)

where x1(t), x2(t), . . . , xN(t) represent all fireflies’ positions in all groups.
Strategy 4: The average of different subgroups:

xavg(t) =
xmax,1(t) + xmax,2(t) + xmax,3(t) + ... + xmax,G(t)

G
(7)

where xmax,1(t), xmax,2(t), xmax,3(t), ..., xmax,G(t) represent the brightest fireflies’ positions
in all groups.

For more detail on the DPFA, please refer to [24]. Algorithms 1 shows the pseudocode
of DPFA.
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Algorithms 1: The pseudo code of the DPFA.

Initialize the N fireflies and divide them evenly into G groups.
1: while T < F do
2: for g = 1:G do

3: Calculate the light intensity Iig at xig using f
(

xig

)
and rank the fireflies

4: for i = 1:N/G do
5: for j = 1:i do
6: if (Ijg > Iig)
7: Move firefly i toward j in the g th subgroup in all D dimensions by using Equation (3)
8: end if
9: Evaluate distance r and update attractiveness.
10: end for
11: end for
12: if T = nR
13: Communication strategies: apply xmax,g; xavg,g; xmax; xavg to update xig in all subgroups.
14: end if
15: T = T + 1
16: end while
Output :

The global best firefly xgbest and the value of f
(

xgbest

)
.

2.2. The Taguchi Method

The Taguchi method includes two major tools: (1) orthogonal arrays and (2) the signal-
to-noise ratio (SNR) [10]. In the following, the concepts of these two tools are reviewed.

An array is said to be orthogonal if it satisfies two conditions: (1) each column rep-
resents a different level value of a considered factor and these considered factors can be
evaluated independently, and (2) each row represents a set of parameters for an experiment.
The orthogonal array can be described as

LM
(
QK) (8)

where K represents the number of columns (factors) and K is a positive integer. Q represents
the number of level values of a considered factor, where Q is also a positive integer.
M represents the number of experiments, where M = K ∗ (Q− 1) + 1.

For instance, suppose that there are three sets of solutions with four parameters in an
experiment. This means that each of the four factors can be at three levels. Then, Table 1
shows the orthogonal array L9

(
34). In the absence of the orthogonal array, if one wishes to

find the optimal combination of parameters, the total number of experiments is 34 = 81.
However, orthogonal arrays provide us with a set of just nine experiments. The orthogonal
array proposed by [12] can effectively reduce the number of experiments in the instance of
obtaining the optimal combination of parameters.

Table 1. The orthogonal array L9
(
34).

Number of Experiments
Considered Factors

A B C D

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1



Energies 2022, 15, 3017 6 of 22

The SNR tool is used to find the parameters’ optimal combination from all the combi-
nations listed. To be more specific, the SNR is used to determine the appropriate level for
each factor. The SNR can be calculated in various ways. For optimization problems, the
value of the objective function can generally be regarded as the SNR.

3. Enhanced DPFA and Communication Strategy

In the original DPFA, the four communication strategies improve the algorithm
through the group optimal solution or the global optimal solution, which has a great
influence on the performance of the algorithm [24]. However, these strategies ignore the
influence of various dimensions (parameters) in the optimal solution. Therefore, this study
extracted all the dimensions (parameters) in the optimal solution and then used the Taguchi
method to recombine the dimensions (parameters) to obtain a better solution.

3.1. Operation Strategy of the Taguchi Method

The operation strategy of the Taguchi method is described as follows:
Step 1: Choose k sets of solutions, which are denoted using the symbols x1,g,d,

x2,g,d, . . . , xk,g,d. g represents the gth group and d represents the dth dimension of the
solution space (d = 1, 2, 3 . . . , D). D represents the total number of dimensions of the
solution space.

Step 2: Each dimension of candidate solutions corresponds to a factor (the number
of factors is D). The different values of candidate solutions denote different level values
(the number of level values is k). The value of the objective function corresponding to each
candidate solution is used as an SNR to judge whether the solution is good or bad. Next, it
can combine these dimensions into a better solution (xbetter) using the Taguchi method.

Step 3: The better solution (xbetter) replaces the worst solution in the original groups.
To facilitate the reader’s understanding, the following example is given.
Given the objective function f (x) = x2

1 + x2
2 + x2

3 + x2
4, minimize it. Assume three so-

lutions: x1 = [1, 2, 3, 0]; x2 = [2, 0, 4, 3]; x3 = [3, 3, 0, 2]. f (x1) = 14; f (x2) = 29; f (x3) = 22.
Using the Taguchi method to combine these three solutions to get a better solution, Table 2
shows the results of solution combinations. According to Table 2, the best combination is
xbetter = [2, 0, 0, 0], f (xbetter) = 4.

Table 2. The results of solution combinations.

Experiment Number
Dimensions

f(x)
d1 d2 d3 d4

1 1 2 3 0 14
2 1 0 4 3 26
3 1 3 0 2 14
4 2 2 4 2 28
5 2 0 0 0 4
6 2 3 3 3 31
7 3 2 0 3 22
8 3 0 3 2 22
9 3 3 4 0 34

3.2. New Communication Strategies

In the original DPFA, the communication strategies are divided into two ways: intra-
group information exchange (strategies 1 and 2) and inter-group information exchange
(strategies 3 and 4). If the parameters of the solutions are independent, it is easier to obtain
better results with the former. If the parameters of the solutions are loosely correlated, it is
easier to obtain better results with the latter [38]. To improve the efficiency of information
exchange, the Taguchi method is used to enhance the original communication strategies.
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3.2.1. New Strategy 1

New strategy 1 follows the three steps in Section 3.1. The candidate solutions are the
best k solutions in the group. New strategy 1 is an enhanced version of strategies 1 and 2 in
the original DPFA. Figure 2 shows the new communication strategy 1.
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3.2.2. New Strategy 2

New strategy 2 also follows the three steps in Section 3.1. The candidate solutions are
the best solution in each group. New strategy 2 is an enhanced version of strategies 3 and 4
in the original DPFA. Figure 3 shows the new communication strategy 2.

3.3. The Pseudocode of the EDPFA

In the EDPFA, all initial solutions are divided into g subgroups. After the fixed
iterations, these subgroups use the new communication strategy 1 or 2 to achieve the
benefit of intra-group and inter-group collaboration. Algorithms 2 shows the pseudocode
of the EDPFA.

Algorithms 2: The pseudocode of EDPFA.

Objective function f (x), x = (x1, x2, . . . , xd);
Initializing a population of N fireflies, xi(i ≤ n);
Set the number of groups G.
17: while t < Max Generation
18: for g = 1:G
19: Calculate the light intensity Iig using f

(
xi,g

)
and rank the fireflies.

20: for i = 1:N/G
21: for j = 1:i
22: if (Ij,g > Ii,g)
23: Move firefly i toward j in the gth subgroup in all D dimensions by using Equation (3).
24: end if
25: Evaluate distance r by Equation (2) and update attractiveness using Equation (1).
26: end for
27: end for
28: end for
29: if t = nR
30: Communication strategies: apply xbetter to update the worst solutions.
31: end if
32: t = t + 1
33: end while
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4. Experiment Using the EDPFA
4.1. Test Functions and Parameters Setting

This study chose the CEC2013 suite to test the proposed EDPFA. The CEC2013 suite
included unimodal functions ( f1∼ f5), multimodal functions ( f6∼ f20) and composite func-
tions ( f21∼ f28), and their dimensions were set to 30. The search range was set to [−100, 100].
More details of CEC2013 are presented in [39,40].

This study compared the proposed EDPFA with the FA and DPFA for testing the
performance of algorithms. To assure the fairness of the experiment, 28 test functions were
evaluated with 51 runs and 500 iterations. Because the operation of the Taguchi method calls
test functions, the population size of the EDPFA was set to 94. Furthermore, the population
size of the FA and DPFA was set to 100. In the experimental comparison, the number of
function calls for all algorithms was the same. In addition, the three algorithms maintained
consistent parameter settings (α = 0.25, β = 0.2, γ = 1, G = 4). The programming was
based on MATLAB 2019a. All the simulations were performed on a laptop with an AMD
Ryzen7 2.90 GHz CPU and 16 GB RAM.

4.2. Comparison with the Original FA and DPFA

Table 3 shows the performance comparison results of the FA, DPFA and EDPFA
from the “Mean” of 51 runs. The smaller the “Mean”, the better the final result. The
experimental results of FA and DPFA on each test function were compared with the EDPFA.
The symbol (=) represents that the performance of the two algorithms was similar. The
symbol (>) represents that the EDPFA performed well. The symbol (<) represents that
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the EDPFA performed poorly. Finally, the last row of Table 3 counts the results on all
benchmark functions.

Table 3. Comparison of the EDPFA with the FA and DPFA.

Function FA DPFA EDPFA

f1 5.60 × 10−3 > 7.46 × 10−4 < 2.50 × 10−3

f2 2.49 × 107 > 1.49 × 107 < 1.72 × 107

f3 2.08 × 109 > 1.26 × 108 < 1.39 × 108

f4 6.08 × 104 > 4.54 × 104 < 6.02 × 104

f5 9.11 × 10 > 6.81 × 10 < 7.99 × 10
f6 6.92 × 10 > 4.99 × 10 < 5.06 × 10
f7 7.34 × 10 > 4.33 × 10 > 3.56 × 10
f8 2.10 × 10 = 2.12 × 10 > 2.10 × 10
f9 2.18 × 10 > 1.49 × 10 > 1.43 × 10
f10 5.07 > 1.48 > 1.47
f11 4.96 × 10 > 4.45 × 10 > 2.86 × 10
f12 4.40 × 10 > 4.34 × 10 > 1.73 × 10
f13 1.36 × 102 > 1.04 × 102 > 5.78 × 10
f14 3.65 × 103 > 3.71 × 103 > 3.63 × 103

f15 3.42 × 103 > 3.12 × 103 > 2.65 × 103

f16 9.70 × 10−1 > 1.73 > 3.48 × 10−1

f17 6.41 × 10 > 1.03 × 102 > 4.12 × 10
f18 7.96 × 10 > 9.38 × 10 > 5.21 × 10
f19 3.99 > 6.36 > 3.75
f20 1.48 × 10 = 1.48 × 10 = 1.48 × 10
f21 3.45 × 102 > 3.29 × 102 > 3.26 × 102

f22 5.12 × 103 > 3.92 × 103 < 4.40 × 103

f23 5.70 × 103 > 4.90 × 103 > 4.76 × 103

f24 2.27 × 102 > 2.10 × 102 > 2.03 × 102

f25 2.65 × 102 > 2.22 × 102 > 2.18 × 102

f26 2.77 × 102 < 2.57 × 102 < 2.99 × 102

f27 6.03 × 102 > 4.47 × 102 > 3.99 × 102

f28 2.83 × 102 < 3.01 × 102 > 2.90 × 102

〈/ = /〉 24/2/2 19/1/8 -

According to the experimental results in Table 3, compared with the FA, the proposed
EDPFA had 22 better results, 2 similar results and 2 bad results in 28 test functions. This
result shows that EDPFA had a competitive search ability and solution accuracy. Compared
with the DPFA, the proposed EDPFA had 19 better results, 1 similar result and 8 bad
results in all test functions. This showed that the EDPFA was stronger than the EPFA in
performance, and the DPFA was enhanced by the Taguchi method. However, regarding the
results for test functions f1∼ f5, the proposed EDPFA was not as good as the DPFA. f1∼ f5
were the unimodal functions. The comparison results showed that the EDPFA was not
suitable for solving the unimodal functions.

Next, to further evaluate the performances of the algorithms, the convergence curves
of the FA, DPFA and EDPFA were compared. Each curve represented the convergence of
the median value of the total 51 runs by a given algorithm, and some of them are presented
in Figure 4. Table 4 summarizes the convergence figures under IEEE CEC 2013 for the 30D
optimization. As shown in Figure 4, the proposed EDPFA could obtain a better convergence
speed in some test functions ( f5, f9, f11, f12, f13, f14, f15, f16, f17, f21, f22, f23, f24, f25, f27
and f28). However, it did not have the best convergence speed in some test functions
( f4, f6, f8, f19, f20 and f26). Furthermore, in other test functions, the three algorithms
had similar convergence performances. In general, compared with the FA and DPFA, the
proposed EDFPA was more competitive in terms of convergence performance. In addition,
the convergence effect of the FA was the worst out of the three algorithms.
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Table 4. The summary of the convergence speed comparison of the FA, PCFA and DPCFA.

Name Best (Tie Best) Performance Similar Performance

FA f6, f19
f1, f2, f3, f7, f10, f18PCFA f4, f8, f20, f26

DPCFA f5, f9, f11, f12, f13, f14, f15, f16, f17, f21, f22, f23, f24, f25, f27, f28

4.3. Comparison with Other Algorithms

This section compares the performance of the EDPFA with some famous algorithms.
All settings of the EDPFA were the same as in Sections 4.1 and 4.2.

Table 5 shows the performance comparison results of particle swarm optimization
(PSO) [41], parallel particle swarm optimization (PPSO) [42], the genetic algorithm (GA) [11],
the multi-verse optimizer (MVO) [43], the whole optimization algorithm (WOA) [44] and
the ant lion optimizer (ALO) [45] in terms of the “Mean” of 51 runs. According to the data
in Table 5, it is obvious that the proposed EDPFA performed better under the CEC2013 test
suite. Compared with PSO, PPSO, the GA, the MVO, the WOA and the ALO, the proposed
EDPFA achieved 24, 23, 24, 18, 26 and 21 better results, respectively.

Table 5. Comparison of the EDPFA with some common algorithms.

Function PSO PPSO GA EDPFA

f1 9.56 × 10 > 4.96 × 10−1 > 3.74 × 10−3 > 2.50 × 10−3

f2 7.01 × 106 < 4.06 × 106 < 1.99 × 107 > 1.72 × 107

f3 9.16 × 109 > 2.32 × 109 > 3.71 × 108 > 1.39 × 108

f4 1.63 × 104 < 1.95 × 104 < 6.39 × 104 > 6.02 × 104
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Table 5. Cont.

Function PSO PPSO GA EDPFA

f5 1.09 × 102 > 4.19 × 10 < 4.11 × 10 < 7.99 × 10
f6 9.24 × 10 > 7.51 × 10 > 7.42 × 10 > 5.06 × 10
f7 1.37 × 102 > 1.06 × 102 > 4.37 × 10 > 3.56 × 10
f8 2.10 × 10 = 2.09 × 10 < 2.11 × 10 > 2.10 × 10
f9 3.25 × 10 > 3.16 × 10 > 1.32 × 10 < 1.43 × 10
f10 7.23 × 10 > 6.43 > 1.82 > 1.47
f11 2.66 × 102 > 2.23 × 102 > 3.09 × 10 > 2.86 × 10
f12 2.61 × 102 > 2.13 × 102 > 4.28 × 10 > 1.73 × 10
f13 3.66 × 102 > 3.16 × 102 > 5.52 × 10 < 5.78 × 10
f14 4.43 × 103 > 4.15 × 103 > 4.49 × 103 > 3.63 × 103

f15 4.35 × 103 > 3.97 × 103 > 3.05 × 103 > 2.65 × 103

f16 1.30 > 1.24 > 2.45 × 10−1 < 3.48 × 10−1

f17 2.70 × 102 > 1.96 × 102 > 4.56 × 10 > 4.12 × 10
f18 2.48 × 102 > 1.93 × 102 > 7.15 × 10 > 5.21 × 10
f19 2.17 × 10 > 1.22 × 10 > 3.99 > 3.75
f20 1.45 × 10 < 1.46 × 10 < 1.50 × 10 > 1.48 × 10
f21 3.76 × 102 > 3.56 × 102 > 3.03 × 102 > 3.26 × 102

f22 5.26 × 103 > 4.91 × 103 > 5.43 × 103 > 4.40 × 103

f23 5.52 × 103 > 5.19 × 103 > 5.27 × 103 > 4.76 × 103

f24 3.00 × 102 > 2.92 × 102 > 2.32 × 102 > 2.03 × 102

f25 3.36 × 102 > 3.26 × 102 > 2.78 × 102 > 2.18 × 102

f26 3.10 × 102 > 3.00 × 102 > 3.33 × 102 > 2.99 × 102

f27 1.17 × 103 > 1.16 × 103 > 4.87 × 102 > 3.99 × 102

f28 2.73 × 103 > 1.93 × 103 > 3.02 × 102 > 2.90 × 102

〈/ = /〉 24/1/3 23/0/5 24/0/4 -

f1 3.89 × 10−1 > 2.08 × 102 > 1.49 × 10−5 < 2.50 × 10−3

f2 7.64 × 106 < 7.28 × 107 > 1.52 × 107 < 1.72 × 107

f3 4.97 × 108 > 3.04 × 1010 > 1.03 × 109 > 1.39 × 108

f4 3.45 × 103 < 9.02 × 104 > 8.17 × 104 > 6.02 × 104

f5 7.22 < 4.56 × 102 > 6.04 × 10 < 7.99 × 10
f6 3.68 × 10 < 1.84 × 102 > 6.77 × 10 > 5.06 × 10
f7 6.97 × 10 > 4.47 × 102 > 1.38 × 102 > 3.56 × 10
f8 2.10 × 10 = 2.10 × 10 = 2.10 × 10 = 2.10 × 10
f9 2.01 × 10 > 3.90 × 10 > 3.06 × 10 > 1.43 × 10
f10 1.92 > 5.17 × 102 > 8.39 > 1.47
f11 1.01 × 102 > 5.07 × 102 > 2.44 × 102 > 2.86 × 10
f12 1.06 × 102 > 5.36 × 102 > 2.03 × 102 > 1.73 × 10
f13 1.94 × 102 > 6.53 × 102 > 3.19 × 102 > 5.78 × 10
f14 3.66 × 103 > 5.95 × 103 > 4.60 × 103 > 3.63 × 103

f15 3.75 × 103 > 5.53 × 103 > 4.41 × 103 > 2.65 × 103

f16 1.29 > 1.54 > 1.08 > 3.48 × 10−1

f17 2.10 × 102 > 7.03 × 102 > 3.00 × 102 > 4.12 × 10
f18 2.07 × 102 > 6.70 × 102 > 2.38 × 102 > 5.21 × 10
f19 1.09 × 10 > 1.03 × 102 > 1.90 × 10 > 3.75
f20 1.39 × 10 < 1.48 × 10 = 1.44 × 10 < 1.48 × 10
f21 3.02 × 102 < 5.17 × 102 > 2.89 × 102 < 3.26 × 102

f22 4.13 × 103 < 6.73 × 103 > 5.50 × 103 > 4.40 × 103

f23 4.10 × 103 < 7.16 × 103 > 4.64 × 103 < 4.76 × 103

f24 2.59 × 102 > 3.16 × 102 > 2.79 × 102 > 2.03 × 102

f25 2.73 × 102 > 3.24 × 102 > 3.32 × 102 > 2.18 × 102

f26 2.95 × 102 < 4.00 × 102 > 3.40 × 102 > 2.99 × 102

f27 8.19 × 102 > 1.36 × 103 > 1.08 × 103 > 3.99 × 102

f28 3.45 × 102 > 4.76 × 103 > 1.18 × 103 > 2.90 × 102

〈/ = /〉 18/1/9 26/2/0 21/1/6 -
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5. Application for Transformer Fault Diagnosis

In machine learning, the backpropagation (BP) neural network has a strong ability to fit
nonlinear systems. It is very suitable for solving prediction and classification problems [46].
Transformer fault diagnosis is essentially a fault classification problem. Therefore, it has
been a research hotspot to introduce a BP neural network into the field of transformer fault
diagnosis [47–50]. As described in this section, the proposed EDPFA was used to train the
initial parameters of a BP neural network to improve the performance of transformer fault
diagnosis model based on a BP neural network.

5.1. Structure of Transformer Fault Diagnosis Model Based on a BP Neural Network

The steps to establish the transformer fault diagnosis model based on a BP neural
network were as follows:

Step 1: First, the characteristic gas content of transformers and the corresponding fault
were composed into a data set.

Step 2: Then, 80% of the samples in the data set were used to train the BP neural
network model. The other 20% of samples in the data set were used to test the trained BP
neural network model.

Step 3: Finally, the transformer fault classification accuracy of the test set was counted
to judge the performance of the model.

The transformer fault diagnosis data for dissolved gas in oil mainly include five fault
gases (H2, CH4, C2H2, C2H4, C2H6) and their corresponding six fault types (normal state,
NS; low-energy discharge, LED; arc discharge, AD; middle-and-low-temperature overheat-
ing, MLTO; high-temperature overheating, HTO; partial discharge, PD). Figure 5 shows the
transformer fault diagnosis model based on BP neural network.
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Figure 5. The transformer fault diagnosis model based on a BP neural network.

5.2. Structure of Transformer Fault Diagnosis Model Based on EDPFA-BP Neural Network

Even though the fitting ability of a traditional BP neural network is very strong, it
still has some inherent defects, including low accuracy and slow convergence, which can
no longer meet the requirements of a power system regarding transformer reliability [33].
The main reason is that all the thresholds and weights are randomly generated before
the training of a BP neural network. These unoptimized initial values often lead to slow
convergence and low accuracy of fault diagnosis results. Therefore, this study adopted the
EDPFA to optimize the initial value of the BP neural network to improve the performance
of the model. Figure 6 shows the transformer fault diagnosis model based on the EDPFA-BP
neural network.
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5.3. Experiment Process and Analysis
5.3.1. The Data Collection and Pretreatment

In this study, there were 465 sets of transformer fault data (including labels and
features), some of which are shown in Table 6. Table 7 shows the codes of the transformer
fault types. Figure 7 shows the sample distribution of the transformer fault types, in which
the HTO faults had the highest number and the PD faults had the lowest number. To verify
the model, 80% of the data of each fault type was randomly selected as the training set and
20% as the test set. In total, there were 375 sets of training data and 90 sets of testing data.

Table 6. Partial sample set of transformer fault diagnosis.

H2 CH4 C2H6 C2H4 C2H2 Fault Types

14.67 3.68 10.54 2.71 0.2 NS
7.5 5.7 3.4 2.6 3.2 NS
220 340 42 480 14 NS
30 110 137 52 22.3 NS
80 10 4 1.5 0 NS

46.13 11.57 33.14 8.52 0.63 NS
. . . . . .

345 112.25 27.5 51.5 58.75 LED
565 93 34 47 0 LED
550 53 34 20 0 LED

115.9 75 14.7 25.3 6.8 LED
78 161 86 353 10 LED
54 7 7.4 8.6 5.4 LED

. . . . . .
217.5 40 4.9 51.8 67.5 AD
1678 652.9 80.7 1005.9 419.1 AD
673.6 423.5 77.5 988.9 344.4 AD

60 40 6.9 110 70 AD
200 48 14 117 131 AD
46 37.2 8.3 107 71.9 AD

. . . . . .
181 262 210 528 0 MLTO
160 130 33 96 0 MLTO
4.32 193 118 125 0 MLTO
170 320 53 520 3.2 MLTO
27 90 42 63 0.2 MLTO

9259 8397 26,782 10,497 −1 MLTO
. . . . . .
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Table 6. Cont.

H2 CH4 C2H6 C2H4 C2H2 Fault Types

172.9 334.1 172.9 812.5 37.7 HTO
25.1 411.91 320.9 1832.8 18.4 HTO
56 286 96 928 7 HTO

274 376 55 1002 17 HTO
15 12 5.3 3.2 0.2 HTO
56 285 96 28 7 HTO

. . . . . .
980 73 58 12 0 PD
650 53 34 20 0 PD

1565 93 34 47 0 PD
24.32 16.36 1.67 30.18 27.47 PD

2587.2 7.882 4.704 1.4 0 PD
980 73 58 12 0 PD

Table 7. The codes of transformer fault types.

Fault Types NS LED AD MLTO HTO PD

Code 01 02 03 04 05 06

Energies 2022, 15, x FOR PEER REVIEW  18  of  23 
 

 

27  90  42  63  0.2  MLTO 

9259  8397  26,782  10,497  −1  MLTO 

……           

172.9  334.1  172.9  812.5  37.7  HTO 

25.1  411.91  320.9  1832.8  18.4  HTO 

56  286  96  928  7  HTO 

274  376  55  1002  17  HTO 

15  12  5.3  3.2  0.2  HTO 

56  285  96  28  7  HTO 

……           

980  73  58  12  0  PD 

650  53  34  20  0  PD 

1565  93  34  47  0  PD 

24.32  16.36  1.67  30.18  27.47  PD 

2587.2  7.882  4.704  1.4  0  PD 

980  73  58  12  0  PD 

Table 7. The codes of transformer fault types. 

Fault Types  NS  LED  AD  MLTO  HTO  PD 

Code  01  02  03  04  05  06 

 

Figure 7. The sample distribution of the transformer fault types. 

   

Figure 7. The sample distribution of the transformer fault types.

5.3.2. The Parameter Setting of a BP Neural Network

A BP neural network is a kind of mathematical model that can simulate complex
nonlinear relations and automatically modify parameters. In a BP neural network, there
are input layers, hidden layers and output layers. The signal first travels through the input
layer, then to the hidden layer and finally to the output layer. In the above process, the
relevant information is processed by regulating internal relations between lots of nodes.

Figure 8 shows the topological type of the BP neural network adopted in this study. The
number of inputs was 5 (five fault gases), the number of hidden layers was 12, the number
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of output layers was 6 and the number of outputs was 6 (six fault types). In addition, after
many experimental trials, this study set the iteration times and learning precision goal of
the BP neural network as 1000 and 0.0001, respectively. The activation function adopts a
sigmoid function and the BP neural network introduced error backpropagation into the
multilayer networks.
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To ensure the objectivity of the experiment process, all parameters in each transformer
fault diagnosis model were the same. The parameters to be used for the EDPFA were
consistent with Section 4.

5.3.3. Experiment Results and Analysis

Figure 9 shows the diagnosis results, which included four models (the BP neural
network, FA-BP neural network, DPFA-BP neural network and EDPFA neural network). In
Figure 9, the ordinate represents the six transformer fault types, and the abscise represents
465 sets of transformer faults. The “#” in Figure 9 represents a predicted fault type, and the
“
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” overlap, this transformer fault
was correctly predicted; otherwise, the prediction was wrong. To make the results more
intuitive, “�” represents the improved BP neural network identifies correctly, while the
original BP neural network made an incorrect identification. “4” is the opposite. Table 8
shows the diagnosis accuracy of each model.

Table 8. The accuracy of each model.

Transformer Fault Diagnosis Model Accuracy (%)

BP neural network 73.33%
FA-BP neural network 76.67%

DPFA-BP neural network 80.00%
EDPFA-BP neural network 84.44%

As shown in Figure 9, compared with other models based on the improved BP neural
network (b–d), there were more “#” faults in the unimproved BP model (a). This shows
that the transformer fault diagnosis models based on the BP neural network had poor
fault classification ability. Furthermore, it is obvious that, compared with other neural
networks, the EDPFA-BP neural network had better performance regarding fault 4 (middle-
and-low-temperature overheating), where it identified fault 4 more often. From Table 8,
the fault classification accuracy of the BP-EDPFA neural network was the highest (up to
84.44%). Compared with the other models, the accuracy of EDPFA-BP neural network was
higher by 11.11%, 6.66% and 3.34%. The recall and precision of each model are shown
in Tables 9 and 10. As shown in Table 9, the EDPFA-BP neural network had the highest
recall rate for six fault types. Especially regarding the PD fault, its recall rate reached 100%.
From Table 10, the precision of the BP neural network was the lowest, and the precision of
the EDPFA-BP neural network was the highest. This indicated that the EDPFA-BP neural
network had a better classification effect and fewer fault classification errors. From the
above three aspects, it can be concluded that the proposed EDPFA could better optimize
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the initial parameters of the BP neural network and manage the transformer fault diagnosis
model based on a BP neural network.
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Table 9. The recall of each model.

Recall (%)

Transformer Fault
Diagnosis Model NS LED AD MLTO HTO PD

BP neural network 60.00% 75.00% 84.00% 44.44% 80.65% 33.33%
FA-BP neural network 70.00% 75.00% 84.00% 55.56% 80.65% 66.66%

DPFA-BP neural network 70.00% 75.00% 88.00% 77.78% 80.65% 66.66%
EDPFA-BP neural network 80.00% 66.67% 88.00% 88.89% 87.10% 100%

Table 10. The precision of each model.

Precision (%)

Transformer Fault
Diagnosis Model NS LED AD MLTO HTO PD

BP neural network 75.00% 69.23% 77.78% 33.33% 89.29% 50%
FA-BP neural network 77.78% 69.23% 84.00% 38.46% 92.59% 66.66%

DPFA-BP neural network 77.78% 75.00% 84.62% 46.67% 100% 66.66%
EDPFA-BP neural network 88.89% 80.00% 81.48% 61.54% 100% 75.00%
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6. Conclusions

An enhanced distributed parallel firefly algorithm (DEPFA) based on the Taguchi
method was proposed and it was applied to transformer fault diagnosis. The Taguchi
method could be used to improve the effectiveness of the original communication strategies
in the DPFA, which enhanced the influence of various dimensions (parameters) in the
optimal solution. In the test functions, the implemented EDPFA achieved faster conver-
gence and could find better solutions. Compared with the FA and DPFA, the EDPFA had
24 and 19 better results. This is important for the safety and stability of a power system
to quickly diagnose and predict the existing or latent transformer faults. The proposed
EDPFA was used to train the BP neural network to implement diagnoses. The experimental
results showed that the proposed EDPFA could effectively improve the accuracy of the
transformer fault diagnosis model based on a BP neural network (up to 11.11%). However,
the EDPFA is not fully studied and there is still a lot of room for optimization, especially
regarding solving the unimodal optimization problems.
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