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Abstract: Aggregated electric vehicles (EVs) integrated to the grid and intermittent wind and solar
energy increased the complexity of the economic dispatch of the power grid. Aggregated EVs have a
great potential to reduce system operating costs because of their dual attributes of load and energy
storage. In this paper, plugged-in EV is refined into three categories: rated power charging, adjustable
charging, and flexible charging–discharging, and then control models are established separately; the
concept of temporal flexibility for EV clusters is proposed for the adjustable charging and flexible
charging–discharging of EV sets; then, the schedule boundary of EV clusters is determined under the
flexibility constraints. The interval is used to describe the intermittent nature of renewable energy,
and the minimum operating cost of the system is taken as the goal to construct a distributed energy
robust optimization model. By decoupling the model, a two-stage efficient solution is achieved. An
example analysis verifies the effectiveness and superiority of the proposed strategy. The proposed
strategy can minimize the total cost while meeting the demand difference of EV users.

Keywords: EV cluster; schedulable capability; temporal flexibility; demand difference; robust optimization

1. Introduction

With the increase of the proportion of renewable energy including wind power and
solar energy, the inherent intermittency and volatility of renewable energy pose a new
challenge to the economic dispatch of power systems [1].In addition, the number of electric
vehicles (EVs) has greatly increased due to the great potential for energy conservation and
emission reduction [2]. EVs have the dual attributes of load and energy storage, as the
charging and discharging states and power of plugged-in EVs can be adjusted flexibly
based on V2G (vehicle to grid) technology. Coordinated optimization of EVs integrated to
a grid and other distributed energy sources in the system is a powerful means to maintain
a more stable and economical operation of the power grid.

Based on the dual properties of EV load and energy storage, optimizing the charging
and discharging process of plugged-in EVs can promote renewable energy consumption [3],
maintain voltage stability [4], suppress frequency offsets [5] and reduce operating costs [6].
Reference [7] considers the combination of wind power and electric vehicles, which proves
that the power imbalance in the power system can be effectively reduced, thus improving
the safety of the power system. In addition, the proposed scheduling strategy reduces
the operating cost of the system. In reference [8], the regulation potential of active and
reactive power of EV is fully exploited, and the cooperative control strategy of electric
vehicles and distributed energy is proposed, which reduces the operating cost of power
systems and improves the stability of the node voltage. Reference [9] presents a novel
and efficient control system for the participation of plugged-in EVs in the provisioning of
ancillary services for frequency regulation.

In order to study the collaborative robust optimization strategy of EVs and other types
of distributed energy, an EV control model should be established at first for its scheduling
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optimization. Reference [10] analyzed the rules of arrival and departure times of EVs
in historical data from the perspective of user behavior patterns, established a hybrid
model on the basis of EV classification, and determined the schedulable boundary of EV
clusters. Reference [11] analyzed the idle, charging and discharging states and constructed
a hysteresis model to describe the EV charging and discharging process. In reference [12], a
virtual battery model was established from the perspective of producers and consumers to
describe the boundary constraints of the charging and discharging process. In reference [13],
only the physical constraints of EV power batteries were considered and the uncertainty of
charging time was simulated by fuzzy numbers. In reference [14], data mining was used to
analyze EV plugged-in characteristics based on a historical data set of EVs, and then the
EV load model was calculated by a fuzzy model. In reference [15], the EV control process
was divided into two stages: in the first stage, the Bee algorithm was used to calculate the
optimal charging amount of each EV, and in the second stage, a fuzzy controller was used
to distribute EV power. After reviewing the existing references, an EVs control model was
established based on the same standard to describe the physical charging and discharging
constraints of the power battery, which obviously ignores the preference of EV users.
In the actual scene, the EV user is a highly autonomous individual who dominates the
charging mode, and the unified modeling of power batteries is inevitably contradictory to
the actual scene.

In view of the intermittent characteristics of renewable energy, stochastic program-
ming [16] and opportunity constraint methods [17] are often used to deal with the un-
certainty of its output. Robust optimization as a new alternative method has obvious
advantages: closed convex sets are used for uncertain variables, and the optimization goal
is used to ensure the robust optimal solution for any point on the convex set. In refer-
ence [18], the discrete uncertainty domain was established to find a more accurate “worst
scenario” in robust optimization, and the min–max-min structural optimization model
was established to realize interactive iterative solution. Reference [19] presented a robust
optimal scheduling model for regional integrated energy systems to promote renewable
energy consumption. Reference [20] considered the uncertainty of renewable energy output,
and established a robust control model in coordination with the orderly charging of EV
clusters. Reference [21] fully considered the uncertainty of EVs and formulated an optimal
scheduling strategy, but it lacked consideration of the uncertainty of renewable energy
power and the discharging characteristics of EVs. Reference [22] focused on collaborative
robust optimization of EVs and renewable energy, proposed a robust processing method
for uncertain parameters, and converted it into a mixed integer linear programming model.
After reviewing the existing references, the collaborative robust optimization of EVs and
other distributed energy sources is not comprehensive and does not fully take into account
the discharging characteristics of EVs. In addition, when the scale of electric vehicles is
large, the efficiency of solving is difficult to be guaranteed.

To sum up, there are two deficiencies in existing research: on the one hand, there
are few synergistic studies between EV clusters and renewable energy, and there is a
lack of in-depth discussion. On the other hand, a small number of collaborative robust
optimization studies adopted a unified general EV control model without considering the
demand difference in actual scenarios, and the solution complexity is relatively high, so
there is a gap between existing studies and practical applications.

In this paper, an EV control model considering demand preference is established and
the concept of temporal flexibility of EV clusters is proposed. The interval was used to
describe the uncertainty of wind–solar output, and then the collaborative optimization
robust model of EV clusters and distributed energy was established, and the model was
decoupled into two stages to achieve an efficient solution. The establishment of an EV
control model considering demand preference can meet the differentiated needs of users
and be more consistent with the actual scene. The temporal flexibility of EV more accurately
quantifies the schedulability of EV clusters. The decoupling solution strategy of the model
greatly improves the solving efficiency.
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2. Materials and Methods
2.1. Robust Optimal Control Framework

With the expansion of EV scale, the centralized EV control mode will become more
and more complex, and EV clusters can be decentralized and optimized using the role of
electric vehicle aggregators (EVAs). A simplified diagram of the optimization architecture
is shown in Figure 1. In this paper, a collaborative robust optimization model of EV clusters
and other types of distributed energy is established. The system contains intermittent solar
and wind power energy, and EVAs carry out decentralized control of EV clusters. EVAs
gather the basic parameters and demand information of EVs, including EVs’ plugged-in
time, the initial state of charge (SOC) of the power battery, the expected SOC of departure,
the charging mode, etc. EVAs consider the temporal flexibility constraints of the EV cluster
under their jurisdiction to determine the dispatchable ability of the EV cluster. The control
center considers the uncertainty of the wind and solar output in the system, formulates the
optimal control strategy, and minimizes system operating costs by dispatching unit output,
adjusting EVA power demand, and determining renewable energy consumption.

Energies 2022, 15, 2947 3 of 23 
 

 

control model considering demand preference can meet the differentiated needs of users 

and be more consistent with the actual scene. The temporal flexibility of EV more accu-

rately quantifies the schedulability of EV clusters. The decoupling solution strategy of the 

model greatly improves the solving efficiency. 

2. Materials and Methods 

2.1. Robust Optimal Control Framework 

With the expansion of EV scale, the centralized EV control mode will become more 

and more complex, and EV clusters can be decentralized and optimized using the role of 

electric vehicle aggregators (EVAs). A simplified diagram of the optimization architecture 

is shown in Figure 1. In this paper, a collaborative robust optimization model of EV clus-

ters and other types of distributed energy is established. The system contains intermittent 

solar and wind power energy, and EVAs carry out decentralized control of EV clusters. 

EVAs gather the basic parameters and demand information of EVs, including EVs’ 

plugged-in time, the initial state of charge (SOC) of the power battery, the expected SOC 

of departure, the charging mode, etc. EVAs consider the temporal flexibility constraints 

of the EV cluster under their jurisdiction to determine the dispatchable ability of the EV 

cluster. The control center considers the uncertainty of the wind and solar output in the 

system, formulates the optimal control strategy, and minimizes system operating costs by 

dispatching unit output, adjusting EVA power demand, and determining renewable en-

ergy consumption. 

It should be noted that due to the energy storage properties of EVs, EV clusters can 

be regarded as a distributed energy storage device. When EV clusters reaches a certain 

scale, they can reduce or replace the energy storage capacity configuration of the system 

to a certain degree. Therefore, the system does not consider additional distributed energy 

storage devices. 

Conventional load

EVAn

The power flow

distributed 
generator

Intelligent 

distribution 

network

The information  flow

...Solar energy

Wind energy

 

Figure 1. Schematic diagram of system structure. 

2.2. EV Model and the Temporal Flexibility of EV Cluster 

2.2.1. Single EV Model under Demand Difference 

Differently from existing EV modeling methods, this paper establishes an EV control 

model with the demand difference of EV users. 

From the perspective of the charging and discharging state of the power battery, the 

demand difference of users can be described simply. The charging mode of any plugged-

in EV can be divided into three categories: rated power charging EV, adjustable charging 

EV and flexible charging–discharging EV. The rated power charging mode reflects the 

Figure 1. Schematic diagram of system structure.

It should be noted that due to the energy storage properties of EVs, EV clusters can
be regarded as a distributed energy storage device. When EV clusters reaches a certain
scale, they can reduce or replace the energy storage capacity configuration of the system
to a certain degree. Therefore, the system does not consider additional distributed energy
storage devices.

2.2. EV Model and the Temporal Flexibility of EV Cluster
2.2.1. Single EV Model under Demand Difference

Differently from existing EV modeling methods, this paper establishes an EV control
model with the demand difference of EV users.

From the perspective of the charging and discharging state of the power battery, the
demand difference of users can be described simply. The charging mode of any plugged-in
EV can be divided into three categories: rated power charging EV, adjustable charging EV
and flexible charging–discharging EV. The rated power charging mode reflects the desire
to minimize the time cost of the grid connection; the adjustable charging mode reflects
the user’s desire to reduce economic costs and avoid excessive loss of power batteries; the
flexible charging–discharging mode reflects the user’s desire to minimize the economic cost.

The three types of charging mode can reflect the demand difference of users. The three
types of plugged-in EVs are modeled as follows:

(1) Rated power charging EV
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For any rated power charging EV, ∀l, and ∀ t ∈ [tl,in, tl,out]:
Pl,t = Pr

c,l , Sl,t ∈ [Sl,in, Sl,ex)

0 ≤ Pl,t ≤ Pr
c,l , Sl,t ≥ Sl,ex

Sl,t = Sl,in + ∑nt ηc,l Pr
c,l · ∆t/El

(1)

For any rated power charging EV, its charging power remains at the rated power until it
reaches the expected SOC. In the above, tl,in, tl,out, Sl,in, Sl,ex, Pr

c,l , ηc,l and El are respectively
the plugged-in time, plugged-out time, initial SOC, expected SOC, rated charging power,
charging efficiency and energy storage capacity of l; Pl,t and Sl,t are the actual charging
power and SOC of l during the t period, respectively; ∆t is the unit duration; nt is the
number of time periods of tl,in → t .

(2) Adjustable charging EV
For any adjustable charging EV, ∀l, and ∀ t ∈ [tl,in, tl,out]:{

0 ≤ Pl,t ≤ Pr
c,l

Sl,t = Sl,in + ∑nt ηc,l Pl,t · ∆t/El
(2)

For any adjustable charging EV, its charging power can be flexibly adjusted between
zero and the rated power.

(3) Flexible charging–discharging EV
For any flexible charging–discharging EV: ∀l, and ∀ t ∈ [tl,in, tl,out]

−Pr
d,l ≤ Pl,t ≤ Pr

c,l
Sl,t ≥ Sl,thr, when Pl,t < 0 (3.a)
Sl,t = Sl,in + ∑nc,t

ηc,l Pl,t ·∆t
El

+ ∑nd,t

Pl,t ·∆t
ηd,l El

(3)

For any flexible charging–discharging EV, it can be in a charging state or in a discharg-
ing state. Its discharging state needs to meet the discharging threshold constraints of the
power battery, and the discharging power can be adjusted between zero and rated discharg-
ing power; when charging, it is equivalent to an adjustable charging EV. In the above, Pr

d,l
and ηd,l are the rated discharging power and discharging efficiency of l, respectively; nc,t
and nd,t are the number of charging and discharging periods of tl,in → t , respectively; Sl,thr
is the discharging threshold, and formula (3.a) restricts the SOC of the discharging process
to be no less than Sl,thr.

The above three types of plugged-in EVs are referred to as Type 1, Type 2, and
Type 3, respectively.

2.2.2. Temporal Flexibility for EV Clusters

Due to the driving characteristics of EVs, it is necessary to ensure the user′s electricity
demand. Any EV must meet that the actual SOC is not lower than the expected SOC value
when the EV is plugged out, which is So,l ≥ Sl,ex. Taking the expected energy reaching El,ex
when the EV is plugged out as an example, the scheduling capacity diagrams of Type 2
and Type 3 EVs are shown in Figure 2.

In the figure, El,in, El,ex and Ed,thr are the initial electric quantity, the expected electric
quantity of departure time and discharging electric quantity threshold of l, respectively. As
shown in Figure 2, the broken line indicates the change of El,t, El,t = El · Sl,t. The broken
line, abc, is the actual change track of the electric quantity. ab1c is the trajectory of the rated
charging EV, and aa1c is the trajectory formed by charging to the desired SOC in the latest
charging period [td, tl,out]. These constitute the upper and lower boundaries, respectively.
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charging–discharging EV.

For Type 2 and Type 3 EVs, it is not accurate to determine the schedulable capacity
only based on the model Equations (2) and (3) established in Section 2.1, and further
consideration should be given to flexibility constraints. For the adjustable charging EV, as
shown in point b in Figure 2a, the time period [tx, ty] represents the maximum idle time
(Pl,t = 0) of l. For the flexible charging–discharging EV, as shown in point b in Figure 2b,
similarly, when l is not in the discharging state, period [tx, ty] represents the maximum
idle time of l; when l is in the discharging state, the line with slope Pr

d,l from point b to
the lower boundary is made, and Ed,l represents the maximum discharging capacity in
periods [tx, tm] (tm < ty). When ty < t ≤ tl,out, both the adjustable charging EV and the
flexible charging–discharging EV maintain Pr

c,l charging to ensure electricity demand, and
the schedulable capacity is reduced to zero.

Based on the above analysis, for ∀tx(tl,in ≤ tx < tl,out), the electricity demand
of Type 2 and Type 3 EVs that can be reduced during periods [tx, ty] is calculated by
Equations (4) and (5):

∆El,max ≤ Pl,t · (ty − tx) (4){
∆El,max ≤ Pl,t · (ty − tx) + Ed,l
Ed,l = Pr

c,l · (tl,out − tm) + El,tx − El
(5)
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Supposing T is the optimized time domain, the total power Pev,t of the EV cluster in
the t(t ∈ T) period can be calculated as:

Pev,t =
NA

∑
o=1

(
No

x

∑
i=1

Po
i,t +

No
y

∑
j=1

Po
j,t +

No
z

∑
k=1

Po
k,t) (6)

where NA is the number of EVAs; Nx, Ny and Nz are the numbers of the three types of EV.
Equation (6) satisfies the constraints of Equations (1)–(3).

The electricity demand of the EV cluster during the period t, t ∈ T can be adjusted
down to the accumulation of Type 2 and Type 3 EVs:

∆Es,t ≤
NA
∑

o=1
(∆Eo

2,t + ∆Eo
3,t)

∆Eo
2,t =

No
y

∑
j=1

min(Po
l,t · ∆t, ∆Eo

j,max)

∆Eo
3,t =

No
z

∑
k=1

min[(Po
l,t + Po

d,l) · ∆t, ∆Eo
k,max]

(7)

Equation (7) quantifies the dispatchable capacity of the EV cluster. Meanwhile,
Equation (7) should satisfy the constraints of Equations (2) and (3).

It should be pointed out that Equation (7) only represents the maximum down-
regulation capability of EV clusters. For any Type 2 and Type 3 EVs, the maximum
up-regulation capability can be adjusted to Pr

c,l .
It can be seen that Formula (7) gives the overall adjustable boundary of the EV cluster.

In the process of optimization, the EV cluster is regarded as a whole to solve the optimal
power of the EV cluster and avoid focusing on a single EV, which can accelerate the
optimization process [23].

Because the schedulable boundary calculation of EV clusters is based on the flexibility
constraints of Type 2 and Type 3 EVs, this article calls it the temporal flexibility of EV
clusters. EV cluster temporal flexibility is determined based on the broken line abc. In
actual scenarios, the charging trajectory abc of the Type 2 or Type 3 EVs can be determined
by existing methods, such as maximizing the interests of the user or balancing the interests
between grid operator and users [24].

2.3. Robust Optimization Model Considering Temporal Flexibility
2.3.1. Robust Optimization Theory

Considering the random volatility of wind power and solar power, the optimal op-
eration strategy can reduce the system reserve demand, reduce the operation cost, and
promote the consumption of renewable energy. In recent years, the two-stage robust opti-
mization model with a min–max structure was proposed. The main feature is to find the
“worst scenarios” and determine the optimal operation plan under the “worst scenarios”.
The robust model of the min–max structure can be expressed by Equation (8):

max
ζ∈D

min
X

F(X, ζ)

s.t.
{

H(X, ζ) = 0
G(X, ζ) ≤ 0

(8)

where X is the decision variable. ζ and D are its uncertain parameters and uncertain
sets, respectively. F(X, ζ) is the optimization objective function. H(X, ζ) is the equality
constraint; G(X, ζ) is the inequality constraint. The essence of Equation (8) is to minimize
the optimization target F by optimizing decision variable X under the influence of the
uncertain parameter ζ.
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2.3.2. Construction of Robust Optimization Model

The objective function is constructed with the goal of minimizing costs. The system
contains two types of renewable energy: solar and wind power. In order to simplify the
complexity of the model and promote the consumption of renewable energy, the cost of
abandoning wind and solar is included in the objective function.

max
ζ∈D

minCs = Cg(Pg) + Cb(Pb) + Ca(Es) + Cq(W) (9)

The essence of Formula (9) is to minimize the cost on the uncertain set D. Pg, Pb, Es
and W are the unit power vector, standby power vector, EV cluster power vector, and
abandoning renewable power vector, respectively. Cg, Cb, Ca and Cq are the corresponding
cost functions; the calculation methods are as follows:

(1) Unit operating cost:

Cg(Pg) =
Nt

∑
t=1

Ng

∑
i=1

ui,t(ai + biPgi,t + ciPgi,t
2) +

Nt

∑
t=2

Ng

∑
i=1

(ui,t−ui,t−1) · si (10)

Formula (10) contains two parts of cost: fuel cost and start–stop cost of units, where
Ng is the number of units; Nt is the number of optimization periods, Nt = T/∆t; ai, bi and
ci are the cost coefficients of the i-th (i ≤ Ng, i ∈ N+) unit; ui,t is the boolean variable that
indicates the startup and shutdown of the unit i at period t; si is the startup and shutdown
cost of unit i.

(2) Standby power capacity cost: Cb(Pb) =
Nt
∑

t=1

Ng

∑
i=1

(γ
up
i Pup

gi,t − γdown
i Pdown

gi,t )

Pup
gi,t · P

down
gi,t = 0 , ∀ i, t (11.a)

(11)

The essence of Formula (11) is the dispatching cost of standby power capacity, which
includes up-regulated and down-regulated costs, where Pup

gi,t, Pdown
gi,t , γ

up
i and γdown

i are
respectively the up-regulated and down-regulated powers of unit i and the corresponding
adjusted prices; Formula (11.a) restricts Pup

gi,t and Pdown
gi,t both to be zero or only one to be not

zero at the same period.
(3) EV cluster compensation cost:

Ca(Es) = Cd + Cm

Cd =
NA
∑

o=1
(

No
y

∑
j=1

co
j +

No
z

∑
k=1

co
k)

Cm =
Nt
∑

t=1
βt · ∆Es,t · ∆t

(12)

Cd is the compensation cost of the EV cluster, which corresponds to the broken line
abc of Type 2 and Type 3 EVs in Figure 2; Cm is the power adjustment compensation cost
of the EV cluster in response to intermittent fluctuations of renewable energy; βt is the
compensation factor. co

j and co
k are respectively the incentive cost of the j-th Type 2 EV and

the incentive cost of the k-th Type 3 EV in the o-th EVA. To calculate the incentive cost cl of
l, this paper uses the method of reference [25]:

cl =
sl,max − sl

sl,max
· cl,max + ϕE′l (13)

Formula (13) shows that the closer the charging trajectory of the EV is to the upper
boundary, the smaller the compensation cost is, where sl,max and cl,max are respectively the
charging benefit and cost corresponding to the upper boundary of l (broken line ab1c); sl



Energies 2022, 15, 2947 8 of 22

is the charging benefit corresponding to the broken line abc; ϕ and E′l are respectively the
discharging compensation coefficient and the total discharging energy.

(4) Cost of abandoning renewable energy:
Cq(W) =

Nt
∑

t=1
λ · ∆Wt · ∆t

∆Wt = P̃s,t + P̃w,t + ζt − Psw,t
ζt = θs,t + θw,t

(14)

where ∆W is the power of abandoning renewable energy; λ is the penalty factor; P̃s,t, P̃w,t,
θs,t and θw,t are the forecast output values and forecast errors of solar and wind power,
respectively; Psw,t is the actual consumption of renewable energy.

The solution of objective function Equation (9) needs to meet the constraints of unit
operation and power balance.

(1) Unit operation constraints:
Pmin

gi ≤ Pgi,t + Pup
gi,t ≤ Pmax

gi
Pmin

gi ≤ Pgi,t + Pdown
gi,t ≤ Pmax

gi
0 ≤ Pup

gi,t ≤ Pumax
gi

−Pdmax
gi ≤ Pdown

gi,t ≤ 0

∀ i, t (15)



Pmin
gi ≤ Pgi,t ≤ Pmax

gi
Pgi,t − Pgi,t−1 ≤ Pumax

gi
Pgi,t−1 − Pgi,t ≤ Pdmax

gi
(ui,t−1 − ui,t)(ti,on − Ti,on) ≥ 0
(ui,t − ui,t−1)(ti,o f f − Ti,o f f ) ≥ 0

∀ i, t (16)

where Pmin
gi , Pmax

gi , Pumax
gi and Pdmax

gi are the maximum and minimum outputs of unit i, and
the limit value of output increase and decrease, respectively; ti,on, ti,o f f , Ti,on and Ti,o f f are
the continuous start-up and shutdown time, and the minimum start-up and shutdown
time of unit i, respectively.

(2) Power balance constraint:

Ng

∑
i=1

Pgi,t + Psw,t +
Ng

∑
i=1

Pup
gi,t −

Ng

∑
i=1

Pdown
gi,t = Pev,t + PL (17)

2.3.3. The Description of Output Uncertainty Convex Set

The selection of the uncertain parameter ζt in Formula (9) has a direct impact on the
optimization results. This article uses intervals to describe the volatility of wind and solar
output. Let the interval of θs,t and θw,t be:{

θs,t : [Ps,t − P̃s,t, Ps,t − P̃s,t]

θw,t : [Pw,t − P̃w,t, Pw,t − P̃w,t]
(18)

Formula (13) represents the fluctuation range of uncertain parameters, where Ps,t and
Ps,t are respectively the upper and lower limits of solar power at period t; and Pw,t and
Pw,t are respectively the upper and lower limits of wind power at period t.

According to the interval calculation rule, the uncertainty interval of renewable energy
output ζt is [Ps,t + Pw,t − P̃s,t − P̃w,t, Ps,t + Pw,t − P̃s,t − P̃w,t]. Introducing the {0, 1} binary
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auxiliary variable z+t , z−t and the robust model conservative degree control parameter Γ, the
uncertainty of renewable energy output under robust control is described by Equation (19):

D :
{

P̃s,t + P̃w,t + z+t (ζt − ζt)− z−t (ζt − ζt)
}

ζt = Ps,t + Pw,t − P̃s,t − P̃w,t
ζt = Ps,t + Pw,t − P̃s,t − P̃w,t

z+t + z−t ≤ 1, ∀t (19.a
)

Nt
∑

t=1
z+t + z−t ≤ Γ (19.b)

(19)

where ζt and ζt are the upper and lower limits of ζt, respectively; z+t and z−t control whether
ζt obtains the upper limit or the lower limit; for z+t = 1, z−t = 0, ζt takes the upper limit of
the interval; for z+t = 0, z−t = 1, ζt takes the lower limit of the interval; when both are 0, it
means that both wind and solar output take the predicted value (P̃w,t, P̃s,t). When Γ = 0
(Γ ∈ [0, Nt]), it indicates that the wind and solar output in all periods are predicted values,
and the output volatility is not considered, and the model is the most aggressive; when
Γ = Nt, it indicates that the upper or lower limit of ζt is used for all periods, and the model
is the most conservative. In practical applications, the conservative degree of the model is
controlled by adjusting the value of Γ.

2.3.4. Decoupled Solving of Robust Optimization Models

The models in Sections 2.2 and 3.2 of this paper can decouple the objective function
Equation (9) into two stages. First stage: when volatility is not considered and the forecast
output of wind power and solar power is based on the minimum cost, the optimal output
of the unit, the power of the EV cluster, and the consumption of renewable energy in the
period T are determined with the goal of minimum cost. Second stage: when considering
the fluctuation of renewable energy, according to the given Γ value, the solution value of
the first phase is adjusted again with the goal of minimum adjustment cost.

max
ζ∈D

minCs = min
ζ̃

[Cg(Pg) + Ca(Es) + Cq(W)]︸ ︷︷ ︸
f irst stage

+max
ζ∈D

min[Cb(Pb) + Ca(Es) + Cq(W)]︸ ︷︷ ︸
second stage

(20)

Equation (20) needs to satisfy constraint Equations (1)–(3), (7), (10)–(17).
(1) First stage solution
The first stage is the deterministic minimization problem. Cm = 0, and θs,t and θw,t are

both equal to zero;
ui,t, Pgi,t, Pev,t, Psw,t are decision variables; let X be the optimization vector in the whole

T period, then X = [u, Pgi, Pev, Psw]
T , and the dimension of X is 2NgT + 2T. The matrix

form of the min term is as follows:

minAX

s.t.
{

H(X) ≤ b
G(X) = 0

(21)

where A is the corresponding coefficient matrix; H(X) and G(X) respectively correspond
to the inequalities and equality constraints of Equations (1)–(3), (10), (12), (14), (16) and (17);
b is a suitable constant vector; 0 is a zero vector. Equation (21) is a typical mixed integer
programming problem, which is solved efficiently by using the commercial solver CPLEX.

(2) Second stage solution
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The second stage can be called the reschedule minimization problem, Cd = 0; Cb(Pb)
contains the non-convex constraint of Equation (11.a), and it is difficult to solve directly. In
order to relax the constraints of Formula (9), we construct function Formula (22) as follows:

max
Z

min
Y

f = [Cb(Pb) + Ca(Es) + Cq(W)]

+
T
∑

t=1
{
∣∣∣∣∣ Ng

∑
i=1

γ
up
i Pup

gi,t

∣∣∣∣∣+
∣∣∣∣∣ Ng

∑
i=1

(γdown
i + γ

up
i )Pdown

gi,t

∣∣∣∣∣} (22)

It satisfies constraint Equations (4)–(7), (11), (12), (14)–(19). A brief proof of the
constraint of relaxation Formula (11.a) is as follows:

Let bt =
Ng

∑
i=1

Pup
gi,t, ct =

Ng

∑
i=1

Pdown
gi,t (t ∈ T); suppose the optimal solution in period t is δt

(δt = bt − ct, and δt ≥ 0 or δt < 0). Let x1 > 0, x2 < 0, and construct function g as follows:

ming(bt, ct) = (x1bt + x2ct) + x1|bt|+ (x2 + x1)|ct| (23)

From the perspective of power balance, if δt ≥ 0, there are only two possibilities for bt,
ct values:

(1) bt > 0, ct < 0
(2) bt > 0, ct = 0
Let bt = δt + m1, ct = −m1 (m1 ≥ 0). m1 > 0 and m1 = 0 correspond to the above two

possibilities, respectively; bt and ct are put into Equation (23) to obtain g(δt + m1, m1) =
2x1δt + 3x1m1. Obviously, g(δt, 0) ≤ g(δt + m1, m1), that is, g(bt, 0) ≤ g(bt, ct), so when
δt ≥ 0 and ct = 0, Equation (23) obtains the optimal value. Similarly, if δt < 0, when bt = 0,
Equation (23) obtains the optimal value.

Therefore, when Formula (23) takes the optimal solution, B = 0 is satisfied during any
period, that is, bt · ct = 0 is satisfied for any unit.

Pup
gi,t, Pdown

gi,t , ∆Es,t, Psw,t and z+t , z−t are decision variables. Let Y = [Pup, Pdown, ∆Es, Psw]
T

,

Z= [z+, z−]T ; the dimension of Y is 2NgT + 2T; the dimension of Z is 2T. The general form
of the matrix of Equation (22) is:

max
Z

min
Y

BY

s.t.
{

M1Y + N1Z ≤ L
M2Y + N2Z ≤ 0

(24)

where B is the corresponding coefficient matrix; both M and N are matrices adapted to
Formulas (7), (11), (12), (14)–(19); L is a suitable constant vector; 0 is a zero vector. Max-min
is a two-level optimization problem. According to the duality theory, dual variables µ and
ρ are introduced to convert the two-level optimization into a single-level optimization. The
dual form of Equation (24) is:

max
Z,µ,ρ
− LTµ + ZT(NT

1 µ + NT
2 ρ)

s.t.


MT

1 µ + MT
2 ρ + BT = 0

µ ≥ 0
ρ ∈ R

(25)

Equation (25) is a linear programming problem, which is solved by using the simplex
method. Equation (24) satisfies strong duality; let Z∗, Y∗ and Z∗, µ∗, ρ∗ be the optimal solu-
tions of Equations (24) and (25), respectively; it meets: BY∗ = −LTµ∗ + Z∗T(NT

1 µ∗ + NT
2 ρ∗).

According to the complementary relaxation in the KKT condition, M1Y× µ = 0 can
be obtained, which can be further accelerated by introducing it into Equation (25).

The flowchart in Figure 3 summarizes the whole process of the proposed model.
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3. Results and Discussion
3.1. Data Description and Parameter Setting

The optimization domain is 24 h, the per step is 15 min, and there are 96 time periods
in a day; the number of units is 3; the proportion of the three types of EVs is 0.2, 0.3, 0.5;
the probability distribution of EVs and plugged-out time and daily mileage are taken from
reference [26] and reference [27]; the renewable energy output and the base load curves are
taken from the area of Belgium [28] (reduced in equal proportions); the penalty factor of
abandoning renewable energy is taken from the literature [29]; a Monte Carlo simulation
was used to generate EVs’ arrival time, departure time, and initial SOC; the expected value
of SOC was set to be 0.95; the market electricity price and value are shown in Appendix A,
Table A1; the basic parameters of units and EV are shown in Appendix A, Tables A2 and A3.
Appendix A, Figure A1, shows the predicted output of renewable energy; Appendix A,
Figure A2, shows the number of the three types of EVs in 96 periods. In order to facilitate
the calculation, in Section 3.3, a symmetric interval was used for θw,t and θs,t, and the
prediction error was set to be 5%, and then the upper and lower limits of the renewable
energy output were 1 + 5% and 1–5% times the predicted value, respectively.

Both the output predicted value and the prediction error can be improved by the
deep learning method to improve the prediction accuracy, which can further improve the
superiority of the robust model.

3.2. Robust Optimization Results Analysis

Taking the value of Γ as 18, and setting the prediction error to 5% for both wind power
and solar power, Figure 4 shows the results of robust optimization of EV cluster power; the
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black curve in Figure 4 is the EV cluster power solved in the first stage, the red curve is the
final power curve of EV cluster after the second stage optimization, and the gray area is the
adjustable interval of EV cluster under the temporal flexibility constraint.
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Figure 4. EV power and adjustable range under flexibility constraints.

As can be seen from Figure 4, the EV cluster power decreases in specific periods after
robust optimization. However, the EV cluster power is increased in some periods due to
the temporal flexibility constraint and the total electricity demand constraint, while the EV
cluster power remains unchanged in other time periods. The decoupled two-stage solution
avoids re-optimization for all periods and improves the solution efficiency.

Figure 5 shows the power output of the three units in 96 periods after the first stage
optimization. Figure 6 shows the unit cost and EV cluster compensation cost after the first
stage optimization. The abandoning renewable costs are zero after the first stage solution,
indicating that the renewable energy is completely consumed based on the model proposed
in this paper. From the analysis of the proposed model, we can see that Equation (17)
incorporates the renewable energy consumption into the power balance, and the penalty
factor of abandoning renewable energy in Equation (14) takes a large value; the EV cluster
has sufficient scale to ensure that the renewable energy is completely consumed.
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Figure 6. The results of the first stage optimization.

Combined with the analysis in Figure 7 and Table 1, the cost of the EV cluster in
the first stage is CNY 28.928 × 104, which is the compensation cost of Type 2 and Type 3
EVs. The power adjustment costs of the three units and EV cluster in the second stage in
response to the fluctuation of renewable energy are CNY 2.467 × 104, CNY 1.394 × 104,
CNY 0.352 × 104 and CNY 3.051 × 104, respectively. DG1 generates the highest cost,
indicating that the power adjustment of DG1 is the largest. Based on the model established
in this paper, the second stage also ensures that the renewable energy is fully consumed.
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Table 1. The total optimized cost for 96 time periods.

Cost/CNY First Stage/CNY Second Stage/CNY Total Cost/CNY

Unit 1 210,080 24,670 234,750

Unit 2 331,050 13,940 344,990

Unit 3 151,050 3520 154,570

EV cluster 289,280 30,510 319,790

Abandoning renewable energy 0 0 0

Total cost/CNY 981,460 72,640 1,054,100

To further verify the applicability and superiority of the model in this paper, the
following different schemes are used for comparison.

Scheme 1: The demand difference was considered, that is, all plugged-in EV are
considered as flexible charging–discharging EVs, and the temporal flexibility constraint
was not considered.
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Scheme 2: The demand difference was not considered, but the temporal flexibility
constraint of EV clusters was considered.

Scheme 3: The demand difference was considered, but the temporal flexibility con-
straint of EV clusters was not considered.

Scheme 4: Both the demand difference and the temporal flexibility constraint of EV
clusters were considered.

Schemes 1–4 adopt the decoupling solution method proposed in this paper. The
percentage of three types of EVs and the total number of EVs are kept the same under the
four schemes. Obviously, the upper bound of the adjustable interval of EV cluster under
the four schemes is consistent, and the results of the lower boundary solution under the
four schemes are shown in Figure 8.
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Figure 8. The lower bound of EV cluster power under different schemes.

From Figure 8, it can be seen that the lower bound of EV cluster power is lower for
Schemes 1–3 compared with Scheme 4. This is because Schemes 1 and 2 do not consider
the demand difference of EV users; both are considered as flexible charging–discharging
EVs, and the adjustable power interval of the solution is larger, but there is an inevitable
contradiction to the realistic scenario. The lower bound of EV cluster power obtained from
Scheme 3 is smaller than that of Scheme 4. This is because the solution method considering
the temporal flexibility constraint quantifies the dispatchable capacity of EV clusters in a
more precise way under the premise of ensuring the EV power demand, which means that
the lower bound of the EV cluster obtained is slightly higher but more accurate.

Schemes 1–4 all use the two-stage decoupling optimization solution method estab-
lished in this paper. In comparison, Scheme 5 uses the “worst scenario” robust method.

Scheme 5: Both the demand difference and the temporal flexibility constraint of
EV clusters were considered, and the “worst scenario” robust method is adopted in the
solving process.

Figure 9 gives the optimization results of the five schemes under different prediction
errors of the renewable output; Table 2 shows the corresponding solution times. The cost
of Schemes 4 and 5 are CNY 105.41 × 104 and CNY 109.57 × 104, respectively, under
the prediction error of 5%. The solving time of Schemes 4 and 5 are 442.8 and 523.2 s,
respectively, under the prediction error of 5%.
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Table 2. The solving time of five schemes under different prediction errors.

The Solving
Time/s Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

5% 491.5 473.2 469.5 442.8 523.2
10% 493.5 475.6 487.3 462.4 518.7
15% 499.4 472.1 483.4 459.8 529.6
20% 489.3 478.3 484.8 451.7 532.4
25% 501.4 481.3 489.3 461.3 529.5
30% 497.5 482.1 477.6 459.2 525.6

Analyzing Figure 9 and Table 2 together, when the prediction error is 5% or 10%,
the robust solution results of Schemes 1–5 are basically the same because of the enough
adjustable power of EV cluster and more accurate prediction of renewable energy. How-
ever, different schemes for individual EVs must be different, and without considering the
demand difference of users, the users’ satisfaction will decrease. As the prediction error
increases, the cost of Schemes 1 and 2 is significantly lower than that of Schemes 3 and 4,
because Schemes 1 and 2 obtain a larger adjustable power interval of the EV cluster; the
solution results of Schemes 4 and 5 are similar under different prediction errors, but the
solution of Scheme 5 is more time-consuming.

3.3. Analysis of EV Charging Process

Let Ak(k = 1, 2, 3, 4) be the kth EVA, and let Dm,k(m = 1, 2, 3) be the set of Type m EV
in the kth EVA. In order to visualize the demand difference of the three types EV, one EV is
randomly selected in Dm,k, which is denoted as lm,k(lm,k ∈ Dm,k). The change curve of SOC
for the 12 EVs is shown in Figure 10.

The SOC of the three EV types in A1–A4 is above 0.95 during their departure, which
ensures the electricity demand of EV users. No matter when the l1,k is connected to a grid,
it is charged to the desired SOC at the rated charging power; during the plugged-in periods
of l2,k, the actual charging power is less than the rated charging power, and the SOC growth
is slower, but l2,k is not in the discharging state during the plugged-in periods; during the
plugged-in periods of l3,k, a few periods are in the discharging state, but it is guaranteed
that the SOC is not lower than the 0.5 threshold during the discharging process, such as
vehicle l3,3. It should be noted that the charging and discharging states of EV in sets D2,k
and D3,k are also constrained by the user′s plugged-in duration. However, in order to meet
the user′s electricity demand, the EVs in sets D2,k and D3,k will still approach the rated
charging power because of their shorter connection time, such as l2,2 and l3,4 in Figure 10.
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Analyzing Figure 9 and Table 2 together, when the prediction error is 5% or 10%, the 
robust solution results of Schemes 1–5 are basically the same because of the enough ad-
justable power of EV cluster and more accurate prediction of renewable energy. However, 
different schemes for individual EVs must be different, and without considering the de-
mand difference of users, the users’ satisfaction will decrease. As the prediction error in-
creases, the cost of Schemes 1 and 2 is significantly lower than that of Schemes 3 and 4, 
because Schemes 1 and 2 obtain a larger adjustable power interval of the EV cluster; the 
solution results of Schemes 4 and 5 are similar under different prediction errors, but the 
solution of Scheme 5 is more time-consuming. 

3.3. Analysis of EV Charging Process 
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SOC for the 12 EVs is shown in Figure 10. 

 
(a) 

Energies 2022, 15, 2947 17 of 23 
 

 

(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Three SOC change curves of three EV types in four EVAs. (a) SOC changes of three EV 

types in A1; (b) SOC changes of three EV types in A2; (c) SOC changes of three EV types in A3; (d) 

SOC changes of three EV types in A4. 

The SOC of the three EV types in A1–A4 is above 0.95 during their departure, which 

ensures the electricity demand of EV users. No matter when the 1,kl
 is connected to a 

grid, it is charged to the desired SOC at the rated charging power; during the plugged-in 

periods of 2,kl
, the actual charging power is less than the rated charging power, and the 

SOC growth is slower, but 2,kl
 is not in the discharging state during the plugged-in peri-

ods; during the plugged-in periods of 3,kl
, a few periods are in the discharging state, but 

it is guaranteed that the SOC is not lower than the 0.5 threshold during the discharging 

process, such as vehicle 3,3l
. It should be noted that the charging and discharging states 

Figure 10. Three SOC change curves of three EV types in four EVAs. (a) SOC changes of three EV
types in A1; (b) SOC changes of three EV types in A2; (c) SOC changes of three EV types in A3;
(d) SOC changes of three EV types in A4.



Energies 2022, 15, 2947 17 of 22

From the perspective of time-of-use electricity price, the EVs in the D2,k and D3,k sets
have higher charging power when the electricity price is lower, which is beneficial to reduce
the plugged-in cost of EV users. Obviously, the optimization model established in this
paper fully guarantees the demand difference of EV users.

3.4. The Influence of Prediction Error and the Value of Γ on Robust Optimization

Sections 3.2 and 3.3 are based on the premise that the prediction error is 5% and the
value of Γ is 18. However, in practice, due to the limitation of prediction technology, the
prediction accuracy of 5% may not be guaranteed. In order to verify the applicability of
the robust optimization model proposed in this paper, the prediction errors are taken as
5%, 10%, 15%, 20%, 25%, and 30%. Γ takes 1 as a step and takes a value in the interval
[1, 96]. The relationship between the optimization total cost and the prediction error and
conservatism is shown in Figure 11.
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As shown in Figure 11, the higher the model conservativeness and the lower the
prediction error of renewable energy, the higher the total robust cost. When the prediction
accuracy is higher, the total robust cost grows more slowly with the increase of model
conservativeness, and grows more sharply when the prediction accuracy is lower; when the
model conservativeness is lower, the total robust cost grows more slowly with the decrease
of prediction accuracy, and grows more sharply when the model conservativeness is higher.

3.5. The Impact of the Proportion of Three Types EV on Robust Optimization

The ratios of three EV types in Sections 3.2–3.4 are all 2:3:5, and this section discusses
the effect of different EV ratios on robust optimization. Based on the EV control model
with demand difference in Section 2, only the power of Type 2 and Type 3 EVs can be cut
or in the discharging state, and the effect of the three EV types on robust optimization is
equivalent to the effect of Type 2 and Type 3 EV ratios on robust optimization. Keeping
the value of Γ and the size of EV cluster constant, let the Type 2 and Type 3 EV ratios be re.
Both re in the interval of [0, 1] and the prediction error in the interval of [0, 30%] are taken
in equal intervals of 0.01 steps, and the total cost is shown in Figure 12.

With the increase of the proportion of Type 2 and Type 3 EVs, the total robust optimiza-
tion cost gradually decreases, and when it increases to a sufficient EV cluster schedulable
capacity, the total robust cost decreases gradually. As the forecast error of renewable in-
creases, higher Type 2 and Type 3 EV ratios are required to minimize the total robust cost.
When all EVs are Type 1 EVs, the total robust cost is CNY 25.531 × 105; when all EVs are
Type 2 or Type 3 EVs, the total robust cost is CNY 10.137 × 105.
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4. Conclusions

This paper proposes a collaborative robust optimization strategy of EVs and other
distributed energy considering load flexibility. The following conclusions can be drawn
from the research:

(1) The robust optimization strategy takes into account the demand preference of EV
users. The plugged-in EVs are divided into three categories: rated power charging EVs,
adjustable charging EVs, and flexible charging–discharging EVs. The three categories of
EVs map the different needs of users, which better match the actual scenarios.

(2) A robust optimization model was proposed and the decoupling calculation of the
model was realized. The proposed model can obtain a smaller robust cost and higher
computational efficiency. The robust total cost and computational efficiency are CNY
105.41 × 104 and 442.8 s, respectively. Compared with other methods, the robust total
cost and computational efficiency are reduced about by 3.8% and improved by about
15.4%, respectively.

(3) The robust optimization results were tested when the conservative degree control
parameter was set at different values between 0 and 96, the prediction error was set at
different values between 0 and 30%, and the proportion of dispatchable EV was set at
different values between 0 and 100%. The validity of the proposed model was further
verified, and theoretical guidance was provided for the selection of coefficient values in
practical application.

It should be pointed out that only the uncertainty of renewable energy output is
considered in this paper and the uncertainty of EVs should not be ignored. Thus, the
uncertainty of EVs needs to be further considered, and a collaborative analysis model of EV
uncertainty and renewable energy uncertainty should be established in the further research.
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Abbreviations
The following abbreviations are used in this manuscript:

EVs Electric vehicles
EVAs Electric vehicle aggregators
SOC State of charge
V2G Vehicle to grid

Mathematical Notation Explanations

Pr
c,l , ηc,l

the rated charging power and charging efficiency of vehicle l,
respectively

Pl,t, Sl,t
the actual charging/discharging power and actual SOC of vehicle
l at period t, respectively

Pr
d,l , ηd,l

the rated discharging power and discharging efficiency of vehicle
l, respectively

Sl,in, Sl,ex the initial SOC and expected SOC of vehicle l, respectively
Sl,thr the discharging SOC threshold of vehicle l

El,in, El,ex, Ed,thr

the initial electric quantity, the expected electric quantity of departure
time and the discharging electric quantity threshold of vehicle l,
respectively

∆El,max the maximum electric quantity reduction of vehicle l
Ed,l the discharging electric quantity of vehicle l
Pev,t the power of an EV cluster at period t
NA, Ng the number of EVAs, unit

Nx, Ny, Nz
the number of rated charging power EVs, adjustable charging
EVs and flexible charging–discharging EVs, respectively

∆Eo
2,t, ∆Eo

3,t
the electric quantity reduction of adjustable charging EVs and
flexible charging–discharging EVs, respectively

∆Es,t the electric quantity reduction of an EV cluster
Cs the total cost of the system

Pg, Pb, Es, W
the unit power vector, standby power vector, EV cluster power
vector and abandoning renewable power vector, respectively

ai, bi, ci the cost coefficient of the i-th unit

ui,t
boolean variable that indicates the startup and shutdown of the
i-th at period t

si the startup and shutdown cost of the i-th unit

Pup
gi,t, Pdown

gi,t
the up-regulated and the down-regulated power of the i-th unit,
respectively

γ
up
i , γdown

i
the price of up-regulated power and price of down-regulated
power of i-th unit, respectively

Ca the compensation cost of the EV cluster
βt the compensation factor of the EV cluster

sl,max, cl,max
the charging benefit and charging cost corresponding to the
upper boundary, respectively

sl the charging benefit corresponding to the broken line abc
ϕ the discharging compensation coefficient
E′l the total discharging electric quantity of the EV cluster
∆W the power of abandoning renewable energy

P̃s,t, P̃s,t
the forecast solar energy output and wind energy output,
respectively

θs,t, θw,t the forecast error of solar energy and wind energy, respectively
Psw,t the actual consumption of renewable energy

Pmin
gi , Pmax

gi , Pumax
gi , Pdmax

gi
the maximum and minimum power, the increased power limit
and the decreased power limit of the i-th unit, respectively

ti,on, ti,o f f , Ti,on, Ti,o f f
the continuous start-up and shutdown time, and the minimum
start-up and shutdown time of the i-th unit, respectively

z+t , z−t the 0–1 binary auxiliary variable
Γ conservative degree control parameter of the robust model
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Appendix A

Table A1. The time-of-use electricity price and the value of ϕ, β.

Time Periods Electricity
Price/CNY ϕ β

Peak Time (9:00–12:00, 19:00–24:00) 1.85 1.85 2.41

Usual time (7:00–9:00, 12:00–19:00) 1.4 1.4 1.82

Valley Time (0:00–7:00) 0.95 0.95 1.23

Table A2. The parameters of DGs.

Parameters DG1 DG2 DG3

Pmin/MW 3 6 4

Pmax/MW 15 30 15

Pdmax/(MW·15 min−1) 500 600 700

Pumax/(MW·15 min−1) 380 450 500

γup/CNY·KW 1.25 1.25 1.25

γdown/CNY·KW 0.45 0.45 0.45

a 300 373 300

b 170 200 150

c 0.251 0.082 0.452

s/CNY 600 900 600

Ton, To f f /h 1 1.5 1

Table A3. The parameters of plugged-in EVs.

EV Parameters Value

Pc/KWh 20

Pd/KWh 15

ηc 0.95

ηd 0.95

E/KWh 65

Sex 1

Sthr 0.5

Sl,ex 0.95
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