
����������
�������

Citation: Buruzs, A.; Šipetić, M.;

Blank-Landeshammer, B.; Zucker, G.

IFC BIM Model Enrichment with

Space Function Information Using

Graph Neural Networks. Energies

2022, 15, 2937. https://doi.org/

10.3390/en15082937

Academic Editor: Francesco Nocera

Received: 8 February 2022

Accepted: 14 April 2022

Published: 16 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

IFC BIM Model Enrichment with Space Function Information
Using Graph Neural Networks
Adam Buruzs *, Miloš Šipetić, Brigitte Blank-Landeshammer and Gerhard Zucker

AIT Austrian Institute of Technology, 1210 Vienna, Austria; milos.sipetic@ait.ac.at (M.Š.);
brigitte.blank-landeshammer@ait.ac.at (B.B.-L.); gerhard.zucker@ait.ac.at (G.Z.)
* Correspondence: adam.buruzs@ait.ac.at; Tel.: +43-664-8890-4316

Abstract: The definition of room functions in Building Information Modeling (BIM) using IfcSpace
entities is an important quality requirement that is often not fulfilled. This paper presents a three-step
method for enriching open BIM representations based on Industry Foundation Classes (IFC) with
room function information (e.g., kitchen, living room, foyer). In the first step, the geometric algorithm
for detecting and defining IfcSpace entities and injecting them into IFC models is presented. After
deriving the IfcSpaces, a geometric method for calculating the graph of connections between spaces
based on accessibility is described; this information is not explicitly stored in IFC models. In the
final step, a graph convolution-based neural network using the accessibility graph to classify the
IfcSpace entities is described. Local node features are automatically extracted from the geometry
and neighboring elements. With the help of a Graph Convolutional Network (GCN), the connection
and spatial context information is utilized by the neural network for the classification decision,
in addition to the local features of the spaces which are more commonly used. To evaluate the
classification accuracy, the model was tested on a set of residential building IFC models. A weighted
version of the common GCN was implemented and tested, resulting in a slight improvement in the
classification accuracy.

Keywords: BIM; IFC; architecture model enrichment; machine learning; IfcSpace

1. Introduction

BIM modelling is the de facto standard in architecture, engineering, and the construc-
tion (AEC) industry. Various proprietary closed software packages are used to create BIM
models. For the sake of interoperability, the buildingSMART consortium created the IFC
(Industry Foundation Classes) standard [1], which is the established open data format for
the BIM industry. IFC provides a rich vocabulary for the specification and classification
of building components, as well as the properties needed for alphanumeric information.
Unfortunately, in practice, the IFC files are most often incomplete. There exist solutions for
the automatic checking of building code compliance, such as the Solibri Model Checker,
but these tools employ hard-coded rules that require exact and complete BIM model spec-
ifications. In practice, incorrect design, lack of information provided by the user in the
design phase, or the use of various local languages for labelling elements strongly limits
the applicability of these automatic model checkers. For the validation of models and for
further calculations, planning, or for cost estimations, the semantic enrichment of the IFC
models is needed to inject this missing information into the IFC model.

In our work, we focus on the semantic enrichment of spaces (IfcSpace entities) with the
function of the corresponding room. The exact spatial definition of the space is an important
piece of information for stakeholders, for example, to quickly create a list of apartments
with exact size information in residential buildings. Intended usage and occupancy of
spaces is an important piece of information for facility managers: corridors, halls, and
basement spaces require less ventilation and heating than office rooms or apartments.

Energies 2022, 15, 2937. https://doi.org/10.3390/en15082937 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15082937
https://doi.org/10.3390/en15082937
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-4258-2849
https://doi.org/10.3390/en15082937
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15082937?type=check_update&version=1


Energies 2022, 15, 2937 2 of 12

Construction companies benefit from correctly labelled spaces by being able to calculate
various cost factors and procurement plans more precisely (for example, calculating the
required amount of tiling from the aggregated surface area of toilets and bathrooms).

IfcSpace entities are graphically not visible when rendering the BIM model; our
analysis showed that the IfcSpace entity for a room is often omitted in the modeling
process. However, even in higher quality models—where IfcSpaces are defined and thus
PropertySets could be defined—the PropertySets are often left blank, leaving IfcSpace
entities with only the space boundaries and without the room function defined.

IfcSpace entities are important elements that are required for HVAC simulations and
control applications [2], and are needed for thermal zoning in thermal dynamic simula-
tions [3]. The intended room function influences the different parameters that are used in
the simulation, such as temperature, humidity, or air exchange setpoints and ranges (e.g.,
lower temperature setpoints in bedrooms). Similarly, storage rooms, corridors outside of
apartments, and garages have lower or no heating requirements. Fine-grained control of
related parameters of the building model in the design phase results in lower estimated en-
ergy needs, and, if those controls are correctly implemented in the commissioned building,
also in a lower final energy consumption. Additionally, having the spaces automatically
derived and their functions determined saves time and reduces the need for manual, error-
prone work. Exact thermal simulations also require second-level space boundaries that
can be derived from the defined spaces, as described in [4]. Room functionality is also an
important information for facility managers throughout the lifecycle of the building.

Our paper structure is as follows: In Section 2, the state of the art of machine learning-
based automatic enrichment of BIM models is reviewed, especially with regards to room-
function classification. In Section 3, a geometric method is presented to automatically
detect spaces in BIM models, if they are missing. We present a method for extracting
connections between spaces and for building a graph of accessibility. Furthermore, a
Graph Neural Network (GNN)-based classification algorithm is described to classify these
spaces. This classification is based on this accessibility graph and the calculated geometric
features that are extracted from the raw BIM Models. We also present a modification of the
Graph Convolutional Network to strive for higher accuracy. In Section 4, the results of the
classification are presented as an accuracy analysis and a confusion matrix. The paper is
closed with Section 5.

2. Related Work

Machine learning methods have gained increasing popularity in recent years in the
field of automated BIM processing. Krijnen and Tamke [5] used neural networks to classify
buildings into residential and non-residential categories based on floor plans.

The semantic enrichment of IFC BIM Models has been addressed in multiple studies;
Sacks et. al. developed a rule-based system that evaluates IF–THEN types of rules based
on prepared features [6,7]. To extract geometric relations that are not explicitly contained in
IFC files, they used Query Language for 4D Building Information Models (QL4BIM [8]).

Bloch and Sacks [9] examined the use of semantic enrichment in BIM models; they
compared neural network-based rules against hand-crafted rules for IfcSpace classification
(building rooms) and concluded that the neural networks based on geometrical features
and spatial connections strongly outperformed the rule-based method in terms of accuracy.

Koo et al. [10] applied support vector machines (SVM) to classify building elements
into eight of the most frequent IFC categories (Column, Beam, Slab, Wall, Covering, Door,
Window, Railing). They used simple geometric features (bounding box size, volume,
gyration, etc.) that were calculated using the opencascade geometry engine [11], as well
as features derived from IfcRelations (number of related Walls/Windows). They trained
their SVM classifier with six building IFC models and reached a classification accuracy of
over 90%. The same team later used multi-view convolutional neural networks (MVCNN)
to classify wall and door elements in BIM models [12]. The MVCNN [13] generates 2D
renderings of objects, and practically transforms the 3D object recognition problem into the



Energies 2022, 15, 2937 3 of 12

well-studied 2D recognition problem, which can be solved efficiently using convolutional
neural networks [14].

Lumio [15] et al. used deep learning methods to classify images generated from BIM
model external views into three categories (residential, industrial, and other buildings).
Besides classical SVM classifiers, they also tried deep neural networks (ResNet, MobileNet),
which are very successful in machine vision tasks. They found that these deep neural nets
considerably outperformed SVMs for this task and reached over 90% accuracy in predicting
the building type based on the generated 2D images.

Edmunds et al. [16] created the IFCNet benchmark dataset for IFC element classifica-
tion. They also tested the MVCNN architecture for classifying these elements; it showed
very good results (over 85% accuracy). However, in their method, the context information
of the elements is not used, and the elements are classified based on their geometry alone.

Many scientific and engineering datasets have an inherent structure that can be repre-
sented with a graph. Graph applications range from social networks, citation databases,
molecular chemical datasets, recommendations, predicting infectious diseases, etc. Ad-
vanced neural network models for prediction and analysis tasks over graph data have
attracted considerable research attention in recent years. Applications of deep learning
methods on graph datasets include node classification, graph classification, link predic-
tion, and graph generation tasks [17]. The methods applied on graph datasets include
graph convolutional networks, recurrent networks, autoencoders, adversarial methods,
and reinforcement learning. A common advantage of applying these methods to node
classification is that they inherently incorporate graph network information into the node
classification besides the single node information represented with the node features. A
general mathematical framework for the application of deep learning on graphs is given by
Bronstein et al. [18], where the analogy between graphs and manifolds is shown, and the
extension of the successful Convolutional Networks to graphs is derived.

Kipf and Welling [19] proposed a graph based neural network model with a simple
layer-wise propagation rule:

Hl+1 = σ(ÃHlW l) (1)

where Hl is the input of the l-th layer, W l are the weights of the layer, and the Ã matrix is
calculated from the adjacency matrix, thereby establishing connections between adjacent
nodes in one layer. It was shown how this formula can be interpreted as an approximation
of a spectral graph convolution; therefore, the layer was named graph convolution. Addi-
tionally, the application of a graph convolutional network was demonstrated on a node
classification task.

IFC BIM models contain numerous relations among their elements; thus, a graph of el-
ements can be extracted with the IfcRelationships acting as edges. Additional relationships
can be derived by applying different geometric reasoning methods. For example, using
the calculated geometric distance between the extracted element shapes, a space adjacency
graph structure can be derived by connecting spaces that are geometrically close to one
another. After such graphs are derived, it becomes possible to apply graph neural networks
to train models for inductive reasoning, such as element classification.

Several recent studies have dealt with building elements classification based on floor
plans: Su et al. classifies structural elements (walls, windows, doors, stairs) based on
floor plans with graph neural networks [20]. A recent paper by Paudel et al. [21] solved
room-type classification based on the floor plan data of single apartments using various
graph neural networks. Hu et al. [22] presented room-type classification based on the floor
plans of university buildings using random forest and graph convolutional networks. All
these studies report high (around 80%) classification accuracy. However, one has to note
two things: 1. By selecting the model training and test set, the information concerning the
parent building of each apartment is not preserved; it is likely that one floor of a building is
included into the training set, while another floor of the same building belongs to the test
set. One can assume that there are considerable similarities between the floors of the same
building. 2. The number of common room types is relatively low.



Energies 2022, 15, 2937 4 of 12

3. Materials and Methods

We present a method where two types of information are extracted from IFC files to
serve as input for a neural network-based supervised classification trained on labelled
data: First, numerical features calculated from the geometric shapes of IFC elements are
extracted. Second, the accessibility between spaces is calculated. The spatial proximity and
traversability of spaces can be best described by a graph. The spaces are represented as
nodes and connected with an edge if a person can walk from one space to the other. This
condition is satisfied if spaces touch without a boundary between them or are connected
via a door or staircase. The proposed graph convolutional network merges both numerical
features and graph structure to train the weights of a neural network to classify the nodes
in this graph. This method is not only promising for spaces, but also for other kinds of
classifications and automatic IFC model quality assessments.

3.1. Space Extraction from IFC Elements

The IFC standard provided the IfcSpace (https://standards.buildingsmart.org/IFC/
RELEASE/IFC4/ADD2_TC1/HTML/link/ifcspace.htm, accessed on 15 January 2022)
entity for defining spaces or rooms in BIM models. IfcSpace elements can be defined
and exported from closed BIM software packages. The correct definition of the spaces is
important for subsequent analyses such as area calculation or apartment size determination.
Further quality checks can also leverage the properties of the IfcSpace entities.

In our approach we started from the walls, which we extracted separately from each
floor. First, the Opencascade TopoDS [23] shape was extracted from each wall with the help
of ifcOpenShell [24]. Then, the oriented bounding box for each wall and the projection of that
bounding box onto a horizontal plane was calculated. With this projection, two-dimensional
rectangles were obtained for each wall. Using the shapely python package, these two-
dimensional shapes were processed; the convex hull was calculated from the polygons
and then the geometric difference of the convex hull and the rectangles corresponding to
the walls was calculated. This difference resulted in a list of polygons that were closed
polygons encompassed by the wall-rectangles. Polygons that were touching the convex
hull had to be removed from this list, because these polygons were not contained within
the building bounding walls. The polygons were then extruded along the z-axis (resulting
in IfcExtrudedAreaSolid objects), assuming vertical walls and using the height of the storey
that we calculated as the median of the wall heights belonging to the given IfcStorey. The
obtained IfcSpace entities could then be written back into the original IFC file with the
ifcopenshell write function, thus augmenting the initial BIM model with IfcSpaces. This
procedure is visualized on Figure 1. This method assumes vertical walls and horizontal
slabs. The processing of slanted slabs and roofs was out of scope of this paper. A further
limitation of the method is that incorrectly modelled walls can also lead to problems with
space detection (for example, when small gaps exist between the walls).

3.2. Accesssibility Graph Calculation

An accessibility graph is used to encode relations among spaces in the building.
Adjacent graphs are commonly used in different kinds of analysis of spatial layouts, e.g.,
using the space syntax theory [25]. In architecture, this is often done to analyze the layout,
connectedness, and relations between the spaces of the building. Another application of
accessibility graphs is the automated calculation of emergency exit pathways; the maximum
distance from each room to a fire-safe room is regulated by the Austrian building code
(https://www.oib.or.at/de/oib-richtlinien/richtlinien/2019/oib-richtlinie-2, accessed on
15 January 2022). Using the accessibility graph, the shortest route to reach a fire-safe place
can be easily calculated utilizing standard graph algorithms (for example, implemented
in the networkx python package [26]). Adding length measures to the space-graph edges
(distance between rooms), the path length can be obtained in meters.

https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/link/ifcspace.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/link/ifcspace.htm
https://www.oib.or.at/de/oib-richtlinien/richtlinien/2019/oib-richtlinie-2


Energies 2022, 15, 2937 5 of 12
Energies 2022, 15, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 1. The visualization of the IfcSpace detection workflow. 

3.2. Accesssibility Graph Calculation 
An accessibility graph is used to encode relations among spaces in the building. 

Adjacent graphs are commonly used in different kinds of analysis of spatial layouts, e.g., 
using the space syntax theory [25]. In architecture, this is often done to analyze the layout, 
connectedness, and relations between the spaces of the building. Another application of 
accessibility graphs is the automated calculation of emergency exit pathways; the 
maximum distance from each room to a fire-safe room is regulated by the Austrian 
building code (https://www.oib.or.at/de/oib-richtlinien/richtlinien/2019/oib-richtlinie-2, 
accessed on 15 January 2022). Using the accessibility graph, the shortest route to reach a 
fire-safe place can be easily calculated utilizing standard graph algorithms (for example, 
implemented in the networkx python package [26]). Adding length measures to the space-
graph edges (distance between rooms), the path length can be obtained in meters. 

To classify spaces, we filtered the information that is available in the IFC BIM Model; 
only Spaces, Doors, and Stairs were extracted. In order to place the Space objects into 
context, we calculated which rooms were connected, i.e., directly traversable from one to 
another by humans. To create a graph of accessibility, we calculated which spaces were 
directly reachable from other spaces through doors, or were in direct spatial contact 
(spaces are touching). Here, we calculated the spatial proximity with the help of the open 
source Opencascade geometry library (pythonocc interface [23])—see Figure 2. There are 
four types of space–space connections that we checked: 
 two spaces are touching (zero distance); 
 two spaces are connected through a door (IfcDoor); 
 two spaces are connected through an opening (unpopulated IfcOpeningElement); 
 two spaces are connected through stairs (IfcStair). 

If any of these four connections existed between two spaces, we created an edge be-
tween the two spaces in the graph created from the spaces as nodes. 

Figure 1. The visualization of the IfcSpace detection workflow.

To classify spaces, we filtered the information that is available in the IFC BIM Model;
only Spaces, Doors, and Stairs were extracted. In order to place the Space objects into
context, we calculated which rooms were connected, i.e., directly traversable from one to
another by humans. To create a graph of accessibility, we calculated which spaces were
directly reachable from other spaces through doors, or were in direct spatial contact (spaces
are touching). Here, we calculated the spatial proximity with the help of the open source
Opencascade geometry library (pythonocc interface [23])—see Figure 2. There are four types
of space–space connections that we checked:

• two spaces are touching (zero distance);
• two spaces are connected through a door (IfcDoor);
• two spaces are connected through an opening (unpopulated IfcOpeningElement);
• two spaces are connected through stairs (IfcStair).

Energies 2022, 15, x FOR PEER REVIEW 6 of 13 
 

 

 

 

Figure 2. A building model and the corresponding calculated accessibility graph. Orphan doors 
were the doors with only one connected space (external or terrace doors). 

3.3. Extracting Features 
To perform the classification, certain geometric features were extracted from the 

shapes of the spaces and doors. These geometric properties were then used as features for 
supervised learning. Raw geometric features for the shapes of spaces were calculated 
using the the Opencascade G_prop package 
(https://dev.opencascade.org/doc/refman/html/class_g_prop___g_props.html, accessed 
on 15 January 2022). These raw features included: 
 Total Volume; 
 Principal moments of inertia; 
 Gyration radius in the 3 axes in the principal coordinate system; 
 Total Volume; 
 Static moments in x, y, z directions; 
 Height of the shape (in vertical z direction); 
 Dimensions of the oriented bounding box of the space shape. 

Additionally, the number of windows, doors, openings, and stairs belonging to a 
space was calculated using geometric proximity. In order to speed up the relatively slow 
Opencascade distance calculation between shapes, we first calculated a distance lower limit 
with the help of bounding box corners—with much lower computation time and 
complexity—and only if the distance between the bounding boxes lied below a certain 
limit were the time-consuming exact geometric distances calculated between the 
Opencascade shapes. The shape representation type of the space (Brep, Surface Model, or 
Swept Solid) was added as a categorical feature. 

As a next step, the normalized features were calculated from these raw features. 
These included volume/height as the area of the space (in case of horizontal upper slabs), 
the ratio of the maximum and minimum bounding box dimension, or the ratio of the 
volume of the bounding box divided by the volume of the space—giving only one for 
cuboid shaped spaces. 

Using these features, a classifier was trained to label each room with one of the 
following 15 labels: Bathroom, Toilet, Living Room, Kitchen, Bedroom, Corridor, 
Staircase, Foyer, Storage, Terrace, Office, Kitchen/LivingRoom, Living Room/Bedroom, 
Other, or Technical Room. Additionally, if the space definition was incorrect in the 
original file (for example whole floor was marked as one space), the space was labelled as 
“DELETE”. We also let the network predict such incorrect spaces. 

Figure 2. A building model and the corresponding calculated accessibility graph. Orphan doors were
the doors with only one connected space (external or terrace doors).

If any of these four connections existed between two spaces, we created an edge
between the two spaces in the graph created from the spaces as nodes.



Energies 2022, 15, 2937 6 of 12

3.3. Extracting Features

To perform the classification, certain geometric features were extracted from the
shapes of the spaces and doors. These geometric properties were then used as features for
supervised learning. Raw geometric features for the shapes of spaces were calculated using
the the Opencascade G_prop package (https://dev.opencascade.org/doc/refman/html/
class_g_prop___g_props.html, accessed on 15 January 2022). These raw features included:

• Total Volume;
• Principal moments of inertia;
• Gyration radius in the 3 axes in the principal coordinate system;
• Total Volume;
• Static moments in x, y, z directions;
• Height of the shape (in vertical z direction);
• Dimensions of the oriented bounding box of the space shape.

Additionally, the number of windows, doors, openings, and stairs belonging to a
space was calculated using geometric proximity. In order to speed up the relatively slow
Opencascade distance calculation between shapes, we first calculated a distance lower
limit with the help of bounding box corners—with much lower computation time and
complexity—and only if the distance between the bounding boxes lied below a certain limit
were the time-consuming exact geometric distances calculated between the Opencascade
shapes. The shape representation type of the space (Brep, Surface Model, or Swept Solid)
was added as a categorical feature.

As a next step, the normalized features were calculated from these raw features. These
included volume/height as the area of the space (in case of horizontal upper slabs), the
ratio of the maximum and minimum bounding box dimension, or the ratio of the volume
of the bounding box divided by the volume of the space—giving only one for cuboid
shaped spaces.

Using these features, a classifier was trained to label each room with one of the
following 15 labels: Bathroom, Toilet, Living Room, Kitchen, Bedroom, Corridor, Staircase,
Foyer, Storage, Terrace, Office, Kitchen/LivingRoom, Living Room/Bedroom, Other, or
Technical Room. Additionally, if the space definition was incorrect in the original file (for
example whole floor was marked as one space), the space was labelled as “DELETE”. We
also let the network predict such incorrect spaces.

3.4. Neural Networks on Graphs

A multi-layer preceptor model (MLP) was implemented to serve as a baseline reference.
MLP does not use the available graph information; it consists of two hidden layers and
accepts all available numerical and categorical features as input, and outputs the predicted
probabilities for each of the 16 room types.

Our first graph-based reference neural network model was the Graph Convolutional
Network from Kipf [19]. It operates on a matrix of N nodes, each with F number of features.
The Activation in hidden layer l can be given as:

hl+1 = f(hl , A) = σ(AhlWl) (2)

where A is the normalized adjacency matrix (with the size of N × N); Aij is nonzero if and
only if i and j nodes are connected. Wl is the trainable weight matrix in the hidden layer l.
The size of Wl does not depend on the size of the graph, just on the number of features F
and on the size of the hidden layers. These Wl weights are shared between the nodes, just
like the convolution matrix is shared by convolutional networks. For the first layer, H0 is
initialized with the input features. The activation function σ is usually implemented with
the tanh function.

https://dev.opencascade.org/doc/refman/html/class_g_prop___g_props.html
https://dev.opencascade.org/doc/refman/html/class_g_prop___g_props.html


Energies 2022, 15, 2937 7 of 12

With these layers, the prediction for a two-layer GCN, as an example, can be written as:

Ziγ = so f tmax

(
∑
κ

σ

(
∑
jβ

Aijσ

(
∑
kα

AjkXkαW0
αβ + bβ

)
W1

βκ + bκ

)
WD

κγ

)
(3)

Here, we only get contributions to the output if i and j are indices of neighboring
spaces and j and k are also neighbors, so k is second neighbor to i. The Greek indices run
over the number of features. The trainable bias vectors are denoted by b. The formula
shows that in case of two GCN layers for the prediction of the class of a given element,
anything up to the second neighbors of this element contribute (for 1-layer GCN, only the
first neighbors show a contribution). Xkα is the feature α for node k; this is the first layer
input X = h0.

WD
κγ is the weight matrix of the last dense softmax layer. The softmax function returns

a vector Ziγ for each space i with the size equaling the number of classes and sums up to 1
(so γ = 1 . . . 15 for the 15 room categories). The elements of this vector can be treated as
probabilities of classes; the one with the highest “probability” is the predicted class.

The GCN in the stellargraph [27] python package is implemented for transductive
inference (classifying the unlabeled nodes in a known graph), which does not naturally
generalize to unseen nodes. This problem of inductive inference (predicting labels of the
nodes of a previously unseen graph) was solved by saving the learned weight matrices
(Wl) and creating a new stellargraph GCN instance from these previously learned weights
for an unseen graph without re-training.

In the course of training the GCN model we have realized that it often does not
outperform the simple MLP network in the inductive setup. Combining the two predictions
was attempted with the hope that an ensemble model would perform better. In order to
merge the predictions of the two models, we calculated a joint prediction. For this, we
simply summed up the output probability matrix of the two classifiers and determined the
joint prediction as the argmax of the single lines of this averaged probability matrix. This
method is often referred to as ensemble averaging.

3.5. Weighted Graph Convolutional Network Architecture

As the classification accuracy of the GCN for the inductive setup was not satisfactory,
a modification of the GCN architecture was attempted.

For the particular problem of assigning labels to IfcSpaces, the weakness of the GCN
is that the importance of the single site vs. neighbor nodes features cannot be adjusted, i.e.,
they are simply averaged. In the original GCN, the l-th layer output hl+1

j is obtained from

the layer input hl
kα with the formula in Equation (2):

hl+1
jβ = σ

(
∑
kα

Ajkhl
kαW l

αβ

)
(4)

where j, k = (1 . . . N) are the node indices, the Greek letters are the feature indices, Ajk is
the adjacency matrix that depends only on the graph structure, and W l

αβ are the trainable
weights in layer l. We proposed an extended layer, with separate weight matrix for the
single site elements (diagonal of the adjacency matrix) and separate weights for the off-
diagonal elements, corresponding to the neighbors:

hl+1
jβ = σ

(
∑
kα

Ajjhl
jαWdiag

lαβ + Ajkhl
kαWo f f−diag

lαβ

)
(5)

Here, we have two matrices (Wdiag
αβ , Wo f f−diag

αβ ) instead of one, which were both sepa-
rately trained on the data (to optimize the cross-entropy loss function).



Energies 2022, 15, 2937 8 of 12

With this novel architecture, a higher accuracy for the transductive learning was
achieved, and we also obtained higher inductive accuracy, as shown in the last column of
Table 1.

Table 1. Inductive Inference evaluation of the Neural Network models: MLP = simple multi-layer pre-
ceptor neural network, GCN: Graph convolutional network of Kipf and Welling [11]. GCN_MLP_joint
mixture of MLP and GCN classifier, WGCN = novel Weighted Graph Neural Network Model.

File MLP GCN GCN_MLP_Joint WGCN (Ours)
Duplex_A_20110907_optimized.ifc 20.0% 25.0% 30.0% 35.0%

FJK-Project-Final-gen.ifc 42.9% 50.0% 35.7% 42.9%
IFC_Schependomlaan_most_spaces.ifc 39.8% 28.9% 39.8% 39.8%

KIT_Smiley-West_Arch.ifc 51.4% 34.3% 64.3% 78.6%
SGD_Munkerud_Arch-1.ifc 23.3% 58.3% 46.7% 50.0%

Tent2_modified.ifc 46.6% 30.0% 28.6% 53.3%
Total accuracy 38.3% 37.6% 45.0% 50.0%

4. Results

We created a labelled dataset of spaces for eight IFC models of residential buildings
that were freely available on the internet. The source of the IFC files were archives of the
Ghent University IFC repository and archives of the duraark repository (https://www.re3
data.org/repository/r3d100012506, accessed on 15 January 2022). For these BIM models,
we used 13 room types.

For training and validation, we used the 320 spaces from the IFC models and randomly
selected 80% of these rooms as a training set; the remaining 20% of the nodes we used as
validation set. We optimized the neural network weights for 1500 iterations with the Adam
optimizer using the stellargraph/tensorflow GCN implementation. The training time was
under 1 min on an intel i9 CPU.

In Figure 3, the resulting confusion matrix of the classification is shown. We can see
that bedrooms, the most common room types, were also the most often misclassified room
types. A 62% classification accuracy was reached on the validation dataset.

Energies 2022, 15, x FOR PEER REVIEW 9 of 13 
 

 

(a) (b) 

Figure 3. Confusion matrix for classification (a) of all the training and validation data, for which we 
obtained an accuracy of 72%. (b) For the validation nodes alone (which were 20% of the total 
nodes),we obtained an accuracy of 62%. 

The models were tested in an inductive setup as well; the models were trained on 
1500 spaces of nine proprietary IFC files, then they were tested on six other unrelated IFC 
files that were neither seen nor processed during the training. With this independence of 
the training and testing dataset we reached the most realistic accuracy assessment. The 
obtained accuracy for this test is shown in Table 1. With GCN, we reached an average 
classification accuracy of 50%, where the accuracy ratio strongly varied between the 
considered building models. 

One example space classification result can be seen on Figure 4. 

 
 

(a) (b) 

Figure 4. (a) An IFC model visualized with BIMVision software (https://bimvision.eu/, accessed on 
15 January 2022). (b) The output of our WGCN space classifier for the spaces on the two floors of 
the building model. 

Figure 5 shows the confusion matrix for the inductive inference test. Some prediction 
errors are understandable; for example, the network often mistakes Corridors for Foyers 
(14 times). The IfcSanitaryTerminal elements (used to represent elements such as drains, 
water closets, or sinks) were not used as space features, as around half of the used models 

Figure 3. Confusion matrix for classification (a) of all the training and validation data, for which we
obtained an accuracy of 72%; (b) For the validation nodes alone (which were 20% of the total nodes),
we obtained an accuracy of 62%.

The models were tested in an inductive setup as well; the models were trained on
1500 spaces of nine proprietary IFC files, then they were tested on six other unrelated IFC

https://www.re3data.org/repository/r3d100012506
https://www.re3data.org/repository/r3d100012506


Energies 2022, 15, 2937 9 of 12

files that were neither seen nor processed during the training. With this independence of
the training and testing dataset we reached the most realistic accuracy assessment. The
obtained accuracy for this test is shown in Table 1. With GCN, we reached an average clas-
sification accuracy of 50%, where the accuracy ratio strongly varied between the considered
building models.

One example space classification result can be seen on Figure 4.

Energies 2022, 15, x FOR PEER REVIEW 9 of 13 
 

 

(a) (b) 

Figure 3. Confusion matrix for classification (a) of all the training and validation data, for which we 
obtained an accuracy of 72%. (b) For the validation nodes alone (which were 20% of the total 
nodes),we obtained an accuracy of 62%. 

The models were tested in an inductive setup as well; the models were trained on 
1500 spaces of nine proprietary IFC files, then they were tested on six other unrelated IFC 
files that were neither seen nor processed during the training. With this independence of 
the training and testing dataset we reached the most realistic accuracy assessment. The 
obtained accuracy for this test is shown in Table 1. With GCN, we reached an average 
classification accuracy of 50%, where the accuracy ratio strongly varied between the 
considered building models. 

One example space classification result can be seen on Figure 4. 

 
 

(a) (b) 

Figure 4. (a) An IFC model visualized with BIMVision software (https://bimvision.eu/, accessed on 
15 January 2022). (b) The output of our WGCN space classifier for the spaces on the two floors of 
the building model. 

Figure 5 shows the confusion matrix for the inductive inference test. Some prediction 
errors are understandable; for example, the network often mistakes Corridors for Foyers 
(14 times). The IfcSanitaryTerminal elements (used to represent elements such as drains, 
water closets, or sinks) were not used as space features, as around half of the used models 

Figure 4. (a) An IFC model visualized with BIMVision software (https://bimvision.eu/, accessed on
15 January 2022); (b) The output of our WGCN space classifier for the spaces on the two floors of the
building model.

Figure 5 shows the confusion matrix for the inductive inference test. Some predic-
tion errors are understandable; for example, the network often mistakes Corridors for
Foyers (14 times). The IfcSanitaryTerminal elements (used to represent elements such as
drains, water closets, or sinks) were not used as space features, as around half of the used
models did not contain such elements. Without this feature, it was hard for the model to
differentiate between bathrooms and storage rooms (21 cases).

Energies 2022, 15, x FOR PEER REVIEW 10 of 13 
 

 

did not contain such elements. Without this feature, it was hard for the model to 
differentiate between bathrooms and storage rooms (21 cases). 

 
Figure 5. Confusion matrix for the inductive inference test of the WGCN model. The model was 
trained on a proprietary set of IFC files with 1500 spaces and validated on 283 other spaces from 
other IFC models as a realistic inference test. 

The relatively low classification accuracy stemmed from the high number of room-
types—some of them having just a few examples in the training set. Some room-types are 
hard to differentiate without additional information (like Storage rooms vs. Toilets); we 
also see that Foyers and Corridors are often confused by the neural model. They have a 
similar room function, although the difference is only that Foyers are within the 
apartments. Therefore, it made sense to merge some room types and recalculate both the 
confusion matrix and accuracy. We grouped the following room types to create the 
following three aggregate classes: 
(“Corridor”, “Foyer”, “Staircase”, “Other”) 
(“Kitchen/Living Room”, “Living Room”, “Living Room/Bedroom”) 
(“Storage”, “Toilet”, “Technical room”) 

With this change, we reached an accuracy of 64%; the resulting confusion matrix is 
shown in Figure 6. 

Figure 5. Confusion matrix for the inductive inference test of the WGCN model. The model was
trained on a proprietary set of IFC files with 1500 spaces and validated on 283 other spaces from other
IFC models as a realistic inference test.

https://bimvision.eu/


Energies 2022, 15, 2937 10 of 12

The relatively low classification accuracy stemmed from the high number of room-
types—some of them having just a few examples in the training set. Some room-types are
hard to differentiate without additional information (like Storage rooms vs. Toilets); we
also see that Foyers and Corridors are often confused by the neural model. They have a
similar room function, although the difference is only that Foyers are within the apartments.
Therefore, it made sense to merge some room types and recalculate both the confusion
matrix and accuracy. We grouped the following room types to create the following three
aggregate classes:

(“Corridor”, “Foyer”, “Staircase”, “Other”)
(“Kitchen/Living Room”, “Living Room”, “Living Room/Bedroom”)
(“Storage”, “Toilet”, “Technical room”)

With this change, we reached an accuracy of 64%; the resulting confusion matrix is
shown in Figure 6.

Energies 2022, 15, x FOR PEER REVIEW 11 of 13 
 

 

 
Figure 6. Confusion Matrix of the WGN classification with layer size of two, after merging classes. 
The accuracy reached 64%. 

5. Conclusions and Outlook 
A study for classifying IFC spaces with calculated geometrical features, accessibility 

graphs, and a graph-based machine learning model was presented here. The presented 
results demonstrate the operation of the workflow; however, there is still room for 
accuracy improvement before production deployment. For future work, the classification 
accuracy shall be improved by fine tuning the current workflow—there is an 
improvement potential that could be achieved by increasing the number of regarded 
features. Additionally, the inclusion of additional IFC elements such as 
IfcSanitaryTerminal would improve classification accuracy to differentiate spaces that 
have those elements (such as toilets, bathrooms, kitchens) from those which usually do 
not (living rooms, bedrooms, storage). We also did not use the information on whether a 
space was outside or inside the building, as this would require a time-consuming 
geometric calculation. However, having such information would be very useful to 
differentiate between, e.g., a terrace and a bedroom. Another huge quality improvement 
is expected by using higher quality labelled input data for training the neural networks. 
For this study, only a couple of IFC files were available, where the spaces within one IFC 
model were highly correlated (i.e., spaces in different floors or within one floor had very 
similar geometry). Even a data stock of several thousand spaces would yield only a limited 
number of independent samples compared to the variety in existing buildings. It also has 
to be noted that in low-detailed IFC models (e.g., with the duct system missing from the 
model), sometimes the labelling of the space type was not obvious for human experts 
either. For example, toilets and storage rooms have very similar features; they have similar 
geometry, are windowless, and are typically located towards the core of the building. 
Additionally, the present analysis does not involve parent apartment-related information 
(e.g., small apartments usually have only one bathroom, or living rooms are usually the 
biggest rooms of an apartment). To incorporate such knowledge rules in the classification 
decision, first the individual apartments would need to be detected. Based on the 
segmentation of the spaces into apartments and public areas, new features could be 
calculated, which could be very useful for the space classification. This apartment 
information inference and processing should be a subject of a follow-up research project. 
Still, the presented study shows that it is possible to achieve an automated classification 
of an incomplete BIM model (i.e., one that is missing the classification of rooms), and that 

Figure 6. Confusion Matrix of the WGN classification with layer size of two, after merging classes.
The accuracy reached 64%.

5. Conclusions and Outlook

A study for classifying IFC spaces with calculated geometrical features, accessibility
graphs, and a graph-based machine learning model was presented here. The presented
results demonstrate the operation of the workflow; however, there is still room for accuracy
improvement before production deployment. For future work, the classification accuracy
shall be improved by fine tuning the current workflow—there is an improvement potential
that could be achieved by increasing the number of regarded features. Additionally,
the inclusion of additional IFC elements such as IfcSanitaryTerminal would improve
classification accuracy to differentiate spaces that have those elements (such as toilets,
bathrooms, kitchens) from those which usually do not (living rooms, bedrooms, storage).
We also did not use the information on whether a space was outside or inside the building,
as this would require a time-consuming geometric calculation. However, having such
information would be very useful to differentiate between, e.g., a terrace and a bedroom.
Another huge quality improvement is expected by using higher quality labelled input data
for training the neural networks. For this study, only a couple of IFC files were available,
where the spaces within one IFC model were highly correlated (i.e., spaces in different
floors or within one floor had very similar geometry). Even a data stock of several thousand
spaces would yield only a limited number of independent samples compared to the variety



Energies 2022, 15, 2937 11 of 12

in existing buildings. It also has to be noted that in low-detailed IFC models (e.g., with the
duct system missing from the model), sometimes the labelling of the space type was not
obvious for human experts either. For example, toilets and storage rooms have very similar
features; they have similar geometry, are windowless, and are typically located towards the
core of the building. Additionally, the present analysis does not involve parent apartment-
related information (e.g., small apartments usually have only one bathroom, or living
rooms are usually the biggest rooms of an apartment). To incorporate such knowledge rules
in the classification decision, first the individual apartments would need to be detected.
Based on the segmentation of the spaces into apartments and public areas, new features
could be calculated, which could be very useful for the space classification. This apartment
information inference and processing should be a subject of a follow-up research project.
Still, the presented study shows that it is possible to achieve an automated classification of
an incomplete BIM model (i.e., one that is missing the classification of rooms), and that the
method has the potential to automate the room classification process. It is expected that a
similar approach can be used whenever BIM models are handed over from one stakeholder
to another, e.g., in the case of issuing a building permit based on the BIM model data.

Author Contributions: Conceptualization, A.B. and G.Z.; methodology, A.B. and M.Š.; software
development, A.B. and M.Š.; validation and software testing, B.B.-L.; data curation, B.B.-L. and M.Š.;
writing—original draft preparation, A.B.; writing—review and editing, M.Š., B.B.-L. and G.Z.; visual-
ization, A.B.; supervision, A.B. and G.Z.; project administration, A.B. and G.Z.; funding acquisition,
A.B. and G.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Forschungsförderungsgesellschaft (FFG), Austria, grant
number 880874.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. ISO International Organization for Standardization. Industry Foundation Classes (IFC) for Data Sharing in the Construction and

Facility Management Industries. ISO. Available online: https://www.iso.org/standard/70303.html (accessed on 31 January 2022).
2. Sporr, A.; Zucker, G.; Hofmann, R. Automated HVAC Control Creation Based on Building Information Modeling (BIM):

Ventilation System. IEEE Access 2019, 7, 74747–74758. [CrossRef]
3. Hitchcock, R.J.; Wong, J.; Consulting, H. Transforming ifc architectural view bims for energy simulation: 2011. In Proceedings of

the Building Simulation 2011: 12th Conference of International Building Performance Simulation Association, Sydney, Australia,
14–16 November 2011; p. 7.

4. Lilis, G.N.; Giannakis, G.I.; Rovas, D.V. Automatic generation of second-level space boundary topology from IFC geometry
inputs. Autom. Constr. 2017, 76, 108–124. [CrossRef]

5. Krijnen, T.; Tamke, M. Assessing Implicit Knowledge in BIM Models with Machine Learning. In Modelling Behaviour: Design
Modelling Symposium 2015; Thomsen, M.R., Tamke, M., Gengnagel, C., Faircloth, B., Scheurer, F., Eds.; Springer: Cham, Switzerland,
2015; pp. 397–406. [CrossRef]

6. Belsky, M.; Sacks, R.; Brilakis, I. Semantic Enrichment for Building Information Modeling. Comput.-Aided Civ. Infrastruct. Eng.
2016, 31, 261–274. [CrossRef]

7. Sacks, R.; Ma, L.; Yosef, R.; Borrmann, A.; Daum, S.; Kattel, U. Semantic Enrichment for Building Information Modeling: Procedure
for Compiling Inference Rules and Operators for Complex Geometry. J. Comput. Civ. Eng. 2017, 31, 04017062. [CrossRef]

8. Daum, S. QL4BIM. 2021. Available online: https://github.com/SimonDaum/QL4BIM (accessed on 23 November 2021).
9. Bloch, T.; Sacks, R. Comparing machine learning and rule-based inferencing for semantic enrichment of BIM models. Autom.

Constr. 2018, 91, 256–272. [CrossRef]
10. Koo, B.; La, S.; Cho, N.-W.; Yu, Y. Using support vector machines to classify building elements for checking the semantic integrity

of building information models. Autom. Constr. 2019, 98, 183–194. [CrossRef]
11. Open CASCADE Technology|Collaborative Development Portal. Available online: https://dev.opencascade.org/ (accessed on 1

February 2022).
12. Koo, B.; Jung, R.; Yu, Y. Automatic classification of wall and door BIM element subtypes using 3D geometric deep neural networks.

Adv. Eng. Inform. 2021, 47, 101200. [CrossRef]

https://www.iso.org/standard/70303.html
http://doi.org/10.1109/ACCESS.2019.2919262
http://doi.org/10.1016/j.autcon.2016.08.044
http://doi.org/10.1007/978-3-319-24208-8_33
http://doi.org/10.1111/mice.12128
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000705
https://github.com/SimonDaum/QL4BIM
http://doi.org/10.1016/j.autcon.2018.03.018
http://doi.org/10.1016/j.autcon.2018.11.015
https://dev.opencascade.org/
http://doi.org/10.1016/j.aei.2020.101200


Energies 2022, 15, 2937 12 of 12

13. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view Convolutional Neural Networks for 3D Shape Recognition. arXiv
2015, arXiv:1505.00880.

14. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
15. Lomio, F.; Farinha, R.; Laasonen, M.; Huttunen, H. Classification of Building Information Model (BIM) Structures with Deep

Learning. In Proceedings of the 2018 7th European Workshop on Visual Information Processing (EUVIP), Tampere, Finland,
26–28 November 2018; pp. 1–6. [CrossRef]

16. Emunds, C.; Pauen, N.; Richter, V.; Frisch, J.; van Treeck, C. IFCNet: A Benchmark Dataset for IFC Entity Classification. arXiv
2021, arXiv:2106.09712.

17. Zhang, Z.; Cui, P.; Zhu, W. Deep Learning on Graphs: A Survey. IEEE Trans. Knowl. Data Eng. 2020, 34, 249–270. [CrossRef]
18. Bronstein, M.M.; Bruna, J.; LeCun, Y.; Szlam, A.; Vandergheynst, P. Geometric deep learning: Going beyond Euclidean data. IEEE

Signal Process. Mag. 2017, 34, 18–42. [CrossRef]
19. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2017, arXiv:1609.02907.
20. Song, J.; Yu, K. Framework for Indoor Elements Classification via Inductive Learning on Floor Plan Graphs. ISPRS Int. J. Geo-Inf.

2021, 10, 97. [CrossRef]
21. Paudel, A.; Dhakal, R.; Bhattarai, S. Room Classification on Floor Plan Graphs using Graph Neural Networks. arXiv 2021,

arXiv:2108.05947.
22. Hu, X.; Fan, H.; Noskov, A.; Wang, Z.; Zipf, A.; Gu, F.; Shang, J. Room semantics inference using random forest and relational

graph convolutional networks: A case study of research building. Trans. GIS 2021, 25, 71–111. [CrossRef]
23. PythonOCC|Open CASCADE Technology. Available online: https://dev.opencascade.org/project/pythonocc (accessed on 16

November 2021).
24. IfcOpenShell. Available online: http://ifcopenshell.org/ (accessed on 16 November 2021).
25. Kim, H.; Jun, C.; Cho, Y.; Kim, G. Indoor Spatial Analysis Using Space Syntax, The. Int. Arch. Photogramm. Remote Sens. Spat. Inf.

Sci. 2008, 37, 1065–1070.
26. Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring Network Structure, Dynamics, and Function using NetworkX. In Proceedings

of the 7th Python in Science Conference, Pasadena, CA, USA, 21–22 August 2008; pp. 11–15.
27. StellarGraph Machine Learning Library. CSIRO’s Data61. 2022. Available online: https://github.com/stellargraph/stellargraph

(accessed on 2 February 2022).

http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1109/EUVIP.2018.8611701
http://doi.org/10.1109/TKDE.2020.2981333
http://doi.org/10.1109/MSP.2017.2693418
http://doi.org/10.3390/ijgi10020097
http://doi.org/10.1111/tgis.12664
https://dev.opencascade.org/project/pythonocc
http://ifcopenshell.org/
https://github.com/stellargraph/stellargraph

	Introduction 
	Related Work 
	Materials and Methods 
	Space Extraction from IFC Elements 
	Accesssibility Graph Calculation 
	Extracting Features 
	Neural Networks on Graphs 
	Weighted Graph Convolutional Network Architecture 

	Results 
	Conclusions and Outlook 
	References

