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Abstract: The dc-link voltage ripple plays an important role in dc capacitor design for three-phase
voltage source converters (VSCs). However, the analytical models of the dc-link voltage ripple
have rarely been reported for VSCs with nonlinear output current. This paper first derived the
LOH voltages expressions in the dc-link. It reveals that each LOH component in ac current would
induce two dc-link LOH voltages. Then the switching frequency harmonic voltages (SHVs) and
their envelope expressions are formulated. Moreover, the proposed analytical models could be very
much simplified when applied to special cases in the previous literature. Finally, an easy to design dc
capacitor equation under nonlinear output current is also derived. Both simulation and experimental
results validate the proposed method.

Keywords: capacitors; VSCs; voltage ripple; low order harmonics

1. Introduction

Three-phase voltage source converters (VSCs) have been widely used in many in-
dustrial applications, such as uninterruptible power supply (UPS), active power filters
(APFs), grid-tied inverters, etc., due to their flexible control and bidirectional energy flow.
Therefore, the power stage of VSC, including the dc-link capacitor, needs to be designed
carefully to realize high reliability and efficiency. The capacitor sizing aims at two issues:
dc-link voltage ripple and capacitor power losses. As the power losses are related to
dc-link current and capacitor equivalent series resistance (ESR), a lot of dc-link current
analytical methods have been reported in [1–6]. Among them, Bierhoff et al. [1] derived the
dc-link current spectrum of VSC under different modulation strategies. McGrath et al. [2]
proposed a generalized method to determine the current harmonic spectrum of the dc-link
for different VSC topologies. Sun et al. [3] derived the dc-link current spectrum expressions
with considered the effect of the output ac current harmonics, which improves the accuracy
of the dc-link current model. As the dc-link current spectrum needs complicated double
Fourier integration, the RMS computational method is also widely used to analyze the dc-
link current of VSC [4–6]. Moreover, a novel pulse width modulation strategy is proposed
to reduce the dc-link current in [7] so that the dc capacitor power losses and temperature
rise are suppressed.

On the other hand, the harmonic currents (including switching harmonics and its
sideband components) in the dc-link are absorbed by the dc capacitor, resulting in the
dc voltage ripple. Dahono et al. [8] derived and compared the RMS of dc-link current
and voltage ripple with different modulation methods. Vujacic et al. [9,10] analyzed the
time-domain waveform of the dc-link voltage ripple for the single-phase and three-phase
VSC. Pei et al. [11] discussed the capacitor design method based on the dc-link voltage
ripple. Furtherly, Vujacic et al. [12] established a general mathematical model of dc-link
voltage ripple for two-level polyphase VSC and studied the influence of different phase
numbers on the size of dc-link capacitors. Guo et al. [13] analyzed the dc-link voltage
ripple of the three-phase VSC when considering the diode reverse recovery process. It is

Energies 2022, 15, 2892. https://doi.org/10.3390/en15082892 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15082892
https://doi.org/10.3390/en15082892
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en15082892
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15082892?type=check_update&version=3


Energies 2022, 15, 2892 2 of 15

concluded that the voltage ripple error is only 2% when considering and not considering the
diode reverse recovery process. So far, nearly all the dc-link voltage ripple study methods
assume the sinusoidal output current [8–13]. Only a few papers discussed the dc-link
voltage ripple under nonlinear ac output current. Kang et al. [14] analyzed the dc-link
low order harmonic voltage under unbalanced ac output current (negative sequence, still
at the fundamental frequency). It shows that the second harmonic voltage would occur
when the ac current contains the fundamental negative sequence component. However,
the switching harmonic voltages in dc-link are not discussed. Moreover, the analytical
method cannot be used to analyze the dc-link voltage ripple for VSC under arbitrary
low-order harmonic combinations in an ac current. Wang et al. [15,16] investigated the
impacts of the LOH ac output currents on the dc-link current for single-phase H bridge
inverter and three-phase VSC. Therein, the LOH and switching frequency harmonics RMS
of the dc-link current are formulated individually. However, they also did not analyze the
dc-link voltage. Yang et al. [17] divided the dc-link voltage ripple into LOH voltage and
switching frequency harmonic voltage (SHV). In addition, they established its expressions
for VSC under nonlinear output current. However, the dc-link SHV envelop expressions
were not analyzed.

This paper is the extension of a conference paper [17] and shows a more detailed
investigation of the dc-link voltage for VSCs under nonlinear output current. Therein, the
dc-link SHV envelop expressions are successfully derived and verified by more simulation
results. Moreover, the dc-link SHV models are formulated in a simpler way and show more
experimental results. Moreover, the prior work [10,14] can be viewed as a special case of the
proposed analytical method in this paper. This paper is organized as follows. In Section 2,
the dc-link capacitor current models are established. Then, the general expressions of the
dc-link LOH voltage and SHV are derived in Section 3. It is shown that each LOH in the ac
current would induce two LOH voltages. Moreover, an easy to design dc-link capacitor
equation under nonlinear output current is also derived. Finally, a thorough dc-link voltage
ripple simulation and experimental results are performed under nonlinear output and
validate the proposed computational methods.

2. Basic Analysis of DC-Link Circuit and Current
2.1. Basic Analysis of DC-Link Circuit

The typical circuit of a three-phase VSC is shown in Figure 1. The dc-link capacitor
current is

icap = iDC − idc (1)
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Due to the impedance frequency characteristic of the capacitor, the average capacitor
current icap is zero. So, the dc component of idc is totally supplied by the dc front end
current iDC. In addition, almost all the dc-link harmonic currents should be absorbed by
the dc-link capacitor. On the other hand, the dc-link current can be expressed as the sum
of LOH current (idcLOH, including dc component IdcAVG) and switch frequency harmonic
current (SHC, idcSHC), then the dc-link capacitor current can be written as

icap = IdcAVG − idcLOH − idcSHC (2)

Therefore, the dc-link voltage ripple can be expressed as

∆vc =
1

Cdc

∫
(IdcAVG − idcLOH − idcSHC)dt (3)

Obviously, the dc-link voltage ripple is also divided by the LOH voltage (∆vcLOH) and
SHV (∆vcSHV), and they are defined as

∆vcLOH =
1

Cdc

∫
(IdcAVG − idcLOH)dt (4)

∆vcSHV =
1

Cdc

∫
(−idcSHC)dt (5)

Equations (4) and (5) are the basic model of dc-link voltage ripple. It will be fully
investigated in the next section.

2.2. DC-Link Current Analysis

It is clear to see from (4) and (5) that the dc-link voltage ripple is dependent on the
dc-link capacitor, dc current (IdcAVG), dc-link LOH current (idcLOH), and dc-link SHC (idcSHC).
As stated in Section 2.1, the dc-link current can be written as

idc = idcLOH + idcSHC (6)

Integrating (6) over one switching period (Ts) results in

1
Ts

∫ t0+Ts

t0

idcdt =
1
Ts

∫ t0+Ts

t0

idcLOHdt +
1
Ts

∫ t0+Ts

t0

idcSHCdt (7)

where t0 is the starting time of integration, which can be any value. Since the switching
frequency is much greater than the frequency of LOH, the idcLOH can be regarded as a
constant in each switching period. The second term in (7) is zero, due to the fact that the
charge and discharge of the dc-link capacitor with idcSHC over one switching period should
be balanced. Therefore, the LOHs in the dc-link can be expressed as

idcLOH =
1
Ts

∫ t0+Ts

t0

idcdt (8)

From (6), the SHC in the dc-link is

idcSHC = idc − idcLOH (9)

When switch Tx1 is on or off, the switching state Sx (x = a, b, c) equals 1 or 0, respectively.
Then, the dc-link current can be written as the summation of the three-phase leg current,
which equals each phase current multiplied by its switching state. Therefore,

idc = Saia + Sbib + Scic (10)
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By substituting (10) into (8), the LOH current in dc-link is expressed as

idcLOH = daia + dbib + dcic (11)

where dx (x = a, b, c) is the duty cycle and is defined as

dx =
1
2

(
1 + vxre f + vcom

)
(12)

where vxref represents the reference signal and vcom is the common-mode signal. The
different modulation strategies correspond to different vcom. As the sum of the three-phase
current is zero, substituting (12) into (11) yields

idcLOH = vare f ia + vbre f ib + vcre f ic (13)

In a three-phase VSC, the three-phase reference voltages are defined as
vare f = M sin(ω1t)
vbre f = M sin(ω1t− 2π/3)
vcre f = M sin(ω1t + 2π/3)

(14)

where M represents the modulation index. Unlike the ac voltages, the three-phase current
consists of a series of LOHs in applications like the APFs. Thus, the general three-phase
current expressions are defined as

ia = I+k sin
(
kω1t− ϕ+

k
)
+ I−n sin(nω1t− ϕ−n )

ib = I+k sin
(
kω1t− 2π

3 − ϕ+
k
)
+ I−n sin

(
nω1t + 2π

3 − ϕ−n
)

ic = I+k sin
(
kω1t + 2π

3 − ϕ+
k
)
+ I−n sin

(
nω1t− 2π

3 − ϕ−n
) (15)

The superscript ‘+’ represents the positive sequence and ‘−’ represents the negative
sequence. The superscript ‘k’ and ‘n’ are corresponding harmonic orders. ϕ is the phase
angle difference between current and voltage. By substituting (15) and (14) into (13), then
the dc-link LOH currents are

idcLOH =
3
4

M

[
∑
k=1

I+k cos
[
(k− 1)ω1t− ϕ+

k
]
− ∑

n=1
I−n cos

[
(n + 1)ω1t− ϕ−n

]]
(16)

Herein, the dc current in dc-link current is obtained by setting k as 1 in (16)

IdcAVG =
3
4

MI+1 cos ϕ+
1 (17)

Equations (9), (10), (16), and (17) are a complete set of generalized tools to obtain
the dc current, LOH current, and SHC in dc-link. They are the foundation for dc-link
voltage ripple.

3. DC-Link Voltage Ripple
3.1. The LOH Voltage in DC-Link

The LOH voltage ripple is defined as in (4). By substituting (16) and (17) into (4), the
LOH voltage ripple can be obtained as

∆vcLOH = − 3M
4ω1Cdc

[
∑
k=2

I+k
k− 1

sin
[
(k− 1)ω1t− ϕ+

k
]
− ∑

n=1

I−n
n + 1

sin
[
(n + 1)ω1t− ϕ−n

]]
(18)

Obviously, the LOH voltage has no relevance to the modulation strategy. As in (18),
the kth positive sequence harmonic component in ac currents would induce (k − 1)th LOH
voltage in dc-link; the nth negative sequence harmonic component in ac currents would
induce (n + 1)th LOH voltage in dc-link. Therefore, if the harmonic order and phase angle
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in ac currents satisfy |k−n| = 2 and ϕk
+ = ϕn

−, then the (k − 1)th and (n + 1)th LOH
voltage induced in the dc-link would cancel each other. By contrast, if the harmonic order
and phase angle in ac currents satisfy |k − n| = 2 and |ϕk

+ − ϕn
−| = π, then the (k−1)th

and (n + 1)th LOH voltage induced in the dc-link would reinforce each other. For example,
the dc-link would occur 2nd and 6th harmonic voltages when ac currents consist of −1st
and +7th harmonics.

3.2. The SHV in DC-Link

The SHV ripple is defined as in (5). As stated in Section 2.2, the average value of idcSHC
over one switching period is zero whatever modulation strategy is used. It means that
the initial and final values of the SHV in dc-link are the same. Therefore, the dc-link SHV
pattern is the same for each switching period. On the other hand, the dc-link voltage period
is π/3 with balanced and sinusoidal output ac current as shown in Figure 2a. Therefore, only
one sector of a range of π/3 needs to be analyzed in this case. However, from Figure 2b–d,
it is clear that the envelopes of dc-link SHV are quite different with different harmonic
combinations in ac currents. Therefore, to consider all possible harmonic combinations in
ac currents, the dc-link SHV analysis range should be extended to 2π. Figure 3 depicts the
dc-link SHV over one switching period with whole sectors.
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It is clear that the dc-link SHV is symmetric with a half-switching cycle. Hence only the
half-switching cycle needs to be analyzed. For each sector, a combination of Equations (5),
(9), (10), and Figure 3 for the dc-link SHV over the half-switching period can be expressed as

∆vcSHC =
1

Cdc


K0(t− t0) i f t0 ≤ t < t1
K1(t− t1) + ∆v1 i f t1 ≤ t < t2
K2(t− t2) + ∆v1 + ∆v2 i f t2 ≤ t < t3
K0(t− t3)− ∆v1 i f t3 ≤ t < t4

(19)
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where {
∆v1 = K0(t1 − t0) = K0T0
∆v2 = K1(t2 − t1) = K1T1

(20)
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Then the maximum peak value of switching harmonic voltage over one switching
period in dc-link can be written as

{∆vcSHC}max =
1

Cdc
max(|∆v1|, |∆v1 + ∆v2|) (21)

It should be noted that the values of K0, K1, K2, T0, T1, and T2 vary with different
sectors. The Ki (i = 0, 1, 2) actually equals to –idcSHC, and it can be calculated by Equations (9),
(10), and (16). Their values are summarized in Table 1. With the above Equations (19)–(21),
the SHV and its maximum peak value can be easily obtained. Unlike LOH voltage, the SHV
pattern is dependent on the modulation strategy. For SVPWM, the vcom can be expressed as

vcom = −1
2

[
max

(
vare f , vbre f , vcre f

)
+ min

(
vare f , vbre f , vcre f

)]
(22)

Table 1. The values of K0, K1, K2, T0, T1, and T2 in different sectors with SVPWM.

Category T0 T1 T2 K0 K1 K2

Sector 1 Ts × (1 − uaref − ucom)/8 Ts × (uaref − ubref)/4 Ts × (ubref − ucref)/4 idcLOH idcLOH − ia idcLOH + ic
Sector 2 Ts × (1 − ubref − ucom)/8 Ts × (ubref − uaref)/4 Ts × (uaref − ucref)/4 idcLOH idcLOH − ib idcLOH + ic
Sector 3 Ts × (1 − ubref − ucom)/8 Ts × (ubref − ucref)/4 Ts × (ucref − uaref)/4 idcLOH idcLOH − ib idcLOH + ia
Sector 4 Ts × (1 − ucref − ucom)/8 Ts × (ucref − ubref)/4 Ts × (ubref − uaref)/4 idcLOH idcLOH − ic idcLOH + ia
Sector 5 Ts × (1 − ucref − ucom)/8 Ts × (ucref − uaref)/4 Ts × (uaref − ubref)/4 idcLOH idcLOH − ic idcLOH + ib
Sector 6 Ts × (1 − uaref − ucom)/8 Ts × (uaref − ucref)/4 Ts × (ucref − ubref)/4 idcLOH idcLOH − ia idcLOH + ib

3.3. The DC-Link Voltage Ripple Evaluation

With given LOHs in output ac current, the dc-link LOH voltages and SHVs can be
directly calculated by the Equations (18)–(20), respectively, and the envelope of SHVs is
determined by (21). Then the theoretical total dc-link voltage ripple can be obtained by
summing the results of (18) and (19). Figure 4 gives the flow chart of the dc-link voltage
ripple for the VSC with nonlinear output current.
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3.4. Equations Compatibility with Special Cases

The proposed general dc-link voltage ripple model could be simplified when applied
to special cases, such as a three-phase inverter with an unbalanced load, where both the 1st
positive sequence and first negative sequence components exist in ac output current. In this
case, the dc-link low order harmonic voltage is obtained by setting n = 1 in the second term
of (18). The resulting peak voltage ripple (23) exactly matches the half of the peak-to-peak
ripple (36) in [14].

∆vcLOH =
3MI−n
8ω1Cdc

sin
[
2ω1t− ϕ−n

]
(23)

As for the three-phase inverter with balanced ac current, only the first positive se-
quence component exists in ac output current. Therefore, the dc-link low order harmonic
voltages are zero from (18). Only SHVs exist in dc-link, and they are directly determined
by (19) and (20). Figure 5 depicts the envelopes of dc-link voltage ripple under different
modulation indexes by (21), which are the same as Figure 4 in [10]. It should be noted
that the definition of modulation ratio is Vm/(Vdc/2) in this paper and Vm/Vdc in [10]. Vm
represents the amplitude of reference voltage.
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Figure 5. Normalized peak-to-peak dc-link voltage ripple amplitude ∆Vpp over the period [0, 60◦]
for different modulation indices, M = 1/2, 2/3, 1, and 2/

√
3, and output phase angles (a) ϕ = 0◦ and

(b) ϕ = 50◦.

3.5. Equations Simplification for Practical Design

With the given LOHs in ac currents, the dc-link LOH voltage and SHV can be obtained
from Sections 3.1 and 3.2. In the practical design, the voltage ripple in the worst case needs
to be considered. It is impractical to obtain the maximum peak value of dc-link voltage
ripple by directly using the (18) and (19)–(21), as the phase angles of each LOH ac current
could have infinite possible combinations. Therefore, some simplifications are needed to
facilitate the design practice.

Firstly, for the dc-link LOH voltage from (18), the maximum peak value of the LOH
voltage ripple in the worst case can be obtained as

{∆vcLOH}max =
3M

4ω1Cdc

(
∑
k=2

I+k
k− 1

+∑
n=1

I−n
n + 1

)
(24)

Secondly, the dc-link SHV ripple has a quite complicated form in different sectors as
stated in Section 3.2. Comparing ∆v1 and ∆v2 in different sectors with the maximum peak
value of LOH voltage in (24), it is clear that the LOH voltage is the dominant component.



Energies 2022, 15, 2892 9 of 15

Therefore, the SHV can be reasonably neglected due to the integral time of SHV being
far less than the LOH voltage integral time. If the dc-link voltage ripple requirement is
given, then the capacitance of the dc-link capacitor can be easily obtained by (25).

Cdc =
3M

4ω1∆vc

(
∑
k=2

I+k
k− 1

+∑
n=1

I−n
n + 1

)
(25)

4. Simulation and Experimental Results

To validate the proposed analytical method of the dc-link voltage ripple, both simula-
tion and experiment are carried out under different LOH output current combinations.

4.1. Simulation Results

Circuit simulation of the VSC is performed by MATLAB/Simulink. Simulink param-
eters are: dc voltage is 400 V, the three-phase grid voltage is set at 240 V, and the switch
frequency is 10 kHz. Therefore, the modulation index can be approximately calculated as
0.98. The LCL filter and dc-link capacitor parameters are listed in Table 2.

Table 2. System parameters.

Category Part Number Parameters

Grid side inductor Lg Custom-made 200 uH, 30 Arms
Converter side inductor Lr Custom-made 400 uH, 40 Arms

Filter capacitor Cf MKP1847610354P4 10 uF
Damping resistor Rd TEH100M1R00JE 1 Ω

DC-Link capacitor Cdc 450HXG120MFM 720 uF
IGBT modules SKiiP 39AC126V2 1200 V

The following two groups of LOH ac currents were selected as the output: (1) I1
− = 15A

(ϕ1
− = 0); (2) I1

− = 10A (ϕ1
− = 0), I5

− = 10A (ϕ5
− = 0). Figure 6 shows the simulation and

computational results of the dc-link voltage ripple under the above two ac current condi-
tions. From top to bottom are the total dc-link voltage the total dc-link voltage (including
LOH voltage and SHV), the LOH voltage (second diagram), SHV ripple (third diagram),
and FFT results of LOH voltage in dc-link. The computational results of LOH voltage and
dc-link SHV envelop are calculated by (18) and (21), respectively. The theoretical total
dc-link voltage ripple is calculated by summing the results of (18) and (19).

Obviously, the simulation and computational results are matched well, which proves
the correctness and effectiveness of the analytical method proposed in this paper. From
Figure 6a, it can be seen that when the ac current contains the fundamental negative
sequence component, the second harmonic voltage would occur in the dc-link. Similarly,
Figure 6b shows that when the ac current contains both the fundamental negative sequence
and the fifth negative sequence components, the secnd and sixth harmonic would occur in
the dc-link. Moreover, since the integration time of SHV in the dc-link is much smaller than
the LOH voltage integration time, the maximum value of the LOH voltage is much larger
than the maximum value of SHV in the dc-link. Therefore, compared with the dc-link LOH
voltage, the SHV in the dc-link can be ignored.
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4.2. Experimental Results

The experimental setup is shown in Figure 7. It should be pointed out that the power
module in the experimental setup is mounted on a heatsink and covered by a drive board,
so it can not be seen in Figure 7. The graphic user interface shown in Figure 8 is used to
control the grid-tied inverter output current. The PI paralleled with multiple PR controllers
in a d-q reference frame were used to inject the desired multiple LOH currents into the grid.
Therefore, the dc-link voltage ripple can be easily evaluated under a specific ac current.
The switching and sample frequency are 10kHz, and all the experimental parameters are
consistent with the simulation.
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Figures 9a and 10a show the experimental results of total dc-link voltage ripple when
the ac currents consist of: (1) I1

− = 15A (ϕ1
− = 0); (2) I1

− = 10A (ϕ1
− = 0), I5

− = 10A
(ϕ5
− = 0), respectively. The corresponding theoretical total dc-link voltages are shown in

Figures 9b and 10b, which are obtained by summing the results of (18) and (19). It should
be noted that the output ac current conditions in Figures 9 and 10 are the same as Figure 6.
It is obvious that the computational, simulation, and experimental results are matched well.
Figure 11 show the experimental and computational total dc-link voltage ripple results
when ac current consist of I1

− = 8A (ϕ1
− = 0), I5

− = 8A (ϕ5
− = π), I7

+ = 8A (ϕ7
+ = 0). Again,
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they match well. It is interesting that the dc-link voltage ripple in Figure 10 increased
significantly compared with Figure 9, due to the 6th harmonic voltages in dc-link produced
by −5th and +7th harmonics in the ac current being reinforced by each other from (18).
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5. Conclusions

This paper presents a general analytical model of the dc-link voltage ripple to facilitate
the dc capacitor design for the three-phase VSCs under nonlinear output current. The
dc-link voltage ripples are decomposed into LOH voltages and SHVs and formulated
separately. It is interesting to discover that the dc-link LOH voltages would reinforce
or cancel each other with different phase angles combinations in ac current. Moreover,
the dc-link voltage ripple models in the previous literature could be easily obtained by
applying specific cases to the proposed analytical models in this paper. Moreover, the
maximum dc-link voltage ripple expression is also derived to accelerate dc capacitor design
in the worst case. With the proposed method, the various unusual dc-link voltage ripple
under arbitrary combinations of LOHs in the ac output current can be accurately evaluated
in advance without amounts of simulations. The complete equation sets are demonstrated
by both simulation and experimental results.
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